# 基于滑模观测器的多传感器故障诊断方法\*

黄宜山1,2 张昌凡2 颜敏2

(1. 湖南南车时代电动汽车股份有限公司,株洲 412007)(2. 湖南工业大学电气与信息工程学院,株洲 412008)

摘要 针对一类非线性系统的传感器故障诊断问题,提出了一种多传感器故障检测方法.首先,定义一个状态变量将传感器故障转换成伪执行器故障,然后设计相应的滑模观测器生成残差,来实现多故障的检测.依据 Lyapunov 稳定性理论,以 LMI 的形式给出了观测器存在的充分条件.最后通过单关节机械手的实例,验证 了所提方法的有效性和可行性.

关键词 滑模观测器, 残差, 单关节机械手, 线性矩阵不等式, 故障检测

## 引 言

由于技术发展水平的不断提高,被诊断对象通 常都是十分复杂的系统,所发生的故障更是多种多 样,可能是多种征兆对应于一个故障,也可能是一 种或多种征兆同时对应着多个故障.显然,与单故 障的诊断相比较,系统多故障的诊断要复杂的多. 因此,在多故障并发的情况下,如何对目标故障进 行检测是一个值得研究的问题.

在过去的几十年里,人们提出了许多种故障诊 断方法,在众多的故障诊断方法中,基于观测器的 故障检测与隔离技术一直是人们研究的热点. 迄今 为止,基于观测器的故障诊断方法已得到广泛的研 究并取得了丰硕的成果. 较具代表性的方法有:Luenberger 观测器<sup>[1]</sup>、强跟踪滤波器<sup>[2]</sup>、未知输入观 测器<sup>[3]</sup>、滑模观测器<sup>[4][5][6]</sup>、自适应观测器<sup>[7]</sup>、预 测观测器[8]等.在故障诊断方法中,早期的工作仅 局限于单一故障的诊断,后来才逐步的开始研究多 故障的诊断问题. 如安若铭等<sup>[9]</sup>针对一类线性系 统,提出了一种动态观测器的多故障诊断方法,并 应用到某卫星姿控系统中. Zhang Ke 等<sup>[4]</sup>运用滑 模积分观测器,提出了一种非线性系统的多传感器 故障诊断方法.纪志成等<sup>[10]</sup>针对一类非线性系统, 采用神经网络逼近系统非线性部分的技术路线,提 出了一种最优滤波的多故障检测观测器设计方法.

本文是在 Tan<sup>[11]</sup> 和 Edwards<sup>[12]</sup> 提出的等效变 换与何静等<sup>[5]</sup>的研究基础上,研究非线性系统的多 故障检测问题,对一类非线性系统提出一种基于滑 模观测器的多传感器故障诊断方法.利用一阶滤波 器将传感器故障等效变换成伪执行器故障,从而可 以将执行器故障诊断方法直接推广应用到传感器 的故障诊断中去,对同时发生多个传感器故障的情 况进行全面而详细的研究.依据 Lyapunov 稳定性 理论,运用 LMI 对文献[5]的收敛条件进行了放 松,并将所提方法在单关节机械手系统中加以应 用,以验证所提方法的有效性.

## 1 系统描述

| 考虑如下含有传感器故障的一类非线性影                                       | 系统: |
|----------------------------------------------------------|-----|
| $\int \dot{x}(t) = Ax(t) + f(x, u, t) + Bu(t)$           | (1) |
| $\begin{cases} y(t) = Cx(t) + Gf_s(x, u, t) \end{cases}$ | (1) |
|                                                          |     |

式中: $x(t) \in R^n$  为不可测状态向量, $u(t) \in R^m$  为可 测输入向量, $y(t) \in R^p$  为可测输出向量,f(x, u, t) $\in R^n$  为己知的非线性函数. $f_s(x, u, t) \in R'$  为未知 的有界非线性函数,代表系统的传感器故障, $G \in R^{p \times r}$ 为己知的传感器故障分布矩阵.A, B, C 为己知 矩阵,其中 $A \in R^{n \times n}, B \in R^{n \times m}, C \in R^{p \times n}, n > p > q$ .

