一种滑模观测器的多故障诊断方法*

何静^{1,2} 邱静¹ 张昌凡²

(1. 国防科技大学机电工程与自动化学院,长沙 410073)(2. 湖南工业大学电气与信息工程学院,株洲 412008)

摘要 针对非线性系统的执行器故障及传感器故障,提出一种鲁棒多故障检测方法.首先,对可能发生的每种执行器故障分别构造模型,并设计相应的滑模观测器用于残差生成,从而实现执行器故障检测.然后,设计一种算法,利用简单滤波器将传感器故障转换为执行器故障,从而直接利用执行器故障检测的方法实现 传感器故障的检测,将执行器故障的检测方法推广到执行器、传感器故障同时存在的情况.最后,通过在单关节机械手中的仿真应用验证了所提方法的有效性.

关键词 故障检测, 残差生成, 滑模观测器, 奉献观测器

引 言

随着现代自动化技术水平的不断提高,各类工 程系统的复杂性大大增加,系统的可靠性和安全性 已成为保障经济效益和社会效益的一个关键因素, 因此,故障诊断理论与方法的研究得到了迅速的发 展,其中多故障检测方法的研究近年来受到了工程 界的重视.这里的"多故障"具有两个方面的含义, 即:多个同类故障同时发生,或是发生多种类型的 故障(例如传感器故障和执行器故障).基于解析 模型方法的状态观测器法,在多故障检测中得到应 用^[14],而奉献观测器法则是其中较成熟的多故障 诊断方法之一.大量的数学仿真和实验证明该方法 具有多故障检测能力^[5],但由于存在一些不足之 处,如要求系统单个输出的输出矩阵满足能观性条 件等,该方法在工程实际中有时难以实现.

首先介绍奉献观测器的基本构成,然后提出一种基于滑模变结构的多个执行器故障检测与隔离方法,并将结果推广到传感器故障检测.最后将提出的方法在单关节机械手系统中加以应用,并进行总结.

1 系统描述

考虑如下非线性系统

$$\dot{x} = Ax(t) + f(x, u, t) + Ef_a + Dd(x, u, t) + Bu(t)$$

$$y(t) = Cx(t) + Gf_s(x, u, t)$$
(1)

式中 $x(t) \in \mathbb{R}^n$ 为不可测状态向量; $u(t) \in \mathbb{R}^m$ 为可测

输入向量; $y(t) \in R^{p}$ 为可测输出向量; $f(x,u,t) \in R^{n}$ 为己知非线性函数; $d(x,u,t) \in R'$ 为未知有界非线性 函数,代表系统未知输入扰动以及系统建模误差,统 称为系统未知输入扰动, $D \in R^{n \times r}$ 为己知的扰动分布 矩阵; $f_{a}(x,u,t) \in R^{q_{a}}$ 为未知有界非线性函数,代表系 统执行器故障, $E \in R^{n \times q_{a}}$ 为己知的执行器故障分布矩 阵; $f_{s}(x,u,t) \in R^{q_{s}}$ 为未知有界非线性函数,代表系统 传感器故障, $G \in R^{n \times q_{s}}$ 为己知传感器故障分布矩阵;A, B,C均为己知矩阵, $A \in R^{n \times n}$, $B \in R^{n \times m}$, $C \in R^{p \times n}$.

奉献观测器是线性系统中一种较成熟的故障 诊断方法,大量的数学仿真和实验证明该方法对于 多个传感器故障具有很强的故障定位能力.为此, 首先分析基于奉献观测器的线性系统传感器故障 检测方法.此时式(1)变为

$$\dot{x} = Ax(t) + Bu(t)$$

 $y(t) = Cx(t) + Gf_s(x, u, t)$ (2)

 假设1
 第 j 个传感器无故障时, $f_{ij}(x, u, t) = 0$; 发

 生故障时, $f_{ij}(x, u, t)$ 为非零函数. 其中 $f_{ij}(x, u, t)$ 为

 $f_s(x, u, t)$ 第 j 行的行向量, 代表第 j 个传感器故障

(j=1,2…p). 为了对系统进行故障检测,采用如图1所示奉

献观测器设计方法.

