# 弹塑性梁系统的动力学特性研究\*

石望 刘锦阳

(上海交通大学船舶海洋与建筑工程学院,上海 200240)

**摘要** 研究了弹塑性梁系统的动力学特性. 从弹塑性梁的非线性本构关系出发,同时考虑几何非线性,用虚 功原理建立单个梁的动力学变分方程,利用假设模态法离散. 在此基础上引入运动学约束关系,建立了弹塑 性梁系统的刚-柔耦合动力学方程. 对重力作用下的柔性单摆和双摆数值仿真结果表明,塑性应变引起横向 变形绝对值增大和横向振动振幅衰减,在角加速度突变时塑性效应最为显著.

关键词 弹塑性梁系统, 非线性本构关系, 动力学

## 引 言

目前,机械系统各部件的弹塑性动力学问题已 经引起工程界的重视.例如,在受冲击载荷作用时, 汽车的某些柔性部件会产生弹塑性变形,其特点是 当载荷卸去之后柔性部件存在不可恢复的永久变 形,在卸载的情况下,应力和应变之间不再存在唯 一的对应关系,需要考虑弹塑性效应,建立柔性多 体系统在冲击载荷作用下的更加精确的动力学模 型,以实现汽车碰撞过程的动力学仿真.此外,人体 在汽车碰撞过程中,某些致伤部位的损伤机理分析 也是目前需要解决的问题.由此可见,弹塑性多体 系统动力学的研究具有重要的工程应用前景.

近二十年来,柔性多体系统动力学建模理论研 究取得了较大的进展.1987年,Kane<sup>[1]</sup>在动力刚化 实验中发现传统的混合坐标方法由于忽视了应变-位移关系式中的二次项,实际上是零次近似方法, 在处理高速旋转的悬臂梁动力学问题时失效,此 后,国外学者对动力刚化问题开展了研究,提出了 子结构法<sup>[2]</sup>、初应力法<sup>[3]</sup>,一次近似混合坐标方 法<sup>[4]</sup>和绝对节点坐标法<sup>[5]</sup>,为解决大型复杂结构 动力学问题提供了理论依据.以上研究工作考虑了 柔性多体系统的几何非线性效应,但是建模理论是 基于线性的本构关系,没有进一步对柔性多体系统 的材料非线性问题开展研究.

目前,国内外对弹塑性多体系统动力学研究才 刚起步.Gerstmayr<sup>[6]</sup>等建立了作旋转运动弹塑性梁

2009-11-03 收到第1稿,2010-03-16 收到修改稿.

的动力学模型,用假设模态法进行离散,研究了在 角速度已知的情况下弹塑性应变对梁的振动特性 的影响.在此基础上,Gerstmayr<sup>[7]</sup>等进一步研究作 自由旋转运动单摆的动力学性态,考虑弹塑性变形 和刚体运动的耦合,研究了弹塑性应变对系统刚-柔耦合动力学特性的影响,然后又将弹塑性问题研 究从平面梁推广到平面板.以上研究工作基于线弹 性假设,没有考虑几何非线性效应,需要在前人研 究的基础上同时考虑几何非线性和材料非线性,建 立更加精确的动力学模型,并且将建模方法推广应 用到多体系统.

本文基于弹塑性梁的非线性本构关系和非线 性应变-位移关系,用虚功原理建立了单柔性梁的 动力学变分方程,利用假设模态法离散.在此基础 上引入运动学约束关系建立了弹塑性多体系统的 动力学方程.首先对柔性单摆进行数值仿真,将计 算结果与前人结果进行比较验证本文模型的正确 性,并研究截取模态的阶数对计算结果的影响,然 后,将弹塑性动力学建模方法由单梁推广到梁系 统,研究弹塑性应变对柔性双摆的动力学特性的影 响.