**假设1** 第*i*个传感器无故障时,*f*<sub>si</sub>=0;发生 故障时,*f*<sub>si</sub>为非零函数.其中*f*<sub>si</sub>为*f*<sub>s</sub>第*i*行的行向 量,代表第*i*个传感器故障(*i*=1,2,…,*r*).

**假设2** *G* 为列满秩矩阵. 它实际的工程意义 就是当一个传感器发生故障时不影响其他传感器 的正常工作,即各个传感器独立工作且互不影响.

**假设3** (A,C)是可观的.

2011-03-07 收到第1稿,2011-04-01 收到修改稿.

\*国家自然科学基金项目(61104024)、湖南省自然科学基金项目(07JJ3118)和湖南省科技厅科技计划项目(2009FJ3008)资助

**假设4** 传感器故障是有界函数,即存在已知的大于0的 $\gamma_{1i}$ ,使得  $||f_{si}|| \leq \gamma_{1i}$ .

### 2 多故障诊断方法

在这一部分我们首先给出所有可能的传感器 故障模型,并通过引入新的状态变量将传感器故障 转换成伪执行器故障,然后在此基础上提出基于滑 模观测器的多故障诊断方法,与此同时给出一些关 于滑模观测器多故障诊断方法的证明与推导.最后 对滑模观测器的多故障诊断方法进行归纳与总结.

在多传感器故障模型建立之前,须作如下定 义:

**定义1**  $G = [G_1 \cdots G_i \cdots G_r]$ ,式中 $G_i$ 为G第i列的列向量.

**定义 2**  $f_s = [f_{s1} \cdots f_{si} \cdots f_{sr}]^T$ ,式中 $f_{si}$ 为 $f_s$ 第i行的行向量.

**定义3** 设  $r_i$  表示同时发生  $a \uparrow (a \leq r)$  传感 器故障时的第  $i \uparrow (i = 1, 2, \dots, a)$  故障.

基于任何时刻最多同时发生 a 个传感器故障 (a≤r)的假设,对可能发生的故障情形建立故障模 型为:

$$\begin{cases} \dot{x}(t) = Ax(t) + f(x, u, t) + Bu(t) \\ y(t) = Cx(t) + \sum_{i=1}^{a} G_{r_i} f_{sr_i}(x, u, t) \end{cases}$$
(2)

定义一个如下的状态变量 z 作为输出信号的 一阶低通滤波器

 $\dot{z} = A_s z + B_s y$ 

式中 $A_s$ 矩阵可任意, $B_s$ 矩阵为满秩即可<sup>[5]</sup>.在此, 选取 $A_s$ 为零矩阵, $B_s$ 为单位矩阵.

将上式代入式(2)得

$$\dot{z} = Cx(t) + \sum_{i=1}^{a} G_{r_{i}} f_{sr_{i}}(x, u, t) \quad (3)$$
由式(2)、(3)得到一个新的系统方程
$$\begin{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix} + \begin{bmatrix} f(x, u, t) \\ 0 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} x \\ 0 \end{bmatrix} f_{sr_{i}}(x, u, t) \quad (4)$$

$$z = \begin{bmatrix} 0 & I \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$
若定义  $\bar{x} = \begin{bmatrix} x \\ z \end{bmatrix}, \bar{y} = z.$  并代人式(4)可整理为:

$$\begin{cases} \dot{\bar{x}}(t) = \bar{A}\bar{x}(t) + \bar{f}(x, u, t) + \bar{B}u(t) + \\ \sum_{i=1}^{a} \bar{G}_{r_{i}}f_{sr_{i}}(x, u, t) \\ \bar{y}(t) = \bar{C}\bar{x}(t) \end{cases}$$
(5)

