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Fig.1 Model of interconnected Hydro-pneumatic suspension

where, 1. accumulator; 2. damping hole; 3. one-way vale;
4. cylinder; 5. piston rod; 6. vehicle wheel
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Table 1 ~ Simulation parameters of the vehicle
Item m, m J. J, k Py Vo
Unit Kg Kg Kg/m®> Kg/m*> N/m Pa m’
Value 3480 100 2818 11275 181000 10° 1.5x10°3
Item Cy Ay C, Ay A, A, p
Unit — m? — m? m? m? Kg/m3

Value 0.785.7x107°0.72 2x1079.5 x1073.7 x10~0.89 x 10°
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Fig. 4 Vibration response diagram of the vehicle for a =0. 01
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Fig. 6 Vibration response diagram of the vehicle for ¢ =0. 1
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NONLINEARDYNAMICS ANALYSIS OF THREE AXIS HEAVY VEHICLES
WITH HYDRO-PNEUMATIC SUSPENSION*

Cao Dongxing” Li Qing Hu Wenhua Yao Minghui Zhang Wei
(1. College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China)
(2. Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, Beijing 100124, China)

Abstract In this paper, the nonlinear governing equations was established for a three-axis heavy vehicle model
with the inter-connected hydro-pneumatic suspension. Considering three pavement conditions including impact in-
centive,, random incentive and sine incentive, the nonlinear dynamic responses of the vehicle were studied in de-
tail. The effect of the inter-connected hydro-pneumatic suspension on the behvaiour of the three axis heavy vehi-
cle were also discussed. For the case of road sinusoidal periodic excitation, the bifurcation diagram, the wave-
form, phase portrait, Poincare map and power spectrum are presented with the different road roughness excitation
frequency. Numerical results showed that there exist periodic motions and chaotic motions for the heavy vehicle
system. And it is beneficial for shock absorption of multiple axis heavy vehicles by using inter-connected hydro-

pneumatic suspension.

Key words inter-connected hydro-pneumatic suspension, multi-axis, nonlinear dynamics
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