## 1 梁变形的描述

平面柔性梁如图 1 所示,建立惯性基 $e_1^{0}e_2^{0}$ 和柔 性梁的浮动基 $e_1^{b}e_2^{b}$ .设 $r_0$ 为浮动基原点关于惯性基 的位置向量在惯性基下的坐标阵, $\theta$ 为浮动基关于 惯性基的姿态角,梁中线上任意一点 k 相对惯性基

<sup>\*</sup>国家自然科学基金资助项目(10472066, 10772113)

的位置向量在惯性基下的坐标阵为



图 1 作大范围运动的弹塑性梁 Fig. 1 An elasto-plastic beam undergoing large overall motion

$$r = r_0 + A(\rho_0' + u') \tag{1}$$

其中, $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ 为 $e_1^i e_2^i$ 关于 $e_1^o e_2^o$ 的方向余 弦阵, $\rho_0^{'} = \begin{bmatrix} x & 0 \end{bmatrix}^T$ 为变形前k相对于浮动基的位 置向量在浮动基下的坐标阵, $u^{'} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^T$ 为点 k的变形位移在浮动基下的坐标阵,其中, $u_1$ 和 $u_2$ 分别为k的纵向变形和横向变形.考虑几何非线性 效应,梁轴线上的任意一点k的纵向变形 $u_1$ 和轴 向伸长量s的关系为<sup>[4]</sup>

$$u_{1} = s - \frac{1}{2} \int_{0}^{x} (\partial u_{2} / \partial \xi)^{2} d\xi$$
 (2)

用假设模态法进行离散,s和 $u_1$ 分别可以通过 形函矩阵 $\phi_1(x)$ 和 $\phi_2(x)$ 表达为

$$s = \phi_1(x)p, \quad u_2 = \phi_2(x)p$$
 (3)

其中, p 为模态坐标阵. 将(3)式代入(1)式和(2) 式, 得到

$$r = r_0 + A(\rho_0' + u'), u' = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} p - \frac{1}{2} \begin{bmatrix} p^T H p \\ 0 \end{bmatrix}$$
(4)

其中,  $H = \int_0^x (\partial \phi_2 / \partial \xi)^T (\partial \phi_2 / \partial \xi) d\xi$ . 将(4) 式求 变分得到:

$$\delta r = \delta r_0 + \delta \theta A \quad \tilde{I}(\rho_0' + u') + A \delta u' \tag{5}$$

其中  $\tilde{I} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ ,将(4)式对时间求二阶导数得到:

$$\ddot{r} = \ddot{r}_{0} + \dot{\theta}A \ \tilde{I}(\rho_{0}' + u') + A\ddot{u}' - \dot{\theta}^{2}(\rho_{0}' + u') + 2\dot{\theta}A \ \tilde{I}\dot{u}'$$
(6)

### 2 计算广义质量阵和力阵

基于 Euler – Bernoulli 假设,不计剪切变形,由 虚功原理,平面梁的动力学变分方程为:

$$\int_{V} \delta r^{T} (-\rho \ddot{r}) \, \mathrm{d}V - \int_{V} \delta \varepsilon_{xx}^{T} \sigma_{xx} = 0$$
<sup>(7)</sup>

其中 $f = [f_1 \quad f_2]^T$ 是体力向量在惯性基下的坐标 阵,平面梁的非中线上任意一点的纵向变形 $u_1^*$ 和 横向变形 $u_2^*$ 与中线上对应点的纵向变形 $u_1$ 和横 向变形 $u_2$ 的关系为:

$$u_1^* = u_1 - y \frac{\partial u_2}{\partial x} = s - \frac{1}{2} \int_0^x (\partial u_2 / \partial \xi)^2 d\xi - y \frac{\partial u_2}{\partial x}, u_2^* = u_2$$
(8)

$$\varepsilon_{xx} = \frac{\partial u_1^*}{\partial x} + \frac{1}{2} \left(\frac{\partial u_2^*}{\partial x}\right)^2 = \frac{\partial s}{\partial x} - y \frac{\partial^2 u_2}{\partial x^2} = \frac{\partial \phi_1}{\partial x} p - \frac{\partial^2 \phi_2}{\partial x^2} p$$
(9)

弹塑性应力与应变关系式为:

$$\sigma_{xx} = E(\varepsilon_{xx} - \varepsilon_{xx}^{p}) \tag{10}$$

其中 E 是弹性模量, $\varepsilon_{xx}^{p}$ 是塑性应变.