式(5)中,各矩阵参数为

$$\bar{A} = \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix}, \bar{f}(x, u, t) = \begin{bmatrix} f(x, u, t) \\ 0 \end{bmatrix},$$
$$\bar{B} = \begin{bmatrix} B \\ 0 \end{bmatrix}, \bar{C} = \begin{bmatrix} 0 & I \end{bmatrix}, \bar{G}_{r_i} = \begin{bmatrix} 0 \\ G_{r_i} \end{bmatrix}.$$

从式(5)不难看出,通过状态变量 z 的引入,将 传感器故障转换成了伪执行器故障.这样就可以运 用执行器故障诊断的方法来检测传感器故障.

**假设5** (*A*,*C*)是可观<sup>[5]</sup>的,则存在矩阵*L*,使得*A*<sub>0</sub> = *A* – *LC* 为稳定矩阵.

**假设6**  $\bar{f}(x,u,t)$ 满足 Lipschitz 条件,则存在 一个正的 Lipschitz 常数  $\gamma_3$ ,使得  $\|\bar{f}(x_1,u,t) - \bar{f}(x_2,u,t)\| \le \gamma_3 \|x_1 - x_2\|$ ,

**假设7** *P*,*F* 满足如下等式:*PG*<sub>*r<sub>i</sub>*</sub> = *C*<sup>*T*</sup>*F*<sup>*T*</sup>,其中 *P* 为对称正定矩阵.

**引理1**<sup>[13]</sup> 如果 *g*(*x*, *u*, *t*) 满足 Lipschitz 条 件,那么存在一个对称正定矩阵 *P* 满足

 $2e^{^{T}}P(g(x_{1}, u, t) - g(x_{2}, u, t)) \leq \gamma^{2}e^{^{T}}PPe + e^{^{T}}e$ 式中,  $e = x_{1} - x_{2}, \gamma$ 是 Lipschitz 常数.

**引理 2**<sup>[14]</sup> 矩阵的 Schur 补性质, 对给定的对称矩阵  $S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$ ,其中  $S_{11} \in r \times r$ .以下三个条件是等价的:

(1) S < 0;(2)  $S_{11} < 0, S_{22} - S_{12}^T S_{11}^{-1} S_{12} < 0;$ (3)  $S_{22} < 0, S_{11} - S_{12} S_{22}^{-1} S_{12}^T < 0;$ 

**定义4** 状态误差  $\bar{e} = \hat{x} - \bar{x}$ ,输出误差  $\bar{e}_{y} = \bar{y} - \bar{y}$ . 式中,上标"^"代表相应状态变量的观测值.

由 Walcott – Zak 观测器<sup>[15]</sup>和滑模观测器设计 原理,对式(4)所述情况下的故障模型构造 *a* 个滑 模观测器如下所示:

$$\begin{cases}
\dot{\bar{x}}_{r(j)}(t) = \bar{A}\hat{\bar{x}}(t) + \bar{f}(\hat{x}, u, t) + \bar{B}u(t) - \\
L(\hat{\bar{y}} - \bar{y}) + \sum_{\substack{i=1\\i \neq j}}^{a} \bar{G}_{r_i} w_{r_i} \\
\dot{\bar{y}}(t) = \bar{C}\hat{\bar{x}}(t)
\end{cases}$$
(6)

式(6)为构造的第*j*个观测器,表示除第*j*个(*j*=1, 2, …, *a*)故障外,对其余 *a* -1 个故障均构造观测

器,其中w<sub>n</sub>为滑模变结构输出信号,表达式为

$$w_{r_{i}} = \begin{cases} -\rho_{r_{i}} \frac{F^{r_{i}} \bar{e}_{y}^{r_{i}}}{\|F^{r_{i}} \bar{e}_{y}^{r_{i}}\| + \sigma_{i}} & \text{if } \bar{e}_{y}^{r_{i}} \neq 0\\ 0 & \text{if } \bar{e}_{y}^{r_{i}} = 0 \end{cases}$$
(7)

式中 $\rho_{r_i}$ 为可调参数,  $F^{r_i}$ 为第 $r_i$ 行的行向量,  $(i=1, 2, \dots, a \perp i \neq j)$ ,  $w_{r_i}$ 用来切断故障 $f_{s_i}$ 对系统的影响, 而 $\sigma_i$ 是为消除滑模抖动而引入的标量参数.