图1所示方法的不足之处,一是在于要求系统 单个输出的输出矩阵满足能观性条件,而此条件在 工程实际中有时难以满足.二是仅考虑了线性系统 的故障诊断^[6].该方法的关键在于 *P* 个观测器的

2008-08-21 收到第1稿,2008-10-08 收到修改稿.

*国家自然科学基金重点(60835004)、国家自然科学基金(60774069)、湖南省自然科学基金(07JJ3118&06JJ2064)资助项目

选择,若系统所受干扰较小,可考虑采用 Luenberger 观测器,若所受干扰较大,可采用自适应观测器、 卡尔曼滤波器等,但这些观测器均主要应用于线性 系统中,使得其在实际应用中受到限制.本文中采 用滑模观测器构成奉献观测器,并将其推广应用到 传感器故障和执行器故障同时存在的非线性系统 之中.为此,还须做如下假设:

图 1 奉献观测器结构图 Fig. 1 Block diagram of dedicated observer

假设2 E 为列满秩矩阵.

假设3(A,C)是可观的.

假设4 系统的故障和未知输入扰动都是有界函数,则存在已知的大于0的方程 γ_{1i}, γ_2 使得 $||f_{ai}|| \leq \gamma_{1i}, ||d|| \leq \gamma_2, f_{ai} 为 f_a$ 的第 *i* 行行向量(*i* = 1, 2 … q_a),代表第 *i* 种执行器故障.

假设5 f(x,u,t)为满足 Lipschitz 条件的非线性函数.则存在一个正的 Lipschitz 常数 γ_3 使得 $|| f(x, u,t) - f(y,u,t) || \leq \gamma_3 || x - y ||$

假设6 由假设3,则存在矩阵*L*使如下*A*₀为稳定 矩阵

 $A_0 = A - LC$

并且存在以下 Lyapunov 方程

$$A_0^T P + P A_0 = -Q$$

式中 P,Q 为对称正定矩阵

假设7 P, F_1, F_2 选择满足如下等式

 $PE = C^T F_1^T, PD = C^T F_2^T$

2 执行器故障检测

在考虑执行器故障检测时,首先假设无传感器 故障发生,即f_s=0,并且假设任何时刻只有一个执 行器故障发生.对每种故障模型设计滑模观测器, 使之产生的残差仅对特定故障敏感,从而实现多个 故障的隔离与识别. **定义**1 *E* = [*E*₁ … *E_i* … *E_{qa}*] 式中 *E_i* 为 *E* 第 *i* 列的列向量. **定义**2 *f_a* = [*f_{a1}* … *f_{ai}* … *f_{aqa}*]^{*T*} 同假设1,第 *i* 种执行器故障未发生时,*f_{ai}* = 0,否则 为非零.

将式(1)写成如下形式

$$\dot{x} = Ax(t) + f(x, u, t) + Dd(x, u, t) +$$

$$Bu(t) + \sum_{j=1}^{q_a} E_j f_{aj}$$

$$y(t) = Cx(t)$$
(3)

基于任何时刻只有一个故障发生的假设,对可能发 生的所有执行器故障情形分别建立故障模型,当第

i 种故障发生时($1 \le i \le q_a$), 有 $\sum_{j=1, j \ne i}^{q_a} E_j f_{aj} = 0$. 则由式(3)得到此时针对第*i* 种故障情形建立的系

统故障模型

$$\dot{x} = Ax(t) + f(x, u, t) + Dd(x, u, t) + Bu(t) + E_i f_{ai}$$
(4)

定义3 状态误差 $e = \hat{x} - x$,输出误差 $e_y = \hat{y} - y$. 式中,上标" Λ "代表相应变量的观测值.