将式(4),(5),(6),(9)和(10)代入(7),基于 小变形假设,不计动力学方程中变形坐标阵 *p* 的二 次以上项,动力学变分方程为:

$$\delta q^{T}(-M\ddot{q}+Q) = 0 \tag{11}$$

其中, $q = [r_0^T \theta p^T]^T$ 为广义坐标阵. 设 b和 S表示梁的宽度和横截面积,广义质量阵和广义力阵为:

$$M = \begin{bmatrix} M_{rr} & M_{r\theta} & M_{rp} \\ M_{\theta r} & M_{\theta \theta} & M_{\theta p} \\ M_{pr} & M_{p\theta} & M_{pp} \end{bmatrix}, \quad Q = \begin{bmatrix} Q_r \\ Q_\theta \\ Q_p \end{bmatrix}$$
(12)  
$$M_{rr} = \int_{V} \rho I dV = \rho S I I,$$
  
$$M_{\theta r} = M_{r\theta}^{T} = \begin{bmatrix} -Y_2 p & E_1 + Y_1 p \end{bmatrix} A^{T}$$
(13)  
$$M_{pr} = M_{rp}^{T} = \begin{bmatrix} Y_1^T - C p & Y_2^T \end{bmatrix} A^{T},$$
  
$$M_{\theta \theta} = J_{11} + 2Z_{11} p$$
(14)  
$$M_{p\theta} = M_{\theta p}^{T} = (W_{21} - W_{12}) p + Z_{12}^T, M_{pp} = W_{11} + W_{22}$$
(15)  
$$Q_r = 2\dot{\theta} A \begin{bmatrix} Y_2 \dot{p} \\ -Y_1 \dot{p} \end{bmatrix} + \dot{\theta}^2 A \begin{bmatrix} E_1 + Y_1 p \\ Y_2 p \end{bmatrix} + V f$$
(16)  
$$Q_{\theta} = -2\dot{\theta} Z_{11} \dot{p} + \frac{1}{\rho} \begin{bmatrix} -f_1' Y_2 p + f_2' (E_1 + Y_1 p) \end{bmatrix} (17)$$
  
$$Q_r = 2\dot{\theta} (W_r - W_r) \dot{p} + \dot{\theta}^2 Z^T = \begin{bmatrix} K - \dot{\theta}^2 (W_r + V_r) \end{bmatrix}$$

$$Q_{p} = -2\theta (w_{21} - w_{12})p + \theta Z_{11} - [K_{f} - \theta (w_{11} + W_{22})]p + \frac{1}{\rho} (f_{1}^{i}Y_{1}^{T} + f_{2}^{i}Y_{2}^{T}) - \dot{\theta}^{2}Dp - \frac{1}{\rho} f_{1}^{i}Cp + f_{p}$$
(18)

其中,各常值阵为:

$$E_{1} = bS \int_{0}^{l} \rho x dx, J_{11} = bS \int_{0}^{l} \rho x^{2} dx, [f_{1}^{i} \quad f_{2}^{i}]^{T} = A^{T} f$$
(19)

$$W_{mk} = bS \int_0^t \rho \phi_m^T \phi_k dx, \quad m, k = 1, 2$$
(20)

$$Y_{k} = bS \int_{0}^{t} \rho \phi_{k} dx, Z_{1k} = bS \int_{0}^{t} \rho x \phi_{k} dx, k = 1,2 \quad (21)$$

$$C = bS \int_{0}^{l} \rho(l-x) \left( \partial \phi_2 / \partial x \right)^{T} \left( \partial \phi_2 / \partial x \right) dx \qquad (22)$$

$$D = \frac{1}{2} b S_0^{\prime} \rho (l^2 - x^2) (\partial \phi_2 / \partial x)^T (\partial \phi_2 / \partial x) dx \quad (23)$$

$$K_{f} = b \int_{0}^{\pi} \left[ ES(\partial \phi_{1} / \partial x)^{T} (\partial \phi_{1} / \partial x) + EI(\partial \phi_{2} / \partial x)^{T} (\partial \phi_{2} / \partial x) \right] dx$$
(24)

$$f_{p} = b \int_{S} E[(\partial \phi_{2} / \partial x)^{T} - y(\partial \phi_{2} / \partial x)^{T}] \varepsilon_{xx}^{p} dS, I = \int_{S} y^{2} dS$$
(25)

