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tion around a circular cylinder in cross-flow up to Re =5

COMPARATIVE STUDY OF SUBGRID LARGE EDDY MODELS ON
FLOW PREDICTION OF CIRCULAR CYLINDER IN
SUBCRITICAL-CRITICAL-SUPERCRITICAL REGIME "

Zhu Zhiwen" Deng Yanhua
(College of Civil Engineering, Hunan University, Changsha 410082, China)

Abstract In order to obtain the aerodynamics of the circular cylinder in subcritical-to-supereritical flow regime,
the large eddy simulations (LES) with the smagorinsky subgrid scale and dynamic subgrid scale models are re-
spectively employed to predict the flow field where Re is from 4. 1 x 10* ~8.2 x 10°. The obtained steady and
unsteady aerodynamics are compared with available data in other references. The results show that both subgrid
scale models provide reasonable estimation on mean and RMS lift coefficients, vortex shedding St number and
drop of drag coefficients. However, the drag crisis in critical regime is not accurately predicted, but reasonable
estimation on mean and RMS pressure distribution around the cylinder is obtained. In critical and supercritical re-
gimes, the smagorinsky subgrid scale model may overestimate the subgrid turbulent viscosity, while the dynamic

subgrid scale model may significantly underestimate the subgrid turbulent viscosity in some areas of the flow field.

Key words circular cylinder, Smagorinsky subgrid scale models, dynamic subgrid scale models, aerody-

namics, critical regime
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