含表面裂纹简支梁的非线性振动分析

王洪霞 李学平

(中南大学土木建筑学院,长沙 410075)

摘要 对含表面裂纹简支梁在大幅振动下的几何非线性进行了理论分析,从建立了梁的非线性振动的半解 析解.用 Rayleigh 方法将振型函数表示为线性模型振型函数的组合,建立了梁非线性振动的第一阶振型函数 的显式表达式,数值模拟计算了不同的裂纹深度和给定不同第一函数系数 a₁ 对梁最大位移的影响.建立的 显式方程简单,易于工程应用.

关键词 裂纹梁, 几何非线性, 固有频率, 非线性振型

引言

对于裂纹梁的振动分析,多采用线性模型^[12]. 随着高性能材料的发展和厚度较薄结构的大量出 现,此类结构在大幅振动的工作环境下,当疲劳^[3] 裂纹产生时,将对结构的整体安全性构成威胁.为 确保结构具有足够的疲劳寿命,较薄结构在大幅振 动下的几何非线性分析就很有必要.

本文应用半解析方法讨论了含表面裂纹简支 梁在大幅振动下的几何非线性振型和频率,数值模 拟计算了不同的裂纹深度和给定不同第一函数系 数 a₁ 对梁最大位移的影响.得到了梁的第一阶非 线性振型的显式表达式^[45],可应用于工程实际.

1 理论分析

1.1 Rayleigh 方法计算梁的基频

在没有外力作用下的 Hamilton 原理:

$$\delta \int_0^{2\pi/\omega} (V - T) \,\mathrm{d}t = 0 \tag{1}$$

 $T - 动能; V - 总应变能(V_a + V_b); V_a - 轴向应$ $变能; V_b - 弯曲应变能. 位移: w(x,t) = w(x) sin\omegat$ $= a_i w_i(x) sin\omegat(i = 1, 2, ..., n)$

$$V_{b} = \frac{1}{2} a_{i} a_{j} k_{ij} \sin^{2}(\omega t)$$
$$V_{a} = \frac{1}{2} a_{i} a_{j} a_{k} a_{l} b_{ijkl} \sin^{4}(\omega t)$$
$$T = \frac{1}{2} \omega^{2} a_{i} a_{j} m_{ij} \cos^{2}(\omega t)$$

将 *V_a*、*V_b*和 *T*代入(1)化简,并对 *a_i* 求导取零,得 到下列矩阵式:

 $2[K] \{A\} + 3[B\{A\}] \{A\} = 2\omega^{2}[M] \{A\}$ (2) 其中[K]为 k_{ij} 组成刚度矩阵, [M]为 m_{ij} 组成质量 矩阵, $\{A\}$ 为未知函数系数 a_{i} 组成的向量, 非线性 项为 $[B\{A\}] = a_{k}a_{l}b_{ijkl}$.

将(2)式左乘 $\{A\}^T$,得到

$$\omega^{2} = \frac{\{A\}^{T} [M] \{A\} + \frac{3}{2} \{A\}^{T} [B\{A\}] \{A\}}{\{A\}^{T} [M] \{A\}}$$
(3)

而由能量方程 $V_{max} = T_{max}$,得到

$$\omega^{2} = \frac{\{A\}^{T} [M] \{A\} + \{A\}^{T} [B\{A\}] \{A\}}{\{A\}^{T} [M] \{A\}}$$
(4)

在已查阅的文献[4]中,通过数值计算表明 (3)和(4)式对计算结果的影响不大,误差在5.4% 以内.因此,选择(4)式作为的几何非线性频率的 求解公式.

1.2 应用于含裂纹简支梁的振动分析

如图1所示假设裂纹梁在弯矩 Mf的作用下, 裂纹位置在 x₀,其几何和材料特征值为截面面积

²⁰⁰⁹⁻¹⁰⁻³⁰ 收到第1稿,2010-01-06 收到修改稿.

