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摘要　本文中，我们讨论了含参量分数阶微分系统的基本分岔，即跨临界分岔、折叠分岔与音叉分岔．首

先，根据分数阶Ｌｙａｐｕｎｏｖ方法，讨论了含参量分数阶微分系统的稳定性，并给出了这些基本分岔的相图．

其次，根据Ｔａｙｌｏｒ展式与隐函数定理，研究了分数阶微分系统的规范形，从而求出这些基本分岔的拓扑规

范形．
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引言

分数阶微积分（分数阶微分和分数阶积分）经

过三个多世纪的发展，它受到越来越多的应用科

学家及工程技术人员的重视．虽然人们在早期对
它有一定的认识，但是直到二十世纪七十年代后

才得到广泛关注．
由于分数阶微分模型可以很好地描述物质的

记忆和遗传性质，克服了经典整数阶微分模型理

论与实验结果吻合不好的缺陷，并且仅需要使用

较少几个参数就可获得较好的效果，因此越来越

多的学者对它产生了浓厚的兴趣，从而使得在近

年来，分数阶微积分无论在理论上还是应用上都

获得了飞速发展［１－８］，其应用领域也越来越广泛．
这其中在软物质、控制工程、反常扩散、流变学等方

面都有长足的发展［１，７－９］．
分岔是含参量非线性微分系统的主要研究内

容．众所周知，在含参量的非线性微分系统中，当
参量变化到某个值时，系统相图也随之变化，这就

导致相图的拓扑结构发生变化，在几何上表现为参

数的某个值处相图发生突变，这个值就是分岔发

生的临界值．
由于分数阶微分系统的稳定性区域不同于整

数阶（经典）微分系统，分数阶微分系统的稳定性

区域与求导阶数有直接联系，而经典微分系统的稳

定性区域一般在负半平面，因而在研究上，这两者

研究方法上有一定的差别．我们知道研究含参量
微分系统的分岔主要从稳定性方面着手研究，因

此，研究含参量分数阶微分系统的分岔要比经典

微分系统的分岔复杂一些．
近来，Ｍａｔｉｇｎｏｎ［１０］讨论了带 Ｃａｐｕｔｏ导数的线

性分数阶微分系统的稳定性．之后，一些学者研究
了带 ＲｉｅｍａｎｎＬｉｏｕｖｉｌｌｅ导数［１１］的分数阶微分系统

的稳定性，还有学者研究了带 Ｃａｐｕｔｏ导数的时滞
微分系统［１２］的稳定性．所有这些文献在分析分数
阶微分系统的稳定性的时候，基本上都是通过系

统的解来讨论的．然而，并不是所有的分数阶微分
系统都能够求出解的，所以这就需要应用其他有

效的工具讨论零解的稳定性．近来，李岩等
人［１３－１４］讨论了分数阶微分方程的 Ｌｙａｐｕｎｏｖ直接
法，这种方法可以直接讨论分数阶微分系统，特别

是含参量的非线性分数阶微分系统的稳定性．有
了这些分析分数阶微分系统稳定性的方法，我们

就可以讨论有关含参数分数阶微分系统的分岔问

题．在讨论主要问题之前，首先给出本文所需要的
主要定义及相关性质．
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１　预备知识