由 Walcott – Zak 观测器设计原理^[7],对第 *i* 个故障 模型构造观测器

$$\dot{\hat{x}} = A\hat{x}(t) + L(y - \hat{y}) + f(\hat{x}, u, t) +$$

$$Bu(t) + E_i w_1 + Dw_2$$

$$\hat{y} = C\hat{x}$$
(5)

式中w1,w2为滑模变结构输出信号,表达式为

$$w_{1} = \begin{cases} -\rho_{1i} \frac{F_{1}^{i} e_{y}}{\|F_{1}^{i} e_{y}\|} & \text{if } e_{y} \neq 0 \\ 0 & \text{if } e_{y} = 0 \end{cases}$$
(6)

$$w_{2} = \begin{cases} -\rho_{2} \frac{F_{2}e_{y}}{\|F_{2}e_{y}\|} & \text{if } e_{y} \neq 0 \\ 0 & \text{if } e_{y} = 0 \end{cases}$$
(7)

式中 F_1^i 为 F_1 第*i*行的行向量.

由式(3)和式(5)得第*i*个观测器对应的偏差方程 $\dot{e} = (A - LC)e + f(\hat{x}, u, t) - f(x, u, t) +$

$$E_{i}(w_{1} - f_{ai}) - \sum_{j=1, j \neq i}^{q_{a}} E_{j}f_{aj} + D(w_{2} - d)$$
 (8)

定理1 基于前面所作的假设,对式(8)所示第*i* 个偏差方程 *e*,若滑模变结构参数 $\rho_{1i} > \gamma_{1i}, \rho_2 > \gamma_2$, $\gamma_3 \leq \frac{1}{2} \frac{\lambda_{min}(Q)}{\lambda_{max}(P)}$,则当发生第 *k* = *i* 种故障时(1 $\leq k \leq q_a$), *e* 将按指数规律收敛到零点; 而发生第 *k* $\neq i$ 种故障时, *e* 则不收敛到零点. 对式(9)求导

$$V = e^{T} (A_{0}^{T}P + PA_{0}) e + 2e^{T}P(f(\hat{x}, u, t)) - f(x, u, t)) + 2e^{T}PE_{i}(w_{1} - f_{ai}) + 2e^{T}PD(w_{2} - d) \leq - (\lambda_{min}(Q) - 2\gamma_{3} || P ||) || e ||^{2} - 2 || F_{1}^{i}e_{y} || (\rho_{1i} - \gamma_{1i}) - 2 || F_{2}e_{y} || (\rho_{2} - \gamma_{2}) \quad (11)$$

$$\stackrel{\text{def}}{=} \rho_{1i} > \gamma_{1i}, \rho_{2} > \gamma_{2}, \gamma_{3} \leq \frac{1}{2} \frac{\lambda_{min}(Q)}{\lambda_{max}(P)}$$

- 因此 $\lim_{t\to\infty} e = 0$
- (2) 当发生第 $k \neq i$ 种故障时

$$\dot{e} = (A - LC)e + f(\hat{x}, u, t) - f(x, u, t) + E_i w_1 - E_k f_{ak} + D(w_2 - d)$$
(12)

由假设 2, E 为列满秩, E_i 与 E_k 线性无关, 因此 lim $e \neq 0$

按照上述原则对所有 q_a 个故障模型构造 q_a 个滑模观测器,从而构成奉献观测器.则第 i 个(i = 1,2,…, q_a)故障模型所对应的观测器为

$$\dot{x}^{i}(t) = A\hat{x}^{i}(t) + L(\gamma - \hat{y}^{i}) + f(\hat{x}^{i}, u, t) + Bu(t) + E_{i}w_{1}^{i} + Dw_{2}^{i} \hat{y}^{i} = C\hat{x}^{i}$$
(13)