由式(5)和(6)得最多同时发生 a 个传感器故障时,第 *i* 个观测器偏差方程为:

$$\dot{\bar{e}}_{r(j)} = (\bar{A} - L \ \bar{C}) \bar{e}_{r(j)} + \bar{f}(\hat{x}, u, t) - \bar{f}(x, u, t) - \bar{f}(x,$$

式(8)表示第*j*个偏差方程,即除第*j*个(*j*=1, 2,…,*a*)故障外对其余 *a*-1 个故障构造观测器而 得到的偏差方程.

**定理1** 基于前面所作的假设,对偏差方程  $\bar{e}_{r(i)}$ ,

若参数 
$$\rho_{r_i} > \gamma_{\text{li}}, \begin{bmatrix} (\bar{A} - L \bar{C})^T P + P(\bar{A} - L \bar{C}) + I & P \\ P & -\frac{1}{\gamma_3^2} \end{bmatrix} <$$

0,则当同时发生 a 个故障时( $a \le r$ ), $\bar{e}_{r(j)}$ 均不收敛 到零域;当同时发生 a - 1 个故障,假设在 a 个故障 中第 m 个( $m = 1, 2 \cdots a$ )故障不发生时,则除偏差  $\bar{e}_{r(m)}$ 按指数规律收敛到零域外,其余偏差均不收敛 到零域;当同时发生 a - 2 个故障时,偏差方程是否 收敛到零域可依次类推.

证明 选取如下的 Lyapunov 函数

$$V = \bar{e}^T P \bar{e} \tag{9}$$

Step1:以同时发生 a -1 个故障为例(假设在 a 个故障中第 m 个故障不发生)

由式(8)得  

$$\bar{e}_{r(m)} = (\bar{A} - L \bar{C})\bar{e}_{r(m)} + \bar{f}(\hat{x}, u, t) - \bar{f}(x, u, t) + \sum_{\substack{i=1\\i\neq m}}^{a} (\bar{G}_{r_i}(w_{r_i} - f_{sr_i}))$$
 (10)

对式(9)求导得

$$\begin{split} \dot{V} &= \bar{e}_{r(m)}^{T} \left( \left( \bar{A} - L \ \bar{C} \right)^{T} P + P(\bar{A} - L \ \bar{C}) \right) \bar{e}_{r(m)} + \\ &2 \bar{e}_{r(m)}^{T} P \left[ \bar{f}(\hat{x}, u, t) - \bar{f}(x, u, t) \right] + \\ &2 \bar{e}_{r(m)}^{T} P \sum_{\substack{i=1\\i \neq m}}^{a} \left[ \bar{G}_{r_{i}}(w_{r_{i}} - f_{sr_{i}}(x, u, t)) \right] \end{split}$$
(11)

将引理1和引理2代人式(11)有  $\dot{V} \leq \bar{e}_{r(m)}^{T} ((\bar{A} - L\bar{C})^{T}P + P(\bar{A} - L\bar{C}))\bar{e}_{r(m)} +$ 

 $\gamma_3^2 \parallel \bar{e}_{r(m)} P \parallel^2 + \parallel \bar{e}_{r(m)} \parallel^2 -$ 

0时,有 $\dot{V}$ <0负定.故有 $\lim_{r(m)} \bar{e}_{r(m)} = 0$ .