在本节中，我们首先给出本文所需的分数阶

微积分的有关基本定义与基本性质．
Ｇａｍｍａ函数Γ（ｚ）是由第二类Ｅｕｌｅｒ积分定义

Γ（ｚ）＝∫
∞

０
ｅ－ｔｔｚ－１ｄｔ，（Ｒｅ（ｚ）＞０），

其中ｔｚ－１＝ｅ（ｚ－１）ｌｏｇ（ｔ）．
Ｇａｍｍａ函数具有一个递推关系式

Γ（ｚ＋１）＝ｚΓ（ｚ），
由此得到一个特殊的，但是比较常用的递推关系

式

Γ（ｎ＋１）＝ｎΓ（ｎ）＝ｎ！，
其中ｎ是任意非负整数，且０！＝１．
定义１．１　对ｔ＞０，函数ｘ（ｔ）的阶数为α∈Ｒ＋的
分数阶积分定义为

Ｄ－α０，ｔｘ（ｔ）＝
１
Γ（α）∫

ｔ

０
（ｔ－τ）α－１ｘ（τ）ｄτ，

其中Γ（．）是伽玛函数．
定义１．２　对ｔ＞０，函数ｘ（ｔ）的阶数为α∈（ｎ－
１，ｎ），ｎ∈Ｚ＋的 ＲｉｅｍａｎｎＬｉｏｕｖｉｌｌｅ分数阶导数定义
为

ＲＬＤα０，ｔｘ（ｔ）＝
ｄｎ

ｄｔｎ
Ｄ－（ｎ－α）０，ｔ ｘ（ｔ）＝

　 １
Γ（ｎ－α）

ｄｎ

ｄｔｎ∫
ｔ

０
（ｔ－τ）ｎ－α－１ｘ（τ）ｄτ．

定义１．３　对ｔ＞０，函数ｘ（ｔ）的阶数为α∈（ｎ－
１，ｎ），ｎ∈Ｚ＋的Ｃａｐｕｔｏ分数阶导数定义为

ＣＤα０，ｔｘ（ｔ）＝Ｄ
－（ｎ－α）
０，ｔ

ｄｎ

ｄｔｎ
ｘ（ｔ）＝

　 １
Γ（ｎ－α）∫

ｔ

０
（ｔ－τ）ｎ－α－１ｘ（ｎ）（τ）ｄτ．

本文中，我们主要讨论带 Ｃａｐｕｔｏ导数的分数
阶微分系统，并且讨论导数阶数为 α∈（０，１）的情
况．
定义１．４　常数ｘ０是Ｃａｐｕｔｏ型分数阶微分系统

ＣＤαｔ０，ｔｘ（ｔ）＝ｆ（ｔ，ｘ）， （１）
的平衡点当且仅当对ｔ≥ｔ０，ｆ（ｔ，ｘ０）＝０．
定义１．５　已知Ｃａｐｕｔｏ型分数阶微分系统

ＣＤαｔ０，ｔｘ（ｔ）＝ｆ（ｔ，ｘ），
及初值条件ｘ（ｔ０）＝ｘ０，称系统

ｉ）稳定当且仅当ｘ０，δ，ｔ≥ｔ０，‖ｘ（ｔ）‖
≤δ；否则，就称系统不稳定．

ｉｉ）渐近稳定当且仅当是稳定的，且ｌｉｍ
ｔ→＋∞
‖ｘ（ｔ）‖

＝０．
定义１．６　如果连续函数α：［０，ｔ）→［０，∞），并且
是严格递增函数，α（０）＝０，那么就称它为 Ｋ－函
数．
定理１．１　令ｘ＝０是非自治分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝ｆ（ｔ，ｘ）， （２）
的平衡点．假设存在Ｌｙａｐｕｎｏｖ函数Ｖ（ｔ，ｘ（ｔ）），以
及Ｋ－函数αｉ（ｉ＝１，２，３），并且满足

α１（‖ｘ‖）≤Ｖ（ｔ，ｘ）≤α２（‖ｘ‖），
与

ＣＤα０，ｔＶ（ｔ，ｘ（ｔ））≤－α３（‖ｘ‖），
其中α∈（０，１）．那么系统（２）的平衡点是渐近稳
定的．
定理１．２　令ｘ＝０是非自治分数阶微分系统（２）的
平衡点．假设存在Ｌｙａｐｕｎｏｖ函数Ｖ（ｔ，ｘ（ｔ）），及Ｋ－
函数αｉ（ｉ＝１，２，３），并且满足

α１（‖ｘ‖）≤Ｖ（ｔ，ｘ）≤α２（‖ｘ‖），
与

ＣＤα０，ｔＶ（ｔ，ｘ）＞０．
那么，分数阶微分系统（２）的平衡点ｘ＝０不稳定．

证明　由于

ＣＤα０，ｔＶ（ｔ，ｘ（ｔ））＞０，Ｖ（ｔ，ｘ）≤α２（‖ｘ‖）．（３）

如果假设分数阶微分系统ＣＤα０，ｔｘ（ｔ）＝ｆ（ｔ，ｘ）的平
衡点ｘ＝０稳定，即对ε＞０及 δ＞０，且‖ｘ０‖ ＜

δ，那么对ｔ≥０，就有‖ｘ（ｔ）‖ ＜ε．另一方面，由
于当ｔ≥０时，ＣＤα０，ｔＶ（ｔ，ｘ）＞０，因此

Ｄ－α０，ｔＣＤα０，ｔＶ（ｔ，ｘ）＞０，
由此得到

Ｖ（ｔ，ｘ）－Ｖ（０，ｘ０）≥０． （４）
特别地，设‖ｘ０‖ ＜δ，Ｖ（０，ｘ０）＞０．从（３）及（４）
得到

α２（‖ｘ（ｔ）‖）≥Ｖ（ｔ，ｘ）≥Ｖ（０，ｘ０）＞０， （５）
从（３）及（５），并且由于函数α２（ｚ）的单调性，当 ｔ
＞０时，存在 ξ＞０，并且有‖ｘ（ｔ）‖≥ξ，因此，存
在一Ｋ－类函数φ１，使得

ＣＤα０，ｔＶ（ｔ，ｘ）≥φ１（‖ｘ（ｔ）‖）

　≥φ１（α
－１
１ （Ｖ（ｔ，ｘ））＞０．

于是，存在一个非负函数ｍ（ｔ），使得

ＣＤα０，ｔＶ（ｔ，ｘ）＝φ１（α
－１
１ （Ｖ（ｔ，ｘ））＋ｍ（ｔ），

及初值条件，这个方程的解为

２１２
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Ｖ（ｔ，ｘ）＝Ｖ（０，ｘ０）Ｅα，１（φ１（α
－１
１ ｔα））＋