设平面梁多体系统由  $N_B$  个梁组成,记为  $B_i(i = 1, \dots, N_B)$ , $M_i$ , $Q_i$ , $q_i$  分别为对应于  $B_i$  的广义质量阵,广义力阵和广义坐标阵,多体系统动力学变分方程为:

 $\sum_{i=1}^{N_B} \delta q_i^T (-M_i \ddot{q}_i + Q_i) = \delta q^T (-M_i \ddot{q} + Q) = 0$  (26) 其中,  $M = diag(M_1, \dots, M_{N_B}), Q = [Q_1^T, \dots, Q_{N_B}^T]^T, q$  $= [q_1^T, \dots, q_{N_B}^T]^T, 为多体系统的广义质量阵, 广义$ 力阵和广义坐标阵. 设系统的运动学约束方程为  $\Phi$ (q,t) = 0, 多体系统封闭的第一类拉格朗日动力学方程为:

$$\begin{bmatrix} M & \Phi_q^T \\ \Phi_q & 0 \end{bmatrix} \begin{bmatrix} \ddot{q} \\ \lambda \end{bmatrix} = \begin{bmatrix} Q \\ \gamma \end{bmatrix}$$
(27)

其中, $\Phi_q=\partial\Phi/\partial q,\gamma=-(\Phi_q\dot{q})_q\dot{q}-2\Phi_{qt}\dot{q}-\Phi_{ut}$ 

#### **3** 塑性应变 $\varepsilon_{xx}^{p}$ 的计算

在理想弹塑性情况下,应力与应变的本构关系如图 2 所示,图中, $\sigma_{\gamma}$ 是屈服应力.



图 2 理想弹塑性梁的本构关系

Fig. 2 Constitutive relation of a perfectly elasto - plastic beam

若令 $\Delta t$ 为时间步长, $\varepsilon_y = \frac{\sigma_y}{E}$ ,则从图中可以看出,后一时刻的塑性应变 $\varepsilon_{xx}^p(t + \Delta t)$ 可由 $\varepsilon_y$ 、总应变

 $\varepsilon_{xx}(t + \Delta t) 和前一时刻的塑性应变 \varepsilon_{xx}^{p}(t) 计算得到.$  $令 d\varepsilon = \varepsilon_{xx}(t + \Delta t) - \varepsilon_{xx}^{p}(t), \varepsilon_{xx}^{p}(t + \Delta t) 与 \varepsilon_{xx}^{p}(t), \varepsilon_{xx}(t + \Delta t) 与 \varepsilon_{xx}^{p}(t), \varepsilon_{xx}(t + \Delta t)$ 的关系式为:

$$\varepsilon_{xx}^{p}(t + \Delta t) = \begin{cases} \varepsilon_{xx}^{p}(t), & |d\varepsilon| \leq \varepsilon_{y} \\ \varepsilon_{xx}^{p}(t) + \operatorname{sign}(d\varepsilon) [|d\varepsilon| - (28) \\ \varepsilon_{y} ], & |d\varepsilon| \geq \varepsilon_{y} \end{cases}$$