S,梁长度 *L*,高度 *h*,宽度 *b*,惯性矩 *I*,梁的密度 *ρ*, 泊松比 γ ,弹性模量 *E*₀. 在振幅作用下的,产生的应 变能包括弯曲应变能、轴向应变能和在裂纹位置产 生的应变能 *V_c* 以及动能. 表示如下:

$$V_{b} = \frac{EI}{2} \int_{0}^{L} \left(\frac{\partial^{2} W}{\partial x^{2}}\right)^{2} dx$$

$$V_{c} = \frac{(EI)^{2}}{2K_{f}} \left(\frac{\partial^{2} W}{\partial x^{2}}\right)_{x=x_{0}}^{2}$$

$$V_{a} = \frac{ES}{8L} \left\{ \int_{0}^{L} \left(\frac{\partial W}{\partial x}\right)^{2} dx \right\}^{2}$$

$$T = \frac{1}{2} \rho S \int_{0}^{L} \left(\frac{\partial W}{\partial x}\right)^{2} dx \qquad (5)$$

其中: $K_f = \frac{1}{C}$, C由裂纹产生的弹性转动系数.采用 无量纲的形式,量纲比为(* 表示无量纲):

$$\begin{split} w_{i}(x) &= hw_{i}^{*}\left(\frac{x}{L}\right) = hw_{i}^{*}\left(x^{*}\right) \\ \frac{k_{ij}}{k_{ij}^{*}} &= \frac{EIh^{2}}{m_{ij}^{*}}, \frac{m_{ij}}{m_{ij}^{*}} = \rho Sh^{2}L, \frac{b_{ijkl}}{b_{ijkl}^{*}} = \frac{EIh^{2}}{L^{3}} \\ \mathbb{E}IIL, \frac{\omega^{2}}{\omega^{*2}} &= \frac{EI}{\rho SL^{4}}. \quad \text{is II} \\ k_{ij}^{*} &= \int_{0}^{1} \frac{\partial^{2}w_{i}^{*}}{\partial x^{*2}} \frac{\partial^{2}w_{j}^{*}}{\partial x^{*2}} dx^{*} + \beta \frac{\partial^{2}w_{i}^{*}}{\partial x^{*2}} \Big|_{x_{0}^{*}} \frac{\partial^{2}w_{j}^{*}}{\partial x^{*2}} \Big|_{x_{0}^{*}} \\ b_{ijkl}^{*} &= \alpha \int_{0}^{1} \frac{\partial w_{i}^{*}}{\partial x^{*}} \frac{\partial w_{j}^{*}}{\partial x^{*}} dx^{*} \int_{0}^{1} \frac{\partial w_{k}^{*}}{\partial x^{*}} \frac{\partial w_{l}^{*}}{\partial x^{*}} dx^{*} \\ m_{ij}^{*} &= \int_{0}^{1} w_{i}^{*} w_{j}^{*} dx^{*} \end{split}$$

其中,*β*α(采用矩形截面,借助文献[3]导出,是关 于裂纹深度的函数).将以上式子代入(2)得:

在研究中,带有疲劳裂纹梁的非线性自由振动 位移 w 的解析式被引入一种新的系列函数标准,这 一系列函数被称为裂纹梁函数("crack beam functions"简称"CBF").

1.3 裂纹梁函数的建立

以带有边界表面裂纹的 Euler – Bernoulli 梁分析 模型,将含有裂纹的梁的振动问题转化为由弹性铰联 结两个弹性梁的振动问题^[1-2].弯曲梁振动公式:

$$EI_{z} \frac{\partial^{4} W}{\partial x^{4}} + \rho s \frac{\partial^{2} W}{\partial t^{2}} = 0$$
(6)

由于裂纹的存在,在裂纹 $x = x_0$ 的左右两边建立两 个函数. 设 $W_i(x,t) = w_i(x) \Phi(t)$

其中:
$$\Phi(t) = a \exp[j(\omega t + \varphi)]$$
,可得:

$$w_{i}^{(n)}(x) = A_{i}^{(n)}\cosh(k^{(n)}x) + B_{i}^{(n)}\sinh(k^{(n)}x) + C_{i}^{(n)}\cos(k^{(n)}x) + D_{i}^{(n)}\sin(k^{(n)}x)$$
(7)