　∫
ｔ

０
（ｔ－τ）α－１Ｅα，α（φ１（α

－１
１（ｔ－τ）α））ｍ（τ）ｄτ．

从这个解可以得到 ｌｉｍ
ｔ→＋∞
Ｖ（ｔ，ｘ）＝＋∞．这与我们的

假设条件Ｖ（ｔ，ｘ）≤α２（‖ｘ（ｔ）‖）≤α２（ε）矛盾．
因此，分数阶微分系统（２）的平衡点ｘ＝０不稳定．

定理证毕．
由于含参数分数阶微分方程在应用科学领域

受到越来越多的重视，因此对含参数的分数阶微

分方程的研究就越来越深入．我们知道，对含参数
的系统而言，当参数变化到某个值时，系统的拓扑

结构会发生变化，这种拓扑结构的变化就会产生

分岔，这种现象在分析分数阶动力学模型时具有

很重要的现实意义．因此，很有必要讨论含参数分
数阶微分系统的分岔现象［１５－２０］．

２　基本分岔的相图

本节中，我们对三种基本分岔的相图进行讨

论，即折叠分岔、跨临界分岔及音叉分岔的讨论．
２．１　折叠分岔的相图

本小节我们主要讨论折叠分岔的情况，主要

通过分析平衡点的稳定性，得到分岔的分岔相图．
通过相应的命题与定理，最后给出相应的相图．

命题２．１　对分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μ－ｘ
２（ｔ）， （６）

其中α∈（０，１），及初值条件ｘ（０）≠０．当μ＞０时，

系统的平衡点为 ｘ＝±槡μ，其中 ｘ＝槡μ渐近稳定，

而ｘ＝－槡μ不稳定．
证明：　当μ＞０时，此时系统有两个平衡点：

ｘ＝±槡μ．

首先，讨论平衡点ｘ＝槡μ的稳定性，此时系统
（６）可以进行如下的变形

ＣＤα０，ｔｘ（ｔ）＝μ－ｘ
２（ｔ）

　＝－（ｘ－槡μ）
２－２槡μ（ｘ－槡μ）．

令ｙ＝ｘ－槡μ．那么

ＣＤα０，ｔｙ（ｔ）＝ＣＤα０，ｔ（ｘ（ｔ）－槡μ）

　＝ＣＤα０，ｔｘ（ｔ）＝－ｙ
２－２ｙ槡μ． （７）

因此，在这里，仅仅需要讨论系统（７）的稳定性就
可以了．我们可以证明，当 ｙ（０）≠０时，对ｔ∈
（０，＋∞），有ｙ（０）ｙ（ｔ）＞０．

取Ｌｙａｐｕｎｏｖ函数

Ｖ（ｔ，ｙ）＝ｙ（０）ｙ（ｔ）．
那么

ＣＤα０，ｔＶ（ｔ，ｙ）＝ＣＤα０，ｔｙ（０）ｙ（ｔ）

　＝－ｙ（０）ｙ（ｔ）（ｙ＋２槡μ）．

由于ｘ（ｔ）＝－槡μ是系统的平衡点，因此 ＣＤα０，ｔＶ（ｔ，
ｙ）＜０．于是，根据定理１．１得到系统（７）的平衡点
ｙ＝０渐近稳定，也就是说，系统（６）的平衡点 ｘ＝

槡μ渐近稳定．

其次，讨论系统的平衡点ｘ＝－槡μ的稳定性．

令ｙ＝ｘ＋槡μ．那么系统可以变换为如下系统

ＣＤα０，ｔｙ（ｔ）＝ＣＤα０，ｔ（ｘ（ｔ）＋槡μ）＝ＣＤα０，ｔｘ（ｔ）

　＝－ｙ２＋２ｙ槡μ． （８）
选取Ｌｙａｐｕｎｏｖ函数为Ｖ（ｔ，ｙ）＝ｙ（０）ｙ（ｔ）．那么得
到

ＣＤα０，ｔＶ（ｔ，ｙ）＝ＣＤα０，ｔｙ（０）ｙ（ｔ）

　＝－ｙ（０）ｙ（ｔ）（ｙ－２槡μ）．

由于ｘ（ｔ）＝槡μ是系统的平衡点，因此ＣＤα０，ｔＶ（ｔ，ｙ）
＞０．因此根据定理１．２得到结论：系统（８）的平
衡点ｙ＝０不稳定．从而，分数阶微分系统（６）的

平衡点ｘ＝－槡μ不稳定．
命题证毕．
命题２．２　当μ＝０时，系统（６）为

ＣＤα０，ｔｘ（ｔ）＝μ－ｘ
２（ｔ）＝－ｘ２（ｔ）， （９）

此时方程的解 ｘ１（ｔ）．当 ｘ（０）＝ｘ０＞０时及当 ｔ→
∞时，方程的解ｘ１（ｔ）→０；而当ｘ（０）＝ｘ０＜０时及
当ｔ→∞时，方程的解ｘ１（ｔ）→∞．即分数阶微分系
统的平衡点不稳定．

证明：　由

ＣＤα０，ｔｘ（ｔ）＝－ｘ
２（ｔ），

有

Ｄ－α０，ｔＣＤα０，ｔｘ（ｔ）＝－Ｄ
－α
０，ｔｘ

２（ｔ），
于是

ｘ（ｔ）－ｘ（０）＝－Ｄ－α０，ｔｘ
２（ｔ），

因此ｘ（ｔ）＜ｘ（０）．
构造微分方程

ＣＤα０，ｔｘ（ｔ）＝－ｘ（０）ｘ（ｔ），
及初值ｘ（０）＝ｘ０．此方程的解为

ｘ（ｔ）＝ｘ０Ｅα，１（－ｘ（０）ｔ
α）．

由此得到当ｘ（０）＝ｘ０＞０时，当 ｔ→∞时，方程的
解ｘ（ｔ）→０；而当ｘ（０）＝ｘ０＜０时，当ｔ→∞时，方

３１２
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程的解ｘ（ｔ）→∞．
于是，当 ｘ（０）＝ｘ０＞０时，由于 ｘ（０）ｘ（ｔ）＞

０，而ｘ（ｔ）＜ｘ（０），因此
ｘ（０）ｘ（ｔ）＞ｘ２（ｔ）．

同理可以得到当ｘ（０）＝ｘ０＜０时，

ｘ（０）ｘ（ｔ）＜ｘ２（ｔ）．
因此，根据分数阶微分方程的比较定理得到

方程

ＣＤα０，ｔｘ（ｔ）＝－ｘ
２（ｔ），

及初值ｘ（０）＝ｘ０的解为 ｘ１（ｔ）．于是当 ｘ（０）＝ｘ０
＞０时及当ｔ→∞时，方程的解ｘ１（ｔ）→０；而当ｘ（０）
＝ｘ０＜０时及当ｔ→∞时，方程的解ｘ１（ｔ）→∞．
命题证毕．
综合以上两个命题得到如下定理，并由定理

给出折叠分岔的相图．
定理２．１　考虑如下分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μ－ｘ
２（ｔ）．

当参数μ＞０时，系统有两个平衡点：ｘ＝±槡μ．其

中平衡点ｘ＝槡μ渐近稳定，而平衡点ｘ＝－槡μ不稳
定．当μ＝０时，系统仅有唯一的平衡点：ｘ＝０．此
时系统的平衡点不稳定．当 μ＜０时，系统没有平
衡点．

基于以上定理的结论，我们得到如下分数阶

微分系统的折叠分岔的相图．参看图１．

图１　相参数空间的折叠分岔

Ｆｉｇ．１　Ｆｏｌｄｂｉｆｕｒｃａｔｉｏｎｉｎｔｈｅｐｈａｓｅ－ｐａｒａｍｅｔｅｒｓｐａｃｅ

注２．１．用类似的分析方法，我们可以讨论分
数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μ＋ｘ
２（ｔ）．

２．２　跨临界分岔的相图
类似于第２．１节，我们这一小节主要讨论分数

阶微分系统的跨临界分岔的一些内容．
命题２．３　对分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
２（ｔ）， （１０）