由于塑性应变  $\varepsilon_{xx}^{p} = x$  和 y 坐标有关,在每一 步计算积分式(25)时,令  $g(x,y,t) = [(\partial \phi_{1}/\partial x)^{T} - y(\partial \phi_{2}/\partial x^{2})^{T}]\varepsilon_{xx}^{p}(x,y,t)$ ,将梁等分为  $n_{1} \times n_{2}$  个 矩形单元,矩形单元中心在浮动基下的坐标为 $(x_{i}, y_{i}), i = 1, \dots, n_{i}, j = 1, \dots, n_{2},$ 矩形单元的面积为 $\Delta S$  $= \Delta l\Delta h = lh(n_{1}n_{2}).$ 积分式(25)可写成  $f_{p} = b \sum_{z=1}^{n_{1}} \sum_{z=1}^{n_{2}} Eg(x_{i}, y_{j}, t)\Delta S$ . 先根据(28)式计算  $\varepsilon_{xx}^{p}(x, y, t)$ ,然 后求和计算  $f_{p}$ ,再将  $\varepsilon_{xx}^{p}(x, y, t)$ 储存在全局数组 中,用于计算  $\varepsilon_{xx}^{p}(x, y, t + \Delta t)$ .

#### 4 仿真计算

弹塑性单摆如图 3 所示,将梁从水平位置释放, 在重力作用下摆动,重力加速度 g =9.81 $m/s^2$ ,杆的参数:长 l = 1m,厚度 b 和高 h 均为 0.004m,弹性模量 E = 2.1 × 10<sup>11</sup>,密度  $\rho$  = 7800 $kg/m^3$ ,屈服应力  $\sigma_y$  = 5 × 10<sup>6</sup> $N/m^2$ .在计算塑性力  $f_p$  时取  $n_1$  = 20, $n_2$  = 10.



图 3 弹塑性单摆示意图 Fig. 3 Elasto – plastic single pendulum

梁上任意一点的弯矩的积分式为  $M = b \int_{-0.5h}^{0.5h} \sigma_{xx} y dy$ . 横向变形采用简支 – 简支梁的模态, 纵向变形采用简支 – 自由杆的模态, 横向与纵向各取 3 阶, 用变步长 Runge – Kutta 法求解.

图 4 为本文模型计算的梁中点弯矩和横向变形 与参考文献[7]结果的比较,从图中可以看出本文的 结果与参考文献基本吻合,从而验证了本文模型的 正确性.参考文献[7]采用的是线性的应变 – 位移关 系,仅适用于低速转动的情况,而本文采用的是非线 性的应变 – 位移关系,适用于高速转动的情况.



图 4 梁中点弯矩与横向变形和参考文献的比较 Fig.4 Contrast of bending moment and transverse deformation of mid-point

图 5 为弹性和弹塑性情况下梁中点的横向变 形比较,从图中可以看出,两种情况下振动的频率 基本相同,但是,弹塑性梁的弯矩和变形的平均值 的绝对值都比弹性梁大,弹性情况振动是周期性 的,而弹塑性情况下弯矩和变形的振幅都随时间逐 渐衰减.图 6 为弹塑性情况下截取 1 阶和 3 阶横向 振动模态时梁中点的横向变形比较,实线为取 3 阶 纵向振动和 3 阶横向振动模态的横向变形曲线,虚 线为取 3 阶纵向振动和 1 阶横向振动模态的横向 变形曲线.可以看出,由于弹塑性引起的附加广义 力*f*<sub>p</sub> 的影响,横向振动不再是周期性的,横向振动 模态取 1 阶时横向变形振幅明显比取 3 阶要大,由 此可见,计算弹塑性振动时需要截取高阶模态,才 能保证计算精度.



弹塑性双摆如图 7 所示,两根梁以旋转铰相 连,均从水平位置释放,在重力作用下运动,两根梁 的物理和几何参数与单摆梁相同.图 8 为弹性与弹 塑性情况下内梁和外梁上表面中点塑性应变的比 较,可以看出,在相同屈服应力情况下,内梁上表面 中点在重力作用下的塑性应变明显大于外梁.

图 9 为弹性与弹塑性情况下内梁和外梁角速度 的比较,图 10 为外梁中点的弯矩和横向变形分别在 弹性与弹塑性情况下的比较.图 9 显示,在小变形情 况下,塑性变形对梁的角速度的影响较小.从图 10 可以看出,弹塑性梁的弯矩和横向变形的平均值的 绝对值都比弹性梁大,弹塑性情况下弯矩和横向变 形的振幅都随时间逐渐衰减,从图 9 可以发现,在 t= 0.6 s 和 t = 0.91 s 时,外梁的角加速度变化非常 快,塑性应变达到峰值,此时也最容易产生破坏,因 此,在对梁的设计或研究中,这应该着重考虑.