Step2:在所有包含第 m 个故障(假设  $m \neq 1$ )的 偏差中以偏差方程  $e_{r(1)}$ 为例进行收敛性论证,

$$\bar{e}_{r(1)} = (\bar{A} - L \bar{C})\bar{e}_{r(1)} + \bar{f}(\hat{x}, u, t) - \\ \bar{f}(x, u, t) + \sum_{\substack{i=2\\i\neq m}}^{a} \bar{G}_{r_i}(w_{r_i} - f_{sr_i}) + (\bar{G}_{r_m}w_{r_m} - \bar{G}_{r_i}f_{sr_1})$$

由假设 2 知, G 为列满秩, 则  $G_{r_m}$  与  $G_{r_1}$  线性无 关, 因此  $\lim_{t\to\infty} \bar{e}_{r(1)} \neq 0$ . 同理可得, 在所有包含第 m 个 故障的偏差中均不收敛到零域.

显而易见,当 a 个故障同时发生时,偏差 e<sub>r(j)</sub> 均(j=1,2…a)不收敛到零域.用同样的方法也可 以证明,当同时发生 a - 2 个故障时,偏差方程是否 收敛到零域,证毕.

**定义5** 残差  $r_{r(j)} = \|\bar{e}_{y}^{r(j)}\|, 其中 r_{r(j)}$ 表示在 同时发生 a 个故障中除第 j 个故障外, 对其余 a - 1个故障构造观测器而得到的残差.

基于以上分析,可得多传感器故障诊断的方法 为:当同时发生 a 个故障(a≤r)时,残差 r<sub>r(j</sub>)均对 故障敏感且不收敛到零域;当同时发生 a - 1 个故 障时,假设在 a 个故障中第 m 个故障不发生,则除 残差 r<sub>r(m)</sub>对其不敏感且收敛到零域外,其余残差均 对故障敏感且不收敛到零域.由此可以列出每一种 故障发生时所有 a 个残差各自的状态,从而构成一 个多故障情况下的故障判别规则表(如表 1),即可 实现对同时发生的多个传感器故障进行判别诊断.

表1 故障诊断判别规则

Table 1 Fault Diagnosis Decision Rules

| $r_{r(1)}$ | $r_{r(2)}$ |   | $r_{r(a)}$ | Fault Decisions                              |  |  |  |  |
|------------|------------|---|------------|----------------------------------------------|--|--|--|--|
| 0          | 0          |   | 0          | fault free                                   |  |  |  |  |
| 1          | 0          |   | 0          | only fault $f_{s1}$                          |  |  |  |  |
| 1          | 1          |   | 0          | fault $f_{s1}$ and $f_{s2}$ , simultaneously |  |  |  |  |
| ÷          | ÷          | ÷ | ÷          |                                              |  |  |  |  |
| 1          | 1          |   | 0          | except fault $f_{sa}$ , other fault occur    |  |  |  |  |
| 1          | 1          |   | 1          | all fault                                    |  |  |  |  |

#### 3 应用案例

考虑一个在垂直平面内旋转的柔性单关节机 械手的动态系统模型<sup>[16]</sup>如下所示:

 $\begin{cases} J_1 \ddot{q}_1 + F_1 \dot{q}_1 + k(q_1 - q_2) + mglsinq_1 = 0\\ J_m \ddot{q}_2 + F_m \dot{q}_2 - k(q_1 - q_2) = u \end{cases}$ (12)

式中: $q_1$ 、 $q_2$ 分别为关节点位置和连杆转动位置, $J_1$ 为关节点转动惯量, $J_m$ 为电机转动惯量,k为弹性系数,m为关节质量,g为地心引力常数,l为连杆长度, $F_1$ 为粘性摩擦系数, $F_m$ 为正常数,u为控制输入力矩信号.

选取状态变量  $x_1 = q_1, x_2 = q_1, x_3 = q_2, x_4 = q_2$ .