其中α∈（０，１），及初值条件ｘ（０）≠０．当μ＜０时，
系统的平衡点ｘ＝０与 ｘ＝μ，其中 ｘ＝０渐近稳定，
而ｘ＝μ不稳定．

证明：　当μ＜０时，系统有两个平衡点：ｘ＝０
及ｘ＝μ．首先讨论平衡点ｘ＝０的稳定性．同理可
以证明，当ｘ（０）≠０时，对ｔ∈（０，＋∞），可以
得到ｘ（０）ｘ（ｔ）＞０．

下面，我们证明命题的结论．令 Ｌｙａｐｕｎｏｖ函
数为Ｖ（ｘ）＝ｘ（０）ｘ（ｔ）．由此得到

ＣＤα０，ｔＶ（ｔ，ｘ）＝ＣＤα０，ｔｘ（０）ｘ（ｔ）

　＝μｘ（０）ｘ（ｔ）－ｘ（０）ｘ２（ｔ）

因为ｘ（０）ｘ（ｔ）＞０，而 ｘ（ｔ）＝μ是平衡点，所以

ＣＤα０，ｔＶ（ｔ，ｘ）＜０．因此系统（１０）渐近稳定．
下面，讨论平衡点ｘ＝μ的稳定性，此时系统

（１０）可以进行如下的变形

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
２（ｔ）＝－（ｘ－μ）２－μ（ｘ－μ）．

令ｙ＝ｘ－μ．那么

ＣＤα０，ｔｙ（ｔ）＝ＣＤα０，ｔ（ｘ（ｔ）－μ）＝ＣＤα０，ｔｘ（ｔ）

　＝－ｙ２－μｙ． （１１）
因此，在这里，仅仅需要讨论系统（１１）的稳定性就
可以了．根据前面命题的证明有，当 ｙ（０）≠０时，
对ｔ∈（０，＋∞），可以如下的结论ｙ（０）ｙ（ｔ）＞０．
取Ｌｙａｐｕｎｏｖ函数Ｖ（ｔ，ｙ）＝ｙ（０）ｙ（ｔ）．那么

ＣＤα０，ｔＶ（ｔ，ｙ）＝ＣＤα０，ｔｙ（０）ｙ（ｔ）＝
　－ｙ（０）ｙ（ｔ）（ｙ＋μ）．

由于ｘ（ｔ）＝０是系统的平衡点，因此ＣＤα０，ｔＶ（ｔ，ｙ）
＞０．于是，根据定理１．１得到系统（１１）的平衡点
ｙ＝０渐近稳定，也就是说，系统（１０）的平衡点ｘ＝

μ不稳定．
命题证毕．
命题２．４　当μ＝０时，系统（１０）变形为

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
２（ｔ）＝－ｘ２（ｔ）， （１２）

此时方程的解 ｘ２（ｔ）．当 ｘ（０）＝ｘ０＞０时及当 ｔ→
∞时，方程的解ｘ２（ｔ）→０；而当ｘ（０）＝ｘ０＜０时及

当ｔ→∞时，方程的解ｘ２（ｔ）→∞．即系统的平衡点
不稳定．

证明：　本命题的证明与命题２．２类似，在此
略．

命题２．５　当μ＞０时，系统（１０）为

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
２（ｔ）， （１３）
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此时，系统有两个平衡点：ｘ＝０及 ｘ＝μ．其中平
衡点ｘ＝μ渐近稳定，而平衡点ｘ＝０不稳定．

证明：　当μ＞０时，系统仍然有两个平衡点：
ｘ＝０及ｘ＝μ．首先讨论平衡点ｘ＝０的稳定性．

同理，当ｘ（０）≠０时，对ｔ∈（０，∞），可以
得到ｘ（０）ｘ（ｔ）＞０．

令Ｌｙａｐｕｎｏｖ函数为Ｖ（ｘ）＝ｘ（０）ｘ（ｔ）．把这个
函数与系统（１０）结合得到

ＣＤα０，ｔＶ（ｔ，ｘ）＝ＣＤα０，ｔｘ（０）ｘ（ｔ）＝

　μｘ（０）ｘ（ｔ）－ｘ（０）ｘ２（ｔ）＝
　ｘ（０）ｘ（ｔ）（μ－ｘ（ｔ）），

因为ｘ（０）ｘ（ｔ）＞０，而 ｘ（ｔ）＝μ是平衡点，因此

ＣＤα０，ｔＶ（ｔ，ｘ）＞０．因此系统（１３）不稳定．
下面，讨论平衡点ｘ＝μ的稳定性，此时系统

（１０）可以进行如下的变形

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
２（ｔ）＝

　－（ｘ－μ）２－μ（ｘ－μ）．
令ｙ＝ｘ－μ．那么

ＣＤα０，ｔｙ（ｔ）＝ＣＤα０，ｔ（ｘ（ｔ）－μ）＝

　ＣＤα０，ｔｘ（ｔ）＝－ｙ
２－μｙ． （１４）

因此，在这里，仅仅需要讨论系统（１４）的稳定性就
可以了．同理，当ｙ（０）≠０时，对ｔ∈（０，＋∞），
可以如下的结论 ｙ（０）ｙ（ｔ）＞０．取 Ｌｙａｐｕｎｏｖ函数
Ｖ（ｔ，ｙ）＝ｙ（０）ｙ（ｔ）．那么

ＣＤα０，ｔＶ（ｔ，ｙ）＝ＣＤα０，ｔｙ（０）ｙ（ｔ）＝
　－ｙ（０）ｙ（ｔ）（ｙ＋μ）．

由于ｘ（ｔ）＝０是系统的平衡点，因此ＣＤα０，ｔＶ（ｔ，ｙ）
＜０．于是，根据定理１．１得到系统（１４）的平衡点ｙ
＝０渐近稳定，也就是说，系统（１０）的平衡点 ｘ＝

