非线性演化方程的新 Jacobi 椭圆函数解*

杨先林1 唐驾时2

(1. 湖南广播电视大学理工教学部,长沙 410004)(2. 湖南大学机械与运载工程学院,长沙 410082)

摘要 基于 sinh-Gordon 方程的椭圆函数解,构造新的试探解来扩展 sinh-Gordon 方程展开法.利用该方法研究了 KdV-mKdV 方程,双 sine-Gordon 方程和 BBM 方程,获得了这些方程的新 Jacobi 椭圆函数解.该方法也能用来求解其他数学物理中的非线性演化方程.

关键词 sinh-Gordon 方程展开法, Jacobi 椭圆函数, KdV-mKdV 方程, 双 sine-Gordon 方程, BBM 方程

引言

在非线性问题中,寻找非线性演化方程的精确解占有很重要的地位.至今已发展了许多比较成熟的求解方法,如反散射方法^[1],Backlund变换^[2],Darboux变换^[3],齐次平衡法^[4],形变映射法^[5],双曲正切函数展开法^[6],扩展的双曲正切函数展开法^[7],Jacobi 椭圆函数展开法^[8],扩展的 Jacobi 椭圆函数展开法^[9]和辅助方程法^[10-13]等.最近,基于sinh-Gordon方程,文献[14]提出了一个sinh-Gordon方程展开法,并用它来构造非线性演化方程的Jacobi 椭圆函数解.利用如下行波变换

$$u = u(\xi), \xi = k(x - \lambda t) \tag{1}$$

则 sinh-Gordon 方程

被简化为一常微分方程,

$$\frac{d^2\phi}{d\xi^2} = -\frac{\alpha}{k\lambda}\sinh\phi\tag{3}$$

式中 k 和 λ 分别是波数和波速. 对式(3) 积分得

$$\left(\frac{d}{d\xi} \frac{1}{2} \phi\right)^2 = -\frac{\alpha}{k\lambda} \sinh^2\left(\frac{1}{2} \phi\right) + a \tag{4}$$

Jacobi 椭圆函数的模数. 则式(4)变为

$$\left(\frac{d\omega}{d\xi}\right)^{2} = \sinh^{2}\omega + 1 - m^{2}$$

$$\vec{E} \qquad \frac{d\omega}{d\xi} = \sqrt{\sinh^{2}\omega + 1 - m^{2}}$$
(5)

求解方程(5),得到的 Jacobi 椭圆函数解为 $sinh\omega(\xi) = cs(\xi,m)$

或
$$\cosh\omega(\xi) = ns(\xi, m)$$
 (6)

再利用如下变换

$$u(\xi) = a_0 + \sum_{i=1}^{n} \cosh^{i-1} \omega(\xi) \left[a_i \sinh \omega(\xi) + b_i \cosh \omega(\xi) \right]$$

$$(7)$$

就构造出了 sinh-Gordon 方程展开法. 本文中,我们 令 $\phi = 2\omega$, $-\frac{\alpha}{k\lambda} = 1 - m^2$,取积分常数 a = 1,则式 (4) 变为

$$\left(\frac{d\omega}{d\xi}\right)^{2} = (1 - m^{2})\sinh^{2}\omega + 1$$

$$\overrightarrow{d\xi} = \sqrt{(1 - m^{2})\sinh\omega(\xi) + 1}$$
(8)

求解方程(8),得到的 Jacobi 椭圆函数解为

$$\sinh_{\boldsymbol{\omega}}(\boldsymbol{\xi}) = sc(\boldsymbol{\xi}, m)$$

或
$$\cosh\omega(\xi) = nc(\xi, m)$$
 (9)

下面我们将利用方程(8)及其解(9),并对变换(7)稍加改变来扩展 sinh-Gordon 方程展开法,然后用该方法求解几个非线性演化方程的行波解.

1 扩展的 sinh-Gordon 方程展开法

下面依据 sinh-Gordon 方程展开法的基本思路 给出扩展的 sinh-Gordon 方程展开法的一般步骤:

步骤 1. 考虑如下具有三个独立变量 x, y, t 的 非线性演化方程

$$F(u, u_x, u_y, u_t, u_{xx}, u_{xy}, u_{xt}, u_{yy}, u_{yt}, u_{yt}, u_{tt}, \cdots)$$
 (10)

²⁰¹⁰⁻¹¹⁻²⁷ 收到第 1 稿,2010-12-20 收到修改稿.