其中:
$$k^{(n)^4} = \frac{\rho s \omega^{(n)^2}}{EI}$$
,n 指第 n 阶振型.
由(1)边界条件:
 $x = 0 \oplus w_1(0) = 0, w_1^{"}(0) = 0$
 $x = L \oplus w_2^{"}(l) = 0, w_2^{"}(l) = 0$
(2)内部连续条件: $x = x_0 \oplus w_1(x_0) = w_2(x_0), w_1^{"}(x_0) = w_2^{"}(x_0)$

$$w_{1}^{''}(x_{0}) = \frac{1}{\beta l}(w_{2}^{'}(x_{0}) - w_{1}^{'}(x_{0}))$$

得到关于 $A_i^{(n)}$, $B_i^{(n)}$, $C_i^{(n)}$, $D_i^{(n)}$ (i = 1, 2)的齐次方 程. 令行列式等于零,得到 $k^{(n)}$. 最后,在给定裂纹 深度和位置时,可得到: $A_i^{(n)}$, $B_i^{(n)}$, $C_i^{(n)}$, $D_i^{(n)}$ (i = 1, 2),从而得到裂纹梁函数(简称"CBF"函数).

2 裂纹简支梁第一阶非线性振型

因为(2) 式迭代求解是比较繁琐的. 从文献 [3] 迭代计算结果表明,对于 $\{A\}^{T} = [a_1, a_2, \cdots, a_n]$,除 a_1 以外其他项都比较小,所以我们可以忽略(2) 中 $a_i a_j a_k b_{jkl}^*$ 次要的项. 又因为利用线性 CBF 得到的刚度和质量矩阵是对角矩阵. 因此,可以在 给定 a_1 (也就是我们以后要求显示方程的第一函 数系数)的情况下,忽略(2)式中的一些次要项,将 式简化为:

$$(k_{rr}^{*} - \omega^{*2}m_{rr}^{*})a_{r} + \frac{3}{2}a_{1}^{3}b_{111r}^{*} = 0$$

(r = 2, 3, ..., n) (8)

另一方面,采用单自由度得到的非线性 $\omega^*:\omega^{*2} = \frac{k_{11}^*}{m_{11}^*} + \frac{b_{1111}^*}{m_{11}^*} a_1^2$ 代入(8)式,可得:

$$a_{r} = \frac{3a_{1}^{3}b_{111r}^{*}}{2(k_{11}^{*} + a_{1}^{2}b_{1111}^{*}\frac{m_{rr}^{*}}{m_{11}^{*} - k_{rr}^{*}})} \quad (r = 2, 3, \dots, n)$$
(9)

由此,在给定第一个函数系数 a₁ 的情况下,可得到第一阶非线性振型显式方程式为:

$$w_{n/1}^{*}(x,a_{1}) = a_{1}w_{1}^{*}(x) + \sum_{r=2}^{n} \frac{3a_{1}^{3}b_{111r}^{*}}{2(k_{11}^{*} + a_{1}^{2}b_{1111}^{*})\frac{m_{rr}^{*}}{m_{11}^{*}} - k_{rr}^{*}}$$

3 数值算例

 $(\mathbf{1}(n))$

带有裂纹的简支梁,梁的几何尺寸及材料常数

为: E = 200Gpa, $\rho = 7850$ kg/m³, h = 10mm, b = 20mm, L = 300mm.

3.1 裂纹梁计算结果

当裂纹在 x₀/L = 0.5 处,裂纹深度分别为 a/h = 0.1,0.3,0.5. 通过数值分析计算求解得的结果 如下:

(1)含表面裂纹的简支梁无量纲固有频率随 裂纹深度增加的变化情况见表 1. 结论如下:随着 裂纹深度的增加对于 2r(r=1-n)阶裂纹梁的固有 频率几乎等于无裂纹梁的固有频率^[6],而 2r+1(r =0-n)阶裂纹梁的固有频率是随裂纹深度的增加 逐渐变小^[7-8]. 在结构动力学^[9]计算分析中,与我 们分析的图形对比,在裂纹位置处振型变化较尖 锐,对于奇数阶为正对称函数而偶数阶为反对称函 数. 由表 1 可知,偶数阶的固有频率基本不变(即曲 率模态振型的零点位置^[10]),所以我们选择正对称 函数来进行显示方程的求解^[6]. 表 1

表1 含表面裂纹简支梁无量纲固有频率

Table 1 Non – dimensional natural frequencies of Simply supported beam with an edge crack

-									
	Crack depth a/h								
п	0	0.1	0.3	0.5	0.8				
1	3.1415	3.1163	2.8966	2.4163	1.2531				
2	6.2831	6.2831	6.2831	6.2831	6.2831				
3	9.4247	9.3509	8.8473	8.2643	7.8796				
4	12.5663	12.5663	12.5663	12.5663	12.5663				
5	15.7079	15.5879	14.9194	14.3980	14.1519				
6	18.8495	18.8495	18.8495	18.8495	18.8495				
7	21.9911	21.8272	20.0615	20.6106	20.4306				
8	25.1327	25.1327	25.1327	25.1327	25.1327				

由图2知,随裂纹深度增加,对裂纹梁振型的 影响逐渐变大.