μ渐近稳定．
命题证毕．
综合以上命题得到如下定理．

定理２．２　考虑如下分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
２（ｔ）．

当参数μ＞０时，系统有两个平衡点：ｘ＝０及 ｘ＝

μ．其中平衡点 ｘ＝μ渐近稳定，而平衡点 ｘ＝０不
稳定．当 μ＜０时，系统仍然有两个平衡点：ｘ＝０
及ｘ＝μ．其中平衡点ｘ＝μ不稳定，而平衡点ｘ＝０
渐近稳定．当μ＝０时，系统也仅有一个平衡点：ｘ
＝０，此时方程的平衡点不稳定．
基于如上定理的结论，我们得到如下关于分

数阶微分系统的跨临界分岔的相图．参看图２．

图２　相参数空间的跨临界分岔

Ｆｉｇ．２　Ｔｒａｎｓｃｒｉｔｉｃａｌｂｉｆｕｒｃａｔｉｏｎｉｎｔｈｅｐｈａｓｅ－ｐａｒａｍｅｔｅｒｓｐａｃｅ

注２．２　用类似的分析方法，我们可以讨论分
数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）＋ｘ
２（ｔ）．

２．３　音叉分岔的相图
在本小节中，我们主要讨论含参量分数阶微

分系统的音叉分岔的情况．
命题２．６　对分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
３（ｔ）， （１５）

其中α∈（０，１），及初值条件ｘ（０）≠０．当μ＜０时，
系统的平衡点ｘ＝０渐近稳定．

证明：　当μ＜０时，系统仅有一个平衡点：ｘ
＝０．同理，当ｘ（０）≠０时，对ｔ∈（０，＋∞），可
以得到ｘ（０）ｘ（ｔ）＞０．

当ｔ≥０时，可以证明ｘ（０）ｘ（ｔ）≤ｘ２（０），当
且仅当ｔ＝０时，等号成立．我们给出如下简单的
证明．

设ｘ（０）＞０，由结论 ｘ（０）ｘ（ｔ）＞０，可以得到
ｘ（ｔ）＞０，从而ｘ３（ｔ）＞０．由

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
３（ｔ），

一方面有

Ｄ－α０，ｔＣＤα０，ｔｘ（ｔ）＝ｘ（ｔ）－ｘ（０），
另一方面有

Ｄ－α０，ｔＣＤα０，ｔｘ（ｔ）＝

　Ｄ－α０，ｔ（μｘ（ｔ）－ｘ
３（ｔ））＜０，

因此可以得到结论ｘ（ｔ）＜ｘ（０）．因而ｘ２（ｔ）≤ｘ（０）
ｘ（ｔ）≤ｘ２（０），其中当且仅当 ｔ＝０时，等号成立．
对ｘ（０）＜０的情况，可以应用与 ｘ（０）＞０相同的
方法证明．因此，上述结论成立．

令Ｌｙａｐｕｎｏｖ函数为Ｖ（ｘ）＝ｘ（０）ｘ（ｔ）．把这个
函数与系统（１５）结合得到
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ＣＤα０，ｔＶ（ｔ，ｘ）＝ＣＤα０，ｔｘ（０）ｘ（ｔ）＝

　μｘ（０）ｘ（ｔ）－ｘ（０）ｘ３（ｔ），
因为ｘ（０）ｘ（ｔ）＞０，所以 ｘ（０）ｘ３（ｔ）＞０．而 μ＜０，
因此

ＣＤα０，ｔＶ（ｔ，ｘ）＝μｘ（０）ｘ（ｔ）－

　ｘ（０）ｘ３（ｔ）≤μｘ（０）ｘ（ｔ）＝
　－（μ）ｘ（０）ｘ（ｔ）＝－（－μ）Ｖ（ｔ，ｘ）．

因而ＣＤα０，ｔＶ（ｔ，ｘ）≤－α３Ｖ（ｔ，ｘ），其中α３＝－μ＞０．
根据定理１．１，系统（１５）渐近稳定．
命题证毕．
命题２．７　当μ＝０时，系统（１５）变形为

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
３（ｔ）＝－ｘ３（ｔ）， （１６）

这个系统仅有一个平衡点 ｘ＝０，该平衡点渐近稳
定．

证明：　本命题的证明与命题２．６类似，在此
略．

命题２．８　当μ＞０时，系统（１５）为

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
３（ｔ）， （１７）

此时，系统有三个平衡点：ｘ＝０及ｘ＝±槡μ．其中

平衡点ｘ＝±槡μ渐近稳定，而平衡点ｘ＝０不稳定．

证明：首先，讨论平衡点ｘ＝槡μ的稳定性，此时
系统（１７）可以进行如下的变形

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
３（ｔ）＝

　－（ｘ－槡μ）
３－３槡μ（ｘ－槡μ）

２－

　２μ（ｘ－槡μ）．

令ｙ＝ｘ－槡μ．那么

ＣＤα０，ｔｙ（ｔ）＝ＣＤα０，ｔ（ｘ（ｔ）－槡μ）＝

　ＣＤα０，ｔｘ（ｔ）＝－ｙ
３－３槡μｙ

２－２μｙ． （１８）
因此，在这里，仅仅需要讨论系统（１８）的稳定性
就可以了．利用命题２．６类似的推理方法，可以得
到结论ｙ（０）ｙ（ｔ）＞０及 ｙ（０）ｙ（ｔ）≤ｙ２（０）．取
Ｌｙａｐｕｎｏｖ函数Ｖ（ｔ，ｙ）＝ｙ（０）ｙ（ｔ）．那么