利用行波变换

$$u = u(\xi)$$
, $\xi = k(x + ly - \lambda t)$ (11)
这里 k, l 和 λ 是待定常数. 方程(10)被简化为非线

性常微分方程

$$H(u, u', u'', u''', \cdots) = 0$$
 (12)
这里 u' 表示 $du/d\xi$.

步骤 2. 假设方程(12)具有如下形式的解

$$u(\xi) = A_0 + \sum_{i=1}^{n} [A_i \sinh \omega \xi + B_i \cosh \omega (\xi)]^i$$
 (13)
式中 A_0 , A_i , B_i ($i = 1, 2, \dots, n$) 是待定常数, 新的变量 $\omega(\xi)$ 满足方程(8). 依据式(8)和(13), 我们定义 $u(\xi)$ 的次数为 $D[u(\xi)] = n$, 则其他表达式的次数为:

$$D[d^{\alpha}u/d\xi^{\alpha}] = n + \alpha,$$

$$D[u^{\beta}(d^{\alpha}u/d\xi^{\alpha})^{q}] = n\beta + (n + \alpha)q$$

因此通过平衡方程(12)中最高阶导数项和非线性 项,可以确定(13)式中参数 n 的值. 如果参数 n 不 是一个正整数,则需要作变换 $u = v^n$.

步骤 3. 把式(13)和方程(8)代入式(12) 得一 $\omega'^{s}(\xi) \sinh^{i} \omega(\xi) \cosh^{j} \omega(\xi)$ (s = 0, 1, i = 0, 1; j = 0, $1,2,\cdots$)的多项式方程. 然后令 $\omega''(\xi)\sinh^i\omega(\xi)$ $\cosh^{\prime}\omega(\xi)$ 的系数为零得到一个关于 k,l,λ,A_0,A_i , $B_i(i=1,2,\cdots,n)$ 的非线性代数方程组. 再借助符 号计算软件 Mathematica 求解这个非线性代数方程 组可以获得 $k, l, \lambda, A_0, A_i, B_i$ ($i = 1, 2, \dots, n$) 的显示 表达式.

步骤 4. 利用上一步所获得的结果以及方程 (8)的解(9),可以得到非线性演化方程(10)的 Jacobi 椭圆函数解. 当 Jacobi 椭圆函数的模数, Jacobi 椭圆函数解退化成三角函数解.

应用

下面我们利用扩展的 sinh-Gordon 方程展开法 来求解几个非线性演化方程.

2.1 KdV-mKdV 方程

KdV-mKdV 方程为

$$u_{t} + (\alpha + \beta u) u u_{x} + u_{xxx} = 0$$
 (14)

对方程(14)作行波变换

$$u = u(\xi), \quad \xi = k(x - \lambda t)$$
 (15)

式中 k 和 λ 分别是波数和波速. 则方程(14)化为

$$k^{2}u'' + \frac{1}{3}\beta u^{3} + \frac{1}{2}\alpha u^{2} - \lambda u - c = 0$$
 (16)

式中c为积分常数.平衡方程(16)中的最高阶导数 项 $u^{"}$ 和非线性项 u^{3} 可得式(13)中的n=1,由此可 假设方程(16)具有如下形式的解

 $u(\xi) = A_0 + A_1 \sinh \omega(\xi) + B_1 \cosh \omega(\xi)$ 式中 A_0, A_1, B_1 是待定常数,并且变量 $\omega(\xi)$ 满足方 程(8). 把方程(17),(8)代入方程(16)得到关于 $\omega'^{s}(\xi) \sinh^{i} \omega(\xi) \cosh^{j} \omega(\xi)$ (s = 0, 1, i = 0, 1; j = 0, $1,2,\cdots$)的多项式方程. 然后令 $\omega'^{s}(\xi)\sinh^{i}\omega(\xi)$ $\cosh \omega(\xi)$ 的系数为零得到一关于 $k, \lambda, A_0, A_1, B_1$ 的非线性代数方程组. 再借助符号计算软件 Mathematica 求解该非线性代数方程组,获得的解为:

$$(1)A_{0} = \frac{-\alpha}{2\beta}, A_{1} = \pm \sqrt{\frac{3(4\lambda\beta + \alpha^{2})(-1 + m^{2})}{2\beta^{2}(2 - m^{2})}},$$

$$B_{1} = 0, k = \pm \sqrt{\frac{4\lambda\beta + \alpha^{2}}{4\beta(2 - m^{2})}}, c = \frac{\alpha^{3} + 6\alpha\beta\lambda}{12\beta^{2}};$$