图 7 弹塑性双摆示意图 Fig. 7 Elasto – plastic double pendulum



图 8 内外梁在 x = l/2, z = -h/2 处的塑性应变比较

Fig. 8 Contrast of the plastic strains of two beams at x = 1/2, z = -h/2



图 9 弹性与弹塑性情况下角速度比较







#### 5 结论

本文在同时考虑几何非线性和材料非线性情况下,建立了柔性梁多体系统的动力学模型,并提

出了计算弹塑性情况下附加广义力两重积分的数 值迭加方法.通过数值计算和结果分析可以得到以 下结论:

(1)塑性应变引起弯矩和横向变形的振幅随时间衰减,但对振动的频率影响不大.

(2) 弹塑性梁弯矩和横向变形的平均值的绝 对值大于弹性梁.

(3)在角加速度发生突变时,弹塑性应变趋近 峰值,弹塑性效应尤其显著,此时材料也最容易产 生破坏,应该引起重视.

(4)为了保证计算精度,对于弹塑性梁,在数 值计算时需要截取横向振动高阶模态.

#### 参考文献

- 1 Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base. *Journal of Guidance*, *Control and Dynamics*, 1987, 10 (2): 139 ~ 150
- 2 Wu S C, Haug E. Geometric non-Linear substructuring for dynamics of flexible mechanical systems. *International Journal for Numerical Methods in Engineering*, 1988, 26: 2211 ~ 2226

- 3 Wallrapp O, Schwertassek R. Representation of geometric stiffening in multibody system simulation. International Journal for Numerical Methods in Engineering, 1991, 32: 1833 ~ 1850
- 4 Liu J Y, Hong J Z. Geometric stiffening effect on rigidflexible coupling dynamics of an elastic beam. *Journal of Sound and Vibration*, 2004, 278 (4): 1147 ~1162
- 5 Berzeri M, Shabana A A. Development of simple models for the elastic forces in absolute nodal Co-ordinate formulation. *Journal of Sound and Vibration*, 2000, 235(4): 539 ~565
- 6 Gerstmayr J, Holl H J, Irschik H. Development of plasticity and damage in vibrating structural elements performing guided rigid-body motions. *Archive of Applied Mechanics*, 2001, 71: 135~145
- 7 Gerstmayr J, Irschik H. Vibrations of the elasto-plastic pendulum. International Journal of Non-Linear Mechanics, 2003, 38: 111 ~ 122
- 8 洪嘉振. 计算多体系统动力学. 北京:高等教育出版社, 1999(Hong Jiazhen. Computational Dynamics of Multibody systems. Beijing: Higher Education Press, 1999(in Chinese))

## INVESTIGATION ON DYNAMIC PERFORMANCE OF MULTI-BODY SYSTEM WITH ELASTO-PLASTIC BEAMS \*

#### Shi Wang Liu Jinyang

(School of Naval architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

**Abstract** The dynamic performance of elasto-plastic beams system was investigated. Based on the nonlinear constitutive relation, the dynamics variational equations for an elasto-plastic beam was established using virtual work principle, in which the geometric nonlinear effect was also taken into account. The assumed mode method was used for discretization, and then the kinematic constraint equations were used to derive the dynamic equations for multi-body system. Simulations of single pendulum and double pendulum under gravity show the effect of plastic strain on dynamic characteristics of beams, leading to the increase of the absolute value of the average transverse deformation and the decrease of transverse vibration amplitude. Significant effect of plastic strain was revealed in case of sudden change of angular acceleration.

Key words elasto-plastic beams system, nonlinear constitutive relation, dynamics

Received 3 November 2009, revised 16 March 2010.

<sup>\*</sup> The project supported by the National Natural Science Foundation of China (10172097, 10772203)