假设该机械手分别有 f<sub>s1</sub> f<sub>s2</sub>和 f<sub>s3</sub>三个传感器故障,则具有传感器故障的单关节机械手模型可表述 为如下四阶非线性状态方程:

$$\begin{cases} \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{-k}{J_{1}} & \frac{-F_{1}}{J_{1}} & \frac{k}{J_{1}} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{-k}{J_{m}} & 0 & \frac{-k}{J_{m}} & \frac{-F_{m}}{J_{m}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{-mgl}{J_{l}} \sin x_{1} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{J_{m}} \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix}^{T} + Gf_{s}$$

$$(13)$$

选取机械手参数分别为:

k = 2Nm/rad,  $F_m = 1$ ,  $F_l = 0$ . 5Nm/(rad/s),  $J_m = 1Nm^2$ ,  $J_l = 2Nm^2$ , m = 0. 15kg, g = 9. 8, l = 0. 3m.

引入新的状态变量 z 后,相应的式(13)变换为 如下形式:

$$\begin{cases} \dot{\bar{x}}(t) = \bar{A}\bar{x}(t) + \bar{f}(x,u,t) + \bar{B}u(t) + \bar{G}f_s(x,u,t) \\ \\ \bar{y}(t) = \bar{C}\bar{x}(t) \end{cases}$$

(14)

式中,

$$\bar{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -0.25 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & -2 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \bar{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

|                    | Γ        | 0            |       | ٦              |               | ٢0          | C | ) ( | ר( |
|--------------------|----------|--------------|-------|----------------|---------------|-------------|---|-----|----|
| $\bar{f}(x,u,t) =$ | -0.      | 2205         | 5sin: | к <sub>1</sub> |               | 0           | C | ) ( | )  |
|                    |          | 0            |       |                |               | 0           | C | ) ( | )  |
|                    |          | 0            |       |                | , <i></i> G = | 0           | C | ) ( | )  |
|                    |          | 0            |       |                |               | 1           | C | ) ( | )  |
|                    |          | 0            |       |                |               | 0           | 1 | (   | )  |
|                    |          | 0            |       |                |               | $\lfloor_0$ | C | ) 1 | IJ |
| ſ                  | $f_{s1}$ |              | ٢0    | 0              | 0             | 0           | 1 | 0   | ך0 |
| $f_x(x,u,t) =$     | $f_{s2}$ | , <i>Č</i> = | 0     | 0              | 0             | 0           | 0 | 1   | 0  |
|                    | f,       |              | $L_0$ | 0              | 0             | 0           | 0 | 0   | 1  |

从式(13)可知,系统最多在3个不同的反馈 通道发生传感器故障.由于本文提出的故障诊断方 法,对故障形式没有限制,适用于突变、缓变或其它 任何类型的故障,故本例中,用缓变故障、间歇性故 障和突变故障来模拟同一传感器不同的故障类型 或多个不同传感器的故障类型.应用 Matlab7.0 中 的 LMI 工具箱求解不等式,并选取矩阵 *L*,*F* 以满 足假设 5 和假设 7.



Fig. 1 the waveform of residual

设仿真步距为 0. 001, 仿真算法为 ode45. 仿真初 始条件为  $x_1(0) = 0.3, x_2(0) = 0.5, x_3(0) = 0.1, x_4(0)$ = 0. 25,  $z_1(0) = 0.1, z_2(0) = 0.1, z_3(0) = 0.1$ . 三个观测 器的所有状态变量初值为 0. 仿真参数为  $\sigma_1 = 0.01, \sigma_2$   $=0.01, \sigma_3 = 0.01, \rho_1 = 150, \rho_2 = 100, \rho_3 = 100.$ 

情况1 仅发生f<sub>31</sub>故障,未发生f<sub>32</sub>和f<sub>33</sub>故障

图 1 - 图 3 为情况 1 时,残差  $r_{r(1)}$ 、 $r_{r(2)}$ 和  $r_{r(3)}$ 的仿真波形. 从图中可以看出残差  $r_{r(2)}$ 和  $r_{r(3)}$ 保持 在零域,而残差  $r_{r(1)}$ 在 t = 5s 发生了突变,代表此时  $f_{s1}$ 发生了故障.