$$(2)A_{0} = \frac{-\alpha}{2\beta}, B_{1} = \pm \sqrt{\frac{3(4\lambda\beta + \alpha^{2})(-1 + m^{2})}{2\beta^{2}(2m^{2} - 1)}},$$

$$(2)A_{0} = \frac{-\alpha}{2\beta}, B_{1} = \pm \sqrt{\frac{3(4\lambda\beta + \alpha^{2})(-1 + m^{2})}{2\beta^{2}(2m^{2} - 1)}},$$

$$2\beta^{2} (2m^{2} - 1)$$

$$4\lambda\beta + \alpha^{2} = \alpha^{3} + 6\alpha\beta\lambda \tag{18}$$

$$A_1 = 0, k = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{4\beta(2m^2 - 1)}}, c = \frac{\alpha^3 + 6\alpha\beta\lambda}{12\beta^2};$$
 (19)

$$(3)A_0 = \frac{-\alpha}{2\beta}, A_1 = \pm \sqrt{\frac{3(4\lambda\beta + \alpha^2)(-1 + m^2)}{4\beta^2(1 + m^2)}},$$

$$k = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{4\beta(2m^2 - 1)}}, c = \frac{\alpha^3 + 6\alpha\beta\lambda}{12\beta^2}, A_1^2 = B_1^2. \quad (20)$$

利用上述结果以及式(17)和方程(8)的解(9),可 以得到 KdV-mKdV 方程(14)如下 Jacobi 椭圆函数

$$u_{1}(x,t) = \frac{-\alpha}{2\beta} \pm \sqrt{\frac{3(4\lambda\beta + \alpha^{2})(-1 + m^{2})}{2\beta^{2}(2 - m^{2})}} sc(\xi,m)$$
(21)

式中
$$\xi = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{4\beta(2 - m^2)}} (x - \lambda t)$$

$$u_2(x,t) = \frac{-\alpha}{2\beta} \pm \sqrt{\frac{3(4\lambda\beta + \alpha^2)(-1 + m^2)}{2\beta^2(2m^2 - 1)}} nc(\xi, m)$$

(22)

式中

$$u_{3}(x,t) = \frac{-\alpha}{2\beta} \pm \sqrt{\frac{3(4\lambda\beta + \alpha^{2})(-1 + m^{2})}{4\beta^{2}(1 + m^{2})}} (sc(\xi,m) + nc(\xi,m))$$
(23)

$$\vec{x} + \xi = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{2\beta(1 + m^2)}} (x - \lambda t)$$

由于当 $m \rightarrow 0$ 时, $sc(\xi, m) \rightarrow tan\xi$, $nc(\xi, m) \rightarrow sec\xi$, 所以 KdV-mKdV 方程(14)的 Jacobi 椭圆函数解退

(35)

化为如下三角函数解.

$$u_4(x,t) = \frac{-\alpha}{2\beta} \pm \sqrt{\frac{-3(4\lambda\beta + \alpha^2)}{4\beta^2}} \tan\xi, \quad (24)$$

式中
$$\xi = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{8\beta}}(x - \lambda t)$$

$$u_5(x,t) = \frac{-\alpha}{2\beta} \pm \sqrt{\frac{-3(4\lambda\beta + \alpha^2)}{-2\beta^2}} \sec \xi, \quad (25)$$

式中
$$\xi = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{-4\beta}}(x - \lambda t)$$

$$u_6(x,t) = \frac{-\alpha}{2\beta} \pm \sqrt{\frac{-3(4\lambda\beta + \alpha^2)}{4\beta^2}} (\tan\xi + \sec\xi), (26)$$

$$\vec{x} + \xi = \pm \sqrt{\frac{4\lambda\beta + \alpha^2}{2\beta}} (x - \lambda t) \ .$$

双 sine-Gordon 方程

双 sine-Gordon 方程为

$$u_{xt} = \alpha \sin u + \beta \sin 2u \tag{27}$$

为了求解该方程,引入变换

$$u = 2 \arctan v$$
, $\vec{\mathbf{x}} v = \tan \frac{u}{2}$, (28)

从而有

$$\sin u = \frac{2v}{1+v^2}, \sin 2u = \frac{4v(1-v^2)}{(1+v^2)^2},$$

$$u_{xt} = \frac{2}{1+v^2}v_{xt} - \frac{4v}{(1+v^2)^2}v_xv_t$$
(29)