式中

$$w_{1}^{i} = \begin{cases} -\rho_{1i} \frac{F_{1}^{i} e_{y}^{i}}{\|F_{1}^{i} e_{y}^{i}\| + \delta} & \text{if } e_{y}^{i} \neq 0 \\ 0 & \text{if } e_{y}^{i} = 0 \end{cases}$$

$$w_{2}^{i} = \begin{cases} -\rho_{2} \frac{F_{2} e_{y}^{i}}{\|F_{2} e_{y}^{i}\| + \delta} & \text{if } e_{y}^{i} \neq 0 \\ 0 & \text{if } e_{y}^{i} = 0 \end{cases}$$

$$e_{y}^{i} = \hat{y}^{i} - y$$
(14)
(14)
(15)

式中 δ 是为消除滑模抖动而引入的参数,而 w_1^i 用来切断 f_{ai} 对系统的影响. w_2^i 用来切断d对系统的影响.

定义4 残差 $r_i = ||e_y^i||$ (*i*=1,2,..., q_a)

基于以上分析,可得故障检测的方法为:第 k = *i* 种故障发生时,残差 r_i 对故障不敏感且收敛到 零点;第 k≠i 种故障发生时,残差 r_i 对其敏感且不 收敛到零点.由此可以列出每一种故障发生时所有 q_a个残差各自的状态,从而构成一个多故障情况下 的故障判别规则表,实现多故障诊断.

当某一时刻发生多个执行器故障时,基于同样 原理对此时所有的故障状态建立模型及相应观测 器,即可实现对同时发生的多个故障进行判别诊断.

3 执行器故障和传感器故障检测

现在分析同时考虑执行器故障和传感器故障 的情况.分析处理的方法是将传感器故障等效为执 行器故障.

由文献[8],选择一个如下的新的状态变量 z 作为输出信号滤波器.

$$\dot{z} = A_s z + B_s y \tag{16}$$

式中 $z \in R^p$ 是滤波器状态向量, A_s 和 B_s 是待设计的滤波矩阵, $A_s \in R^{p \times p}$, $B_s \in R^{p \times p}$.

把式(1)中的输出方程代入式(16)

$$\dot{z} = A_s z + B_s C x + B_s G f_s$$
(17)
$$\pm \vec{x}(2), (17) \mathcal{A}$$

$$\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & 0 \\ B_s C & A_s \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} f(x) \\ 0 \end{bmatrix} + \begin{bmatrix} D \\ 0 \end{bmatrix} d + \begin{bmatrix} E & 0 \\ 0 & B_s G \end{bmatrix} \begin{bmatrix} f_a \\ f_s \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u$$

$$z = \begin{bmatrix} 0 & I_{p \times p} \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$
(18)

定义新状态变量及各相应矩阵为

$$\bar{x} = \begin{bmatrix} x & z \end{bmatrix}^T, \bar{y} = z$$

$$\bar{A} = \begin{bmatrix} A & 0 \\ B_s C & A_s \end{bmatrix}, \bar{f}(x) = \begin{bmatrix} f(x) \\ 0 \end{bmatrix}, \bar{f}_a = \begin{bmatrix} f_a \\ f_s \end{bmatrix},$$

$$\bar{D} = \begin{bmatrix} D \\ 0 \end{bmatrix}, \bar{E} = \begin{bmatrix} E & 0 \\ 0 & B_s G \end{bmatrix}, \bar{B} = \begin{bmatrix} B \\ 0 \end{bmatrix},$$

$$\bar{C} = \begin{bmatrix} 0 & I_{p \times p} \end{bmatrix}$$

$$\bar{C} = \begin{bmatrix} 0 & I_{p \times p} \end{bmatrix}$$

式中 $\bar{x} \in R^{(n+p)}, \bar{y} \in R^p, \bar{A} \in R^{(n+p)\times(n+p)}, \bar{B} \in R^{(n+p)\times m}, \bar{C} \in R^{p\times(n+p)}$ 式(18)变换为

$$\bar{x} = A\bar{x} + f(x) + Ef_a + Dd + Bu(t)$$
$$\bar{y} = \bar{C}\bar{x}$$
(19)