ＣＤα０，ｔＶ（ｔ，ｙ）＝ＣＤα０，ｔｙ（０）ｙ（ｔ）＝

　－ｙ（０）ｙ（ｔ）（ｙ＋槡μ）（ｙ＋２槡μ）≤

　－ｙ（０）ｙ（ｔ）（ｙ＋槡μ）
２＝

　－（ｙ＋槡μ）
２Ｖ（ｔ，ｙ）．

因此ＣＤα０，ｔＶ（ｔ，ｙ）≤ －α３Ｖ（ｔ，ｙ），其中 α３＝（ｙ＋

槡μ）
３．于是，根据定理１．１得到系统（１８）的平衡

点ｙ＝０渐近稳定，也就是说，系统（１７）的平衡点

ｘ＝槡μ渐近稳定．

其次，讨论系统的平衡点 ｘ＝－槡μ的稳定性．

在此，使用的方法与前面讨论平衡点ｘ＝槡μ所使用
的方法是一致的．

令ｙ＝ｘ＋槡μ．那么系统可以变换为

ＣＤα０，ｔｙ（ｔ）＝ＣＤα０，ｔ（ｘ（ｔ）＋槡μ）＝

　ＣＤα０，ｔｘ（ｔ）＝－ｙ
３＋３槡μｙ

２－２μｙ． （１９）
应用前面相同的方法，可以得到 ｙ（０）ｙ（ｔ）＞０，及
ｙ（０）ｙ（ｔ）≤ｙ２（０），其中当且仅当 ｔ＝０时等号成
立．

取Ｌｙａｐｕｎｏｖ函数为Ｖ（ｔ，ｙ）＝ｙ（０）ｙ（ｔ），那么

ＣＤα０，ｔＶ（ｔ，ｙ）＝ＣＤα０，ｔｙ（０）ｙ（ｔ）＝

　－ｙ（０）ｙ（ｔ）（ｙ－槡μ）（ｙ－２槡μ）≤

　－ｙ（０）ｙ（ｔ）（ｙ－２槡μ）
２＝

　－（ｙ－２槡μ）
２Ｖ（ｔ，ｙ）．

因此ＣＤα０，ｔＶ（ｔ，ｙ）≤－α３Ｖ（ｔ，ｙ），其中α３＝（ｙ－２槡μ）
２．

根据定理１．１系统（１９）的平衡点 ｙ＝０渐近稳定．

从而，分数阶微分系统（１７）的平衡点 ｘ＝－槡μ渐
近稳定．

最后，我们讨论当 μ＞０时，系统的平衡点
ｘ＝０的稳定性．

类似的，取Ｖ（ｔ，ｘ）＝ｘ（０）ｘ（ｔ）作为ＣＤα０，ｔｘ（ｔ）

＝μｘ（ｔ）－ｘ３（ｔ）的 Ｌｙａｐｕｎｏｖ函数．经过简单计算
得到

ＣＤα０，ｔＶ（ｔ，ｘ）＝ＣＤα０，ｔｘ（０）ｘ（ｔ）＝

　μｘ（０）ｘ（ｔ）－ｘ（０）ｘ３（ｔ）＝
　ｘ（０）ｘ（ｔ）（μ－ｘ２），

由于系统的平衡点ｘ＝±槡μ的存在性，有结论μ－
ｘ２＞０，所以ＣＤα０，ｔＶ（ｔ，ｘ）＞０．因此，根据定理１．２，
系统（１７）的平衡点ｘ＝０是一个不稳定的平衡点．

命题证毕．
综合以上命题得到如下定理．

定理２．３　考虑如下分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）－ｘ
３（ｔ）．

当参数μ＞０时，系统有三个平衡点：ｘ＝０及 ｘ＝

±槡μ．其中平衡点ｘ＝±槡μ渐近稳定，而平衡点 ｘ
＝０不稳定．当μ＜０时，系统仅有唯一的平衡点：
ｘ＝０，该平衡点渐近稳定．

当μ＝０时，系统也仅有一个平衡点：ｘ＝０，这
个平衡点渐近稳定．

基于如上定理的结论，我们能够得到如下关
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于分数阶微分系统的音叉分岔的相图．参看图３．

图３　相参数空间的音叉分岔

Ｆｉｇ．３　Ｐｉｔｃｈｆｏｒｋｂｉｆｕｒｃａｔｉｏｎｉｎｔｈｅｐｈａｓｅ－ｐａｒａｍｅｔｅｒｓｐａｃｅ

注２．３　 用类似的分析方法，我们可以讨论
分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ（ｔ）＋ｘ
３（ｔ）．

３　分岔规范形的计算

本节，我们仅讨论音叉分岔规范形的计算，对

于跨临界分岔及折叠分岔可以类似的计算，在此

不再详细叙述．在经典的 Ｔａｙｌｏｒ展式和隐函数定
理的条件下，我们证明分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝ｆ（μ，ｘ），ｘ∈Ｒ
１，μ∈Ｒ１，

在原点（音叉分岔点）附近能够简化为分数阶微分

系统

ＣＤα０，ｔη（ｔ）＝ｖη±η
３＋Ｏ（η４）．

随后，应用拓扑等价映射证明这个分数阶微分系

统，在原点附近等价于分数阶微分系统

ＣＤα０，ｔη（ｔ）＝ｖη±η
３．

接下来，主要证明具有一个参数的一维分数

阶微分系统能够等价于下面的分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝μｘ－ｘ
３． （２０）

并且证明系统（２０）（ｘ３—项前面的符号也可以
取正号）是一般带有一个参数的一维分数阶微分系

统的音叉分岔的规范形．
假设分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝ｆ（ｘ，μ），ｘ∈Ｒ
１，μ∈Ｒ２， （２１）

其中ｆ是光滑函数，且在 μ＝０时有平衡点 ｘ＝０，
而且Ｊａｃｏｂｉａｎ矩阵具有特征值λ＝ｆｘ（０，０）＝０．把
函数ｆ（ｘ，μ）在ｘ＝０处关于ｘ展开成经典意义下的
Ｔａｙｌｏｒ级数的形式：