把式(29)代入方程(27)得

$$(1 + v^2)v_{xt} - 2vv_xv_t - (\alpha + 2\beta)v -$$

$$(3)A_0 = 0, A_1 = \pm \sqrt{\frac{-(1+m^2)\alpha \pm 2\sqrt{\beta^2 + m^4\beta^2 + m^2(\alpha^2 - 2\beta^2)}}{(-1+m^2)(\alpha - 2\beta)}},$$

$$B_{1} = \pm \sqrt{\frac{\beta + m^{4}\beta \pm \sqrt{\beta^{2} + m^{4}\beta^{2} + m^{2}(\alpha^{2} - 2\beta^{2})} + m^{2}(-2\alpha - 2\beta \pm \sqrt{\beta^{2} + m^{4}\beta^{2} + m^{2}(\alpha^{2} - 2\beta^{2})})}{(1 - m^{2})(1 + m^{2})\beta \pm \sqrt{\beta^{2} + m^{4}\beta^{2} + m^{2}(\alpha^{2} - 2\beta^{2})}}}$$

$$\lambda = -\frac{(1+m^2)\beta \pm \sqrt{\beta^2 + 1m^4\beta^2 + m^2(\alpha^2 - 2\beta^2)}}{m^4k^2}, m \neq 1, m \neq 0$$
(36)

利用上述结果以及式(33)和方程(8)的解(9),可 以得到双 sine-Gordon 方程(27)如下 Jacobi 椭圆函 数解.

$$u_1(x,t) =$$

$$2\arctan\left[\pm\sqrt{\frac{(1-2m^2)\alpha\pm\sqrt{\alpha^2-16m^2(1-m^2)\beta^2}}{2m^2(\alpha-2\beta)}}nc(\xi,m)\right]$$

$$\vec{x} + \xi = k(x - \frac{2\beta(1 - 2m^2) \pm \sqrt{\alpha^2 - 16m^2(1 - m^2)\beta^2}}{k^2});$$

$$u_2(x,t) =$$

$$(\alpha - 2\beta)v^3 = 0 \tag{30}$$

作行波变换

$$v = v(\xi), \xi = k(x - \lambda t)$$
(31)

式中k和 λ 分别是波数和波速,方程(30)变为

$$k^{2} \lambda (1 + v^{2}) v'' - 2k^{2} \lambda v v'^{2} + (\alpha + 2\beta) v + (\alpha - 2\beta) v^{3} = 0$$
(32)

$$(\alpha - 2\beta)v^3 = 0 \tag{32}$$

平衡方程(32)中的最高阶导数项 v'' 和非线性项 v^3 可得式(13)中的n=1,可假设方程(32)具有如下 形式的解

$$v(\xi) = A_0 + A_1 \sinh \omega(\xi) + B_1 \cosh \omega(\xi)$$
 (33)
式中 A_0 , A_1 , B_1 是待定常数, 并且变量 $\omega(\xi)$ 满足方程(8)。同理依据共骤 3 求得非线性代数方程组的

程(8). 同理依据步骤 3 求得非线性代数方程组的 解如下:

$$(1)A_0 = 0, A_1 = 0,$$

$$B_{1} = \pm \sqrt{\frac{(1-2m^{2})\alpha \pm \sqrt{\alpha^{2}-16m^{2}(1-m^{2})\beta^{2}}}{2m^{2}(\alpha-2\beta)}},$$

$$\lambda = \frac{2\beta(1 - 2m^2) \pm \sqrt{\alpha^2 - 16m^2(1 - m^2)\beta^2}}{k^2}, m \neq 0 \quad (34)$$

$$(2)A_0 = 0, B_1 = 0,$$

$$A_1 = \pm \sqrt{\frac{(2-m^2)\alpha \pm \sqrt{m^4\alpha^2 + 16\beta^2(1-m^2)}}{2\alpha - 4\beta}},$$

$$\lambda = \frac{-2\beta(2-m^2) \pm \sqrt{m^4\alpha^2 + 16\beta^2(1-m^2)}}{m^4k^2}, m \neq 0$$

$$m \neq 1, m \neq 0 \tag{36}$$

 $2\arctan\left[\pm\sqrt{\frac{(2-m^2)\alpha\pm\sqrt{M^4\alpha^2+16\beta^2(1-m^2)}}{2\alpha-4\beta}}sc(\xi,m)\right]$ (38)

$$\vec{x} + \xi = k(x - \frac{-2\beta(2 - m^2) \pm \sqrt{m^4 \alpha^2 + 16\beta^2(1 - m^2)}}{m^4 k^2});$$