裂纹梁函数是在满足边界条件、内部连续条件 和相容条件下引入的,所以在裂纹深度不大的情况 下,带有裂纹的梁与无裂纹梁的振型是差不多的. 如图3所示,在 a/h = 0.1 时奇数阶的振型.而图2 表明在 a/h = 0.5 时,裂纹对振型的影响尤为明显, 主要是因为裂纹深度越大对裂纹处的局部刚度就 越大,从而影响着 CBF 函数系数的求解.

3.2 显式方程计算结果

(1)非线性频率随给定不同第一个函数系数 a,的变化情况

表 2 非线性振动频率的比较

Table 2	Comparison	of the	he non –	linear [·]	vibration	frequencies
---------	------------	--------	----------	---------------------	-----------	-------------

	С	rack depth a/	'n
a ₁	0.1	0.3	0.5
0.05	9.6519	7.8134	4.8858
0.2	9.9341	8.2159	6.1067
0.3	10.2983	8.7237	7.4287
0.4	11.3857	10.1799	10.6041

可知,随着给定第一个函数系数 a1 的增大,由

$$\omega^{*2} = \frac{k_{11}^*}{m_{11}^*} + \frac{b_{1111}^*}{m_{11}^*} a_1^2$$
得到的非线性频率也是增加

(2) 第一阶非线性振型参数

表 3 在 a/h = 0.1 时简支梁第一阶非线性振型参数

Table 3 First - order non - linear mode shape parameters of

a Simply supported beam in case of a/h = 0.1

W _{max}	a ₁	a ₃	a ₅	a ₇
2.0329e - 01	0.2	7.0398e - 06	7.1368e - 06	-1,0074e-05
3.0361e - 01	0.3	2.3872e - 05	2.4098e - 05	-3.4002e - 05
4.0484e - 01	0.4	5.6452e - 05	5.7111e - 05	-8.0602 e - 05

可见,给定第一个函数系数 a₁ 较其余函数系数要大,这与理论假设一致;并且随着 a₁ 的增大,裂纹梁产生的最大位移也逐渐变大.

表 4	在 a/h = 0.3 时简支梁第一阶非线性振型参数

 Table 4
 First – order non – linear mode shape parameters

of	a	Simpl	y sup	oported	beam	ın	case	of	a/	h = 0	0.3	
----	---	-------	-------	---------	------	----	------	----	----	-------	-----	--

W _{max}	a ₁	a ₃	a ₅	a ₇
$5.6784\mathrm{e}-02$	0.05	-2.7186e-0	063.1172e - 09	-5.5955e - 08
2.2691 e - 01	0.2	-1.7423e-0	041.9953e – 07	-3.5812e - 06
3.3989e - 01	0.3	-5.8908e-0	046.7356e – 07	-1.2087 e - 05
4.5231e - 01	0.4	-1.3998e-0	031.5970e - 06	-2.8653e-05

(3)含裂纹梁显示方程与无裂纹梁振型的比

由图 4 我们可知,(1)在给定第一个函数系数 a₁ 不变的情况下,随着裂纹深度的增加,最大位移 也增大;非线性函数的振型由缓变陡,并在裂纹位 置变化比较尖锐,在靠近边界时,非线性振型较线 性振型变化小,而越靠近裂纹位置处非线性振型较 线性振型大.(2)在裂纹深度一定的条件下,随着 给定第一个函数系数 a₁ 的增大,非线性函数曲率 变大,并且最大位移也增大.