ｆ（ｘ，μ）＝ｆ０（μ）＋ｆ１（μ）ｘ＋ｆ２（μ）ｘ
２＋

　ｆ３（μ）ｘ
３＋Ｏ（ｘ４）．

这个含参量的分数阶微分系统需要满足两个条件，

一个是平衡点条件：ｆ０（０）＝ｆ（０，０）＝０，另一个是
音叉分岔条件：ｆ１（０）＝ｆｘ（０，０）＝０．

通过引进一个新的变量ξ，我们可以进行坐标
平移变换ξ＝ｘ＋δ，其中δ＝δ（μ）是一个待定函数，
这将在后面的计算过程中给出．由上面的方程得
到下面的坐标变换

ｘ＝ξ－δ． （２２）
把方程（２２）代入方程（２１）得到

ＣＤα０，ｔｘ（ｔ）＝ＣＤα０，ｔξ（ｔ）＝ｆ０（μ）＋ｆ１（μ）（ξ－δ）＋

　ｆ２（μ）（ξ－δ）
２＋ｆ３（μ）（ξ－δ）

３＋… （２３）
经过简单计算得到

ＣＤα０，ｔ＝ｆ０（μ）＋ｆ１（μ）（ξ－δ）＋

　ｆ２（μ）（ξ
２－２ξδ＋δ２）＋

　ｆ３（μ）（ξ
３－３δξ２＋３ξδ２－δ３）＋…

＝［ｆ０（μ）－ｆ１（μ）δ＋ｆ２（μ）δ
２－ｆ３（μ）δ

３＋Ｏ（δ４）］＋

　［ｆ１（μ）－２ｆ２（μ）δ＋３ｆ３（μ）δ
２＋Ｏ（δ３）］ξ＋

　［ｆ２（μ）－３ｆ３（μ）δ＋Ｏ（δ
２）］ξ２＋

　［ｆ３（μ）＋Ｏ（δ）］ξ
３＋Ｏ（ξ４）． （２４）

设ｆ３（０）＝
１
３ｆｘｘｘ（０，０）≠０．那么存在一个光滑

函数δ（μ），对任意充分小的 μ，能够消去上面方
程中的常数项及二次项，这个结论可以由隐函数

定理证明．上面方程中的常数项及二次项可以改
写为

Ｆ（δ，μ）＝ｆ０（μ）－ｆ１（μ）δ＋ｆ２（μ）δ
２－

　ｆ３（μ）δ
３＋δ４ψ１（δ，μ）＝０，

Ｇ（δ，μ）＝ｆ２（μ）－３ｆ３（μ）δ＋δ
２ψ２（δ，μ）＝０

{
，

其中ψ１，ψ２是光滑函数．
由于存在条件：ｆ０（μ）＝ｆ（０，μ）＝０，所以上面

方程组可以改写为

Ｆ（δ，μ）＝－ｆ１（μ）＋ｆ２（μ）δ
２－ｆ３（μ）δ

２＋

　δ３ψ１（δ，μ）＝０，

Ｇ（δ，μ）＝ｆ２（μ）－３ｆ３（μ）δ＋δ
２ψ２（δ，μ）＝０

{
，

由于对称性条件 ｆｘｘ（０，０）＝０，以及分岔条件
ｆ１（０）＝ｆｘ（０，０）＝０，所以 Ｆ（０，０）＝０，Ｇ（０，０）＝
０．如果再假设通有性条件ｆｘμ（０，０）≠０，以及假设

条件ｆ３（０）＝
１
３ｆｘｘｘ（０，０）≠０，那么

（Ｆ，Ｇ）
（μ，δ） ０，０

＝
－ｆ１′（０） ｆ２（０）

ｆ２′（０） －３ｆ３（０）
≠０，

由此，存在唯一的光滑函数δ＝δ（μ），使得δ（０）＝
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０，且Ｆ（δ，μ）＝０，Ｇ（δ，μ）＝０．因此

δ（μ）＝１３
ｆｘｘμ（０，０）
ｆｘｘｘ（０，０）

μ＋Ｏ（μ２）．

那么，现在关于 ξ的分数阶微分方程（２４）就没有
常数项及二次项：

ＣＤα０，ｔξ（ｔ）＝

　［ｆ１（μ）－２ｆ２（μ）δ＋３ｆ３（μ）δ
２＋Ｏ（δ３）］ξ＋

　［ｆ３（μ）＋Ｏ（δ）］ξ
３＋Ｏ（ξ４）＝

［ｆ１′（０）μ＋Ｏ（μ
２）］ξ２＋

　［ｆ３（０）＋Ｏ（μ）］ξ
３＋Ｏ（ξ４）［ｆ１（０）β＋…］ξ＋

　［ｆ３（０）＋Ｏ（β）］ξ
３＋Ｏ（ξ４）． （２５）

如果引入一个新的参量ｖ＝ｖ（μ），那么（２５）的
线性项变为：ｖ＝ｆ１′（０）μ＋μ

２（μ），其中 是一光
滑函数．因此（ｉ）ｖ（０）＝０，（ｉｉ）ｖ′（０）＝ｆ１′（０）＝
ｆｘμ（０，０）．由于ｆｘμ（０，０）≠０，那么由反函数定理知
存在唯一的光滑的反函数μ＝μ（ｖ），且 μ（０）＝０．
因此，分数阶微分系统（２４）变形为ＣＤα０，ｔξ（ｔ）＝