情况2同时发生f<sub>s1</sub>,f<sub>s3</sub>故障,未发生f<sub>s2</sub>故障

图 4 - 图 6 为情况 2 时, 残差  $r_{r(1)}$ 、 $r_{r(2)}$  和  $r_{r(3)}$ 的仿真波形. 从图中可以看出只有残差  $r_{r(2)}$ 保持在 零域, 而残差  $r_{r(1)}$ 和  $r_{r(3)}$ 在 t = 5s均发生了突变, 由 此代表这时  $f_{s1}$ 和  $f_{s3}$ 发生了故障.



情况3同时发生f<sub>31</sub> f<sub>32</sub>和f<sub>33</sub>故障

图 7 - 图 9 为情况 3 时,残差  $r_{r(1)}$ 、 $r_{r(2)}$ 和  $r_{r(3)}$ 的仿真波形. 从图中可以看出三个残差均发生了不同时刻的突变,残差  $r_{r(1)}$ 和  $r_{r(3)}$ 在 t = 5s发生突变, 代表此时  $f_{s1}$ 和  $f_{s3}$ 发生了故障,而残差  $r_{r(2)}$ 在 t = 10s发生突变,代表  $f_{s2}$ 在 t = 10s的时刻发生了故障.



从上述3种情况的实验结果可看出,当仅发生  $f_{s1}$ 故障,未发生 $f_{s2}$ 和 $f_{s3}$ 故障时,残差 $r_{r(2)}$ 和 $r_{r(3)}$ 均 维持在零域而 $r_{r(1)}$ 发生突变;当同时发生 $f_{s1}$  $f_{s3}$ 故 障,未发生 $f_{s2}$ 故障时,残差 $r_{r(2)}$ 维持在零域而残差  $r_{r(1)}$ 和 $r_{r(3)}$ 均发生突变;当同时发生 $f_{s1}$ 、 $f_{s2}$ 和 $f_{s3}$ 故障 时,残差 $r_{r(1)}$ 、 $r_{r(2)}$ 和 $r_{r(3)}$ 均发生突变,由多故障规 则判别表1即可达到判别故障源的目的.



## 4 结论

针对一类非线性系统,在满足一定几何条件 下,提出了一种基于滑模观测器的多传感器故障诊 断方法.通过定义一个辅助的状态变量,将传感器 故障转化成"伪执行器"故障,不需要任何的坐标 转换.通过设计一组滑模观测器来检测、隔离所有 可能的传感器故障,仿真结果验证了算法的有效 性.

#### 参考文献

- Ibaraki S, Suryanarayanan S, Tomizuka M. Design of Luenberger state observers using fixed structure H∞ optimization and its application to fault detection in lane keeping control of automated vehicles. *IEEE /ASME Trans. On Mechatronics*, 2005,10(1):34~42
- 2 周东华,叶银忠. 现代故障诊断与容错控制. 北京:清华 大学出版社,2000 (Zhou D H,Ye Y Z. Modern fault diagnosis and fault - tolerant control. Bei Jing: TsingHua University Press,2000 (in Chinese))
- 3 张正道,胡寿松. 基于未知输入观测器的非线性时间序 列故障预报. 控制与决策, 2005, 20(7): 769 ~ 777 (Zhang Z D, Hu S S. Fault prediction for nonlinear time series based on unknown input observer. *Control and Decision*, 2005, 20(7): 769 ~ 777 (in Chinese))
- 4 Zhang K, Hu S S, Jing B. Sliding mode integral observers for sensor faults detection and isolation in nonlinear systems. IEEE International Conference on Control and Automation, Guang zhou, 2007:147 ~ 151