4 结论

本文建立含表面裂纹简支梁几何非线性振动 分析模型,一方面由边界条件、内部连续条件及相 容条件建立的裂纹梁函数;另一方面在裂纹梁函数 的基础上,忽略次要项建立第一阶显式方程.主要 分析结果有:

1)随裂纹深度的增加,裂纹梁的固有频率会减小;但是在偶数阶会出现其频率几乎等于对应的线性自振频率.

2)由本文得到的非线性第一阶振型显式方程 的分析结果如下:①、在裂纹深度不变的情况下,最 大位移随着给定第一个函数系数 a₁ 的增大也变 大.②、在给定第一个函数系数 a₁ 不变的情况下, 最大位移随着裂纹深度的增加也变大,并且非线性 振型的变化是由缓变陡,并在裂纹位置变化比较尖 锐.

3)得到的第一阶显式方程,参数较少,对于工程的应用较为方便.

参考文献

- 王璋奇,贾建援. 悬臂梁裂纹参数的识别方法. 机械强度,2002,24(2):225~227 (Wang Z Q, Jia J Y. Crack identification in a cantilever beam. *Journal of Mechanical Strength*, 2002, 24(2):225~227 (in Chinese))
- 2 Chonros T G, Dimarogonas A D. Vibration of a creaked cantilever beam. Journal of vibration and acoustics, 1998, 120:742 ~ 745
- 3 李学平,余志武. 基于动力特性的结构损伤识别方法. 动力学与控制学报,2006,4(1):84~87 (Li X P, Yu Z W. Structural damage identification method based on dynamic properties. *Journal of Dynamics and Control*, 2006, 4(1):84~87 (in Chinese))
- 4 EI Bikri K, Benamar R, Bennouna M M. Geometrically non-linear free vibrations of clamped-clamped beams with an edge crack. J. Comput Struct, 2006, 54:485 ~ 502
- 5 EI Kadiri M, Benamar R, White G. Improvement of the semi-analytical method, based on Hamilton's principle and spectral analysis, for determination of the geometrically non-linear free response of thin straight structures. part I : Application to C-C and SS-C beam. J. Sound Vib, 2002, 249:263 ~ 305
- 6 Amabili M, Garziera R. A technique for the systematic choice of admissible functions in the Rayleigh-Ritz method.
 J. Sound Vib, 1999,224:519 ~ 39
- 7 蒲亚鹏,陈进. 简支梁中的裂纹参数识别. 机械科学与技术,2001,20(6):813~814 (Pu Y P, Chen J. Simply supported beam in the crack identification. *Mechanical Science and Technology*, 2001, 20(6): 813~814 (in Chinese))
- 8 吴国荣,张晓君. 含裂纹梁自由振动分析. 船舶力学, 2007,11(5):798~803 (Wu G R, Zhang X J. Analysis on the free vibration of cracked beams. *Journal of Ship Mechanics*, 2007, 11(5):798~803 (in Chinese))

9 R. 克拉夫, J. 彭津著. 王光远等校译. 结构动力学. 北京:高等教育出版社,2006(R W Clough, J Pen Z, Wang G Y, et al. translation. Dynamics of structures. Beijng: Higher Education Press, 2006 (in Chinese))

10 吴宁祥,谢里阳,吴克勤. 含裂纹一维欧拉梁的裂纹无

效位置分析. 应用力学学报,2006,24(1):120~123(WuNX, XieLY, WuKQ. One-dimensional Euler beam with a crack invalid position analysis. *Chinese Journal of Applied Mechanics*, 2006,24(1):120~123(in Chinese))

NON-LINEAR VIBRATION ANALYSIS OF SIMPLY SUPPORTED BEAMS WITH AN EDGE CRACK

Wang Hongxia Li Xueping

(School of Civil and Architectural Engineering, Central South University, Changsha 410075, China)

Abstract This paper theoretically investigated the geometrically non-linear free vibrations of a simply supported beam containing an open crack under large vibration amplitudes, and established a semi-analytical solution about the beam of non-linear vibrations. Using the combined mode functions of line model to express the mode functions based on the Rayleigh method, the first mode explicit expression of non-linear vibrations was established. The effects of various crack depth and the assigned different first function contribution a_1 on the maximum displacements of the crack beam were numerically simulationed. An explicit solution is simple and ready to use for engineering applications.

Key words crack beam, geometrically non-linear, natural frequency, non-linear vibration of shape

Received 30 October 2009, revised 6 January 2010.