$$u_3(x,t) = 2\arctan[A_1 sc(\xi, m) + B_1 nc(\xi, m)]$$

$$B_{1}=\pm\sqrt{\frac{\beta+m^{4}\beta\pm\sqrt{\beta^{2}+m^{4}\beta^{2}+m^{2}(\alpha^{2}-2\beta^{2})}+m^{2}(-2\alpha-2\beta\pm\sqrt{\beta^{2}+m^{4}\beta^{2}+m^{2}(\alpha^{2}-2\beta^{2})})}{(1-m^{2})(1+m^{2})\beta\pm\sqrt{\beta^{2}+m^{4}\beta^{2}+m^{2}(\alpha^{2}-2\beta^{2})}}}$$

2.3 BBM 方程

Benjamin-Bona-Mahoney(BBM)方程为

$$u_t + \alpha u_x + \beta u u_x - \gamma u_{xxt} = 0 \tag{40}$$

作行波变换

$$u = u(\xi), \quad \xi = k(x - \lambda t) \tag{41}$$

式中k和 λ 分别是波数和波速,方程(40)变为

$$c + (\alpha \lambda) u + \frac{1}{2} \beta u^2 + k^2 \lambda \gamma u'' = 0$$
 (42)

式中 c 为积分常数. 平衡方程(42)中的最高阶导数 项 $u^{''}$ 和非线性项 u^{2} 可得式(13)中的 n=2,由此可假设方程(42)具有如下形式的解

$$u(\xi) = A_0 + A_1 \sinh \omega(\xi) + B_1 \cosh \omega(\xi) +$$

 $(A_2 \sinh\omega(\xi) + B_2 \cosh\omega(\xi))^2 \tag{43}$

式中 A_i , B_j (i=0,1,2,j=1,2)是待定常数,并且变量 $\omega(\xi)$ 满足方程(8). 同理依据步骤 3 求得非线性代数方程组的解如下

$$A_{0} = \frac{-\alpha + \lambda - 2k^{2}\lambda\gamma - 2k^{2}m^{2}\lambda\gamma}{\beta}, A_{1} = 0,$$

$$A_{2} = \pm\sqrt{\frac{3k^{2}(-1 + m^{2})\lambda\gamma}{\beta}}, B_{1} = 0,$$

$$B_{2} = \pm\sqrt{\frac{3k^{2}(-1 + m^{2})\lambda\gamma}{\beta}},$$

$$c = \frac{\alpha^{2} - 2\alpha\lambda - \lambda^{2}(-1 + k^{4}(1 + 14m^{2} + m^{4})\gamma^{2})}{2\beta}$$

(44)

利用该结果以及式(43)和方程(8)的解(9),可以 得到 BBM 方程(40)如下 Jacobi 椭圆函数解

$$u(x,t) = \frac{-\alpha + \lambda - 2k^2\lambda\gamma - 2k^2m^2\lambda\gamma}{\beta} + \frac{3k^2(-1+m^2)\lambda\gamma}{\beta} (sc(\xi,m) + nc(\xi,m))^2$$
(45)

由于当 $m\to 0$ 时, $sc(\xi,m)\to tan\xi$, $nc(\xi,m)\to sec\xi$, 所以 BBM 方程(40)的 Jacobi 椭圆函数解退化为如 下三角函数解

$$u(x,t) = \frac{-\alpha + \lambda - 2k^2 \lambda \gamma}{\beta} + \frac{-3k^2 \lambda \gamma}{\beta} (\tan \xi + \sec \xi)^2$$
(46)

方程(42)中的积分常数为:

$$c = \frac{\alpha^2 - 2\alpha\lambda - \lambda^2(-1 + k^4\gamma^2)}{2\beta}.$$

3 结论

本文基于 sinh-Gordon 方程和变换(13)对 sinh-Gordon 方程展开法进行了扩展,并应用它获得了 KdV-mKdV 方程,双 sine-Gordon 方程和 BBM 方程的 Jacobi 椭圆函数解. 不难看出,该方法只能求解非线性演化方程的行波解,可以对该方法进一步扩展,使之能寻找非线性演化方程的非行波解.