- 5 何静,邱静,张昌凡. 一种滑模观测器的多故障诊断方法. 动力学与控制学报,2009,7(1):84~91 (He J, Qiu J, Zhang C F. Multiple faults diagnosis method based on sliding mode observer. *Journal of Dynamics and Control*, 2009,7(1):84~91 (in Chinese))
- 6 Wu Q, Saif M. An overview of robust model based fault diagnosis for satellite systems using sliding mode and learning approaches. IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 2007: 3746 ~ 3751
- 7 Chen W, Saif M. Adaptive actuator fault detection isolation and accommodation in uncertain systems. *International Journal of Control*, 2007,80(1):45~63
- 8 颜秉勇,田作华,施颂椒. 基于预测观测器的时滞系统 故障诊断. 控制与决策,2008,23(2):233~236 (Yan B Y,Tian Z H,Shi S J. Fault diagnosis for time – delay systems based on predictive observer. *Control and Decision*, 2008,23(2):233~236 (in Chinese))
- 9 安若铭,张帆,吴月忠等.基于动态观测器的多故障诊断 技术的应用研究.航天控制,2009,27(4):88~91 (An R M, Zhang F, Wu Y Z, et al. Application research of multi – fault diagnosis technology based on dynamic observer. Aero space Control, 2009,27(4):88~91 (in Chinese))
- 10 纪志成,苏晓丹,沈艳霞. 一类非线性系统的多故障检测方法研究. 系统仿真学报, 2007,19(9):1979~1982
  (Ji Z C,Su X D,Shen Y X. Study on multiple fault detecting method for non linear system. *Journal of system simulation*, 2007,19(9):1979~1982 (in Chinese))
- 11 Tan C P, Edwards C. Sliding mode observers for detection and reconstruction of sensor faults. *Automatica*, 2002, 38 (10):1815~1821
- 12 Edwards C, Tan C P. Sensor fault tolerant control using sliding mode observers. *Control Engineering Practice*, 2006,14(8):897~908
- 13 厉小润,赵辽英,赵光宙.参数不确定混沌系统的自适应同步.浙江大学学报(工学版),2005,39(12):1993~
  1997 (Li X R, Zhao L Y, Zhao G Z. Adaptive synchronization of parameter uncertain chaotic systems. *Journal of Zhejiang University*(*Engineering Science*), 2005,39(12): 1993~1997 (in Chinese))
- 14 俞立.鲁棒控制-线性矩阵不等式处理方法.北京:清 华大学出版社,2002 (Yu L. Robust control - linear matrix inequality processing method. Bei Jing:TsingHua University Press,2002 (in Chinese))

- 15 Walcott B L, CorlessM J, Zak S H. Comparative study of nonlinear state observation techniques. Int. Jour. of Control, 1987, 45:2109 ~ 2132
- 16 Zhang X D, Thomas Parisini, Marios M P. Sensor bias fault isolation in a class of nonlinear systems. *IEEE Transactions on Automatic Control*, 2005, 50(3):370 ~ 376

## DIAGNOSIS OF MULTIPLE SENSOR FAULTS BASED ON SLIDING MODE OBSERVER\*

Huang Yishan<sup>1,2</sup> Zhang Changfan<sup>2</sup> Yan Min<sup>2</sup>

(1. Hunan CSR Times Electric Vehicle Co., Ltd, Zhuzhou 412007, China)

(2. College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412008, China)

**Abstract** A multiply sensor faults detection method was proposed for a class of nonlinear system of sensor fault diagnosis problem. First, we defined a state variable to convert the sensor fault as pseudo actuators fault, and then generated the residual through the corresponding sliding – mode observer to realize the fault detection. Based on Lyapunov stability theory, a sufficient condition for observer was derived in the form of linear matrix inequality (LMI). Finally, the correctness and effectiveness of the method were verified through a single link robot simulated experiments.

Key words sliding mode observer, residuals, a single link robot, LMI, fault detection

Received 3 March 2011, revised 1 April 2010.

<sup>\*</sup> The project supported by National Natural Science Foundation of China(61104024), Hunan Natural Science Foundation of China(07JJ3118) and Hunan Department of science&technology plan projects of China(2009FJ3008)