式(19)代表的是一个含执行器故障 f_a 的系统,这样,上述过程将系统中的传感器故障等效为虚拟的执行器故障,由此可直接将前面所述执行器

故障检测的方法应用到传感器故障检测中. 而输出 **定理**2 若(A, C)能观,B,为满秩矩阵,则($\overline{A}, \overline{C}$) 信号滤波器的参数选取要求使式(19)所代表的系 仍然能观. 统保持能观性,其选取方法由定理2给出. 证明: 0 $I_{p \times p}$ \overline{C} $B_{s}C$ A. CA \overline{CA}^2 $B_sCA + A_sB_sC$ A^2 \overline{CA}^3 $B_sCA^2 + A_sB_sCA + A_s^2B_sC$ A^3_{\circ} (20) \overline{CA}^4 $B_{s}CA^{3} + A_{s}B_{s}CA^{2} + A_{s}^{2}B_{s}CA + A_{s}^{3}B_{s}C$ A^4 \overline{CA}^5 $B_sCA^4 + A_sB_sCA^3 + A_s^2B_sCA^2 + A_s^3B_sCA + A_s^4B_sC$ A^5 $B_{s}CA^{n+p-2} + A_{s}B_{s}CA^{n+p-3} + A_{s}^{2}B_{s}CA^{n+p-4} + \dots + A_{s}^{n+p-2}B_{s}C - A_{s}^{n+p-1}$ 对上式进行初等变换,即分块阵前一行左乘(-A,) 加到下一行子块.例如,最后一行的变换相当于左 Β. $I_{p \times p}$ $b_s =$ 可逆,由上述,rank(S) =乘分块初等矩阵 故左乘的这 -A $I_{p \times}$ ·系列初等矩阵可逆,依次类推得式(21). $rank(c_s)$. 0 $I_{p \times p}$ С 因为 $S \in R^{[(n+p-1)p] \times n}$,即矩阵S的行数为(n+p-1)p, $B_{c}C$ 0 \overline{CA} $B_s CA$ 0 \overline{CA}^2 CA 列数为n,且(A,C)能观,即 rank \overline{CA}^3 $B_{s}CA^{2}$ 0 $C_1 =$ $=B_1$ (21) \overline{CA}^4 CA^{n-1} $B_{c}CA^{3}$ 0 \overline{CA}^5 故 rank(S) = n $B_{c}CA^{4}$ 0 由式(21)得 $B_s CA^{n+p-2}$ 0 因为若 A 可逆,则 rank(AB) = rank(B),故式 rank $(21) \oplus rank (C_1) = rank (B_1).$ 定义 S 为 即 $(\overline{A},\overline{C})$ 仍然能观,证毕. $B_{c}C$ 可以看出,式(16)是一个一阶低通滤波器.本 B_cCA В. CA 文从能观性出发,提出该滤波器参数选取的理论依 CA^2 $B_{c}CA^{2}$ 据,即只需满足B。为满秩矩阵的条件. CA^3 S = [$B_{c}CA^{3}$ 4 应用验证 CA^4 $B_{c}CA^{4}$ 考虑如下单关节机械手非线性模型

 $b_s c_s$

 $B_{c}CA^{n+p-2}$

因为B。为滿秩矩阵,故分块矩阵

Β.

$$J_{l}\ddot{q}_{1} + F_{l}\dot{q}_{1} + k(q_{1} - q_{2}) + mglsinq_{1} = 0$$

$$J_{m}\ddot{q}_{2} + F_{m}\dot{q}_{2} - k(q_{1} - q_{2}) = u$$
(22)