ｖ（ξ）＋ａ（ｖ）ξ３＋Ｏ（ξ４），其中 ａ（ｖ）是一光滑函数，
且由于假设条件ａ（０）＝ｆ３（０）≠０．

如果引入变换 η（ｔ）＝ ａ（ｖ）ξ（ｔ），那么这个
变换把上面的方程变形为

ＣＤα０，ｔη＝ｖη±η
３＋Ｏ（η４），

其中三次项η３的符号由 ａ（ｖ）
ａ（ｖ）决定．

根据以上的分析过程总结出如下的定理．
定理３．１　设带有一个参量的一维分数阶微分系
统

ＣＤα０，ｔｘ（ｔ）＝ｆ（ｘ，μ），ｘ∈Ｒ
１，μ∈Ｒ１，

其中ｆ是光滑函数，当μ＝０时，存在平衡点ｘ＝０，
并且令

λ＝ｆｘ（０，０）＝０，ｆ０（μ）＝ｆ（０，μ）＝０．
假设还满足下面的条件：

（Ａ１）ｆｘｘｘ（０，０）≠０，
（Ａ２）ｆｘμ（０，０）≠０．

那么存在可逆的坐标变换与参量变换，把系统变

换为如下的分数阶微分系统

ＣＤα０，ｔη＝ｖη±η
３＋Ｏ（η４）．

命题３．１　在原点附近，带 Ｃａｐｕｔｏ导数的分
数阶微分系统

ＣＤα０，ｔη＝ｖη－η
３＋Ｏ（η４）， （２６）

局部拓扑等价为下面的分数阶微分系统

ＣＤα０，ｔη＝ｖη－η
３．

证明的简单思路为，引入变量 ｙ，那么方程
（２６）改写为

ＣＤα０，ｔｙ（ｔ）＝ｖｙ－ｙ
３＋Ψ（ｙ，ｖ）， （２７）

这里，在原点（０，０）附近，Ψ（ｙ，ｖ）＝Ｏ（ｙ４）是（ｙ，
ｖ）的光滑函数．在原点（０，０）附近，考虑（ｙ，ｖ）－
平面内系统（２７）的平衡点流形：

Ｍ＝｛（ｙ，ｖ）：Ｆ（ｙ，ｖ）＝ｖｙ－ｙ３＋Ψ（ｙ，ｖ）＝０｝．
由上式得到

Ｍ＝｛（ｙ，ｖ）：Ｆ（ｙ，ｖ）＝ｖｙ－ｙ３＋Ψ（ｙ，ｖ）＝

　ｙＦ１（ｙ，ｖ）＝０｝，

其中Ｆ１（ｙ，ｖ）＝ｖ－ｙ
２＋Ψ１（ｙ，ｖ），且在原点（０，０）

附近，Ψ１（ｙ，ｖ）是（ｙ，ｖ）的光滑函数．这表明在（ｙ，
ｖ）平面的原点（０，０）附近，系统（２７）的平衡点流
形能够表示为

Ｍ１＝｛（ｙ，ｖ）：ｙ＝０｝，
或者

Ｍ２＝｛（ｙ，ｖ）：Ｆ１（ｙ，ｖ）＝０｝．
由于Ｆ１（０，０）＝０，所以曲线 Ｍ２过原点（０，０）．由
于（Ｆ１ｖ（０，０）＝１），那么由隐函数定理，曲线Ｍ２可
以表示为

Ｍ２＝｛（ｙ，ｖ）：ｖ＝ｇ（ｙ）｝，
这里，对充分小的 ｙ，ｇ是光滑函数，而且

ｇ（ｙ）＝ｙ２＋Ｏ（ｙ３）．
因此，对充分小的ｖ＞０，在原点附近，系统（２７）存
在两个平衡点：ｙ１（ｖ）与ｙ２（ｖ），它们与系统

ＣＤα０，ｔη（ｔ）＝ｖη－η
３ （２８）

的平衡点充分接近，也就是，对应于相同的参数

值，它们充分接近η１（ｖ） 槡＝ｖ与 η２（ｖ） 槡＝－ｖ两个
平衡点．

对充分小的 ｖ，构造如下的一个依赖参数的
映射ｙ＝ｈｖ（ｘ）．对ｖ≤０，取恒等映射 ｈｖ（ｘ）＝ｘ．对
ｖ＞０，取线性变换ｈｖ（ｘ）＝ａ（ｖ）＋ｂ（ｖ）ｘ，其中系数
ａ，ｂ由条件ｈｖ（ηｉ（ｖ））＝ｙｉ（ｖ），ｉ＝１，２，唯一确定．

这里所构造的映射 ｈｖ：Ｒ
１→Ｒ１是一个同胚映

射，也就是说，在原点附近，把系统（２８）的轨道映
射到相应的系统（２７）的轨道上，并且保持时间方
向不变．

应用相同的方法可以证明，在原点附近，带有

Ｃａｐｕｔｏ型导数的分数阶微分系统

ＣＤα０，ｔη（ｔ）＝ｖη（ｔ）＋η（ｔ）
３＋Ｏ（η（ｔ）４），

与分数阶微分系统
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ＣＤα０，ｔη（ｔ）＝ｖη（ｔ）＋η（ｔ）
３

拓扑等价．在此不再详细叙述．
综合以上分析可以得到如下定理．
定理３．２　（音叉分岔的拓扑规范形）．任意通

有单参数分数阶微分系统

ＣＤα０，ｔｘ（ｔ）＝ｆ（ｘ，μ），
在μ＝０处有平衡点ｘ＝０，并且有特征值λ＝ｆｘ（０，
０）＝０；在原点附近局部拓扑等价于如下的一类规
范形：

ＣＤα０，ｔη＝ｖη＋η
３．

从上面的分析过程，我们可以看出关于分数

阶微分系统的音叉分岔的规范形的简单的计算过

程如下．通过变量与参数的逆变换，并且舍去高次
项，把分数阶微分系统（２１）变换成分数阶系统
（２８），使得该系统仅包含线性项与三次项．在计
算与证明的过程中，必须假设某些变换条件，以确

保变换能够成立．
注３．１　用类似的方法，我们可以计算跨临界

分岔及折叠分岔的规范形，并且可以讨论规范形

的等价性．

４　小结

本文，我们讨论了分数阶微分系统的折叠分

岔、跨临界分岔及音叉分岔等基本分岔的相图，并

且计算了这些分岔的规范形．基于分数阶微分系
统的Ｌｙａｐｕｎｏｖ方法，讨论了这些基本分岔的分数
阶微分系统的平衡点的稳定性，也根据分数阶微分

方程的比较定理讨论了在参数取某特殊值（通常取

零）时解的性态，由此得到分岔的相图．然后应用
在经典意义下的 Ｔａｙｌｏｒ级数与隐函数定理，计算
了分数阶微分系统的规范形．

致谢：本文在写作过程中，得到了李常品教授

的很多鼓励以及帮助，在此特别表示感谢．
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