令
$$\xi$$
→ Ψ (x , y , t), 则方程(8)变为

$$\frac{d\omega(\Psi(x,y,t))}{d\Psi(x,y,t)} =$$

$$\sqrt{(1-m^2)\sinh^2\omega(\Psi(x,\gamma,t))+1} \tag{47}$$

式中 $\Psi(x,y,t)$ 是 x,y,t 的光滑函数. 方程(47) 具有形如(9) 式的 Jacobi 椭圆函数解,只需把(9) 式中的 ξ 用 $\Psi(x,y,t)$ 替代即可. 对于给定的非线性演化方程(10),可以假设它具有如下形式的解

$$u(x,y,t) = A_0(x,y,t) +$$

$$\sum_{i=1}^{n} \left[A_i(x,y,t) \sinh \omega \left(\Psi(x,y,t) \right) + B_i(x,y,t) \cosh \omega \left(\Psi(x,y,t) \right) \right]^i$$
(48)

类似于扩展的 sinh-Gordon 方程展开法的一般步骤,可以获得非线性演化方程的非行波解. 该方法的应用,我们将另文给出.

参考文献

- 1 Ablowitz M J, Clarkson P A. Soliton, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press, 1991
- 2 Miura MR. Backlund transformation. Berlin: SpringerVerlang, 1978
- 3 谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用.上海:上海科学技术出版社,2005:66~80(Gu C H, Hu H S,Zhou Z X. Darboux transformation in soliton theory and its geometric applications. Shang hai: Shanghai Scientific & Technical Publishers, 2005:66~80 (in Chinese))
- 4 Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations

- in mathematical physics. *Phys. Lett.* A, 1996,216:67~75 何宝钢,徐昌智,张解放. 扩展的形变映射方法和(2+1)维破裂孤子方程的新解. 物理学报,2006,55(2):511~516 (He B G, Xu C Z, Zhang J F. Extended mapping approach and new solutions of the (2+1)-dimensional breaking soliton equations. *Acta Phys. Sin.*, 2006,55 (2):511~516 (in Chinese))
- 6 Parkes E J, Duffy B R. Travelling solitary wave solutions to a compound KdV-Burgers equation. *Phys. Lett. A*, 1997, 229:217~220
- 7 Fan E G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A, 2000,277:212 ~218
- 8 刘式适,付遵涛,刘式达,赵强. Jacobi 椭圆函数展开法及其在求解非线性波动方程中的应用. 物理学报,2001,50:2068~2073 (Liu S K, Fu Z T, Liu S D and Zhao Q. Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations. *Acta Phys. Sin.*, 2001,50:2068~2073 (in Chinese))
- 9 Yan Z Y. New Jacobian elliptic function solutions to modified KdV equation; 1. Commun. Theor. Phys., 2002, 38 (2);143~146

- 10 Yang X L, Tang J S. New travelling wave solutions for combined KdV-mKdV equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system. *Chin. Phys.*, 2007, 16: $310 \sim 317$
- 11 Yang X L, Tang J S. Extended Fan's algebraic method and its application to KdV and Variant Boussinesq equations. Commun. Theor. Phys., 2007,48(1):1~6
- 12 杨先林. Burgers 方程的精确解. 动力学与控制学报, 2006,4(4):308~311(Yang X L. Exact solutions of Burgers equation. *Journal of Dynamics and Control*, 2006,4 (4):308~311(in Chinese))
- 13 杨先林,唐驾时. 利用耦合的 Riccati 方程组构造微分-差分方程孤波解. 物理学报,2008,57 (6):3305~3311 (Yang X L, Tang J S. Constructing exact solutions to differential-difference equations via the coupled Riccati equations. *Acta Phys Sin*, 2008,57 (6):3305~3311 (in Chinese))
- 14 Yan Z Y. A sinh-Gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations. *Chaos*, *Solitons and Fractals*, 2003, 16:291 ~ 297

NEW JACOBIAN ELLIPTIC FUNCTION SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS*

Yang Xianlin¹ Tang Jiashi²

(1. Hunan Radio and Television University, Changsha 410004, China)

(2. College of Mechanics and Aerospace, Hunan University, Changsha 410082, China)

Abstract The sinh-Gordon equation expansion method is further extended based on the sinh-Gordon equation and constructing new ansatz solution of the considered equation, we apply this method to the KdV-mKdV equation, the double sine-Gordon equation and the BBM equation, and some new Jacobian elliptic function solutions of them are derived, The method can be applied to other nonlinear evolution equations in mathematical physics.

Key words sinh-Gordon equation expansion method, Jacobi elliptic function, KdV-mKdV equation, double sine-Gordon equation, BBM equation

Received 27 November 2010, revised 20 December 2010.

^{*}The project supported by the Scientific Research Fund of Hunan Provincial Science & Technology Department (2009FJ3077) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20100161110024)