式中q1、q2分别为关节点位置和速度,J1为关节点

转动惯量, J_m 为电机转动惯量,k 为弹性系数,m 为 关节质量,g 为地心引力常数,m 为连杆长度, F_l 为粘 性摩擦系数, F_m 为正常数,u 为控制输入力矩信号. 选取状态变量 $x_1 = q_1, x_2 = \dot{q}_1, x_3 = q_2, x_4 = \dot{q}_2$

当搬运不同物体时,机械手的负载发生变化, 此外关节的摩擦系数等参数也会随时间变化^[10]. 在此,将这些因素统一归为未知输入扰动,用 *d* 表 述. 假设该机械手分别有 *f*_{a1}和 *f*_{a2}两个执行器故障, 则具有未知输入扰动和执行器故障的单关节机械 手模型可表述为如下四阶非线性状态方程:

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{-k}{J_{l}} & \frac{-F_{l}}{J_{l}} & \frac{k}{J_{l}} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k}{J_{m}} & 0 & \frac{-k}{J_{m}} & \frac{-F_{m}}{J_{m}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{-mgl}{J_{l}} \\ \frac{-mgl}{J_{l}} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{J_{m}} \end{bmatrix} u + E \begin{bmatrix} f_{a1} \\ f_{a2} \end{bmatrix} + Dd \qquad (23)$$

$$y = C \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
(24)

选取机械手参数分别为:

 $k = 2Nm/rad, F_m = 1, F_l = 0.5Nm/(rad/s), J_m = 1Nm^2,$ $J_l = 2Nm^2, m = 0.15kg, g = 9.8, l = 0.3m, u = 8sin(t/3)$ 对应式(1),相应式(23),(24)各矩阵为

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & -0.25 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \end{bmatrix}, B\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, f(x) = \begin{bmatrix} 0 \\ -0.2205 \\ 0 \\ 0 \end{bmatrix} \sin x_{1},$$
$$E = \begin{bmatrix} 4.4727 & 0 \\ 2.0287 & 0 \\ 1.7000 & 1.7000 \\ 0 & 4.2000 \end{bmatrix}, D = \begin{bmatrix} -0.0425 \\ -0.0193 \\ 0.0163 \\ 0.0680 \end{bmatrix}$$

选取 *L* 阵,将 *A*₀ 的极点配置在 -2.1, -1.5, -1.7, -1.9,相应 *L*,*A*₀ 为

$$L = \begin{bmatrix} 3.1500 & 0 & 0 \\ 1.0625 & 1.0000 & 0 \\ 0 & 1.7000 & 1.0000 \\ 1.0000 & -1.0000 & 1.1000 \end{bmatrix},$$
$$A_0 = \begin{bmatrix} -3.1500 & 1.0000 & 0 & 0 \\ -2.0625 & -0.2500 & 0 & 0 \\ 0 & 0 & -1.7000 & 0 \\ 0 & 0 & 0 & -2.1000 \end{bmatrix}$$

选取Q为单位阵,由假设6求解 Lyapunov 方程为

$$P = \begin{bmatrix} 0.3698 & -0.3223 & 0 & 0\\ -0.3223 & 0.7107 & 0 & 0\\ 0 & 0 & 0.2941 & 0\\ 0 & 0 & 0 & 0.2381 \end{bmatrix}$$

由假设7求解 F₁, F₂为

 $F_1 = \begin{bmatrix} 1.0000 & 0.5000 & 0 \\ 0 & 0.5000 & 1.0000 \end{bmatrix},$

 $F_2 = [-0.0095 \quad 0.0048 \quad 0.0162]$

本文提出的故障诊断方法,对故障形式没有限制,适用于突变,缓变或是其它类型故障,故可采用 非线性函数来模拟实际故障.本例中,分别用一个 高频信号和一个低频信号来模拟执行器故障,设高 频故障 *f*_{a1}在 *t* = 5 秒时产生,低频故障 *f*_{a2}在 *t* = 10 秒时产生.故障表达式分别为

$$f_{a1} = \begin{cases} 0 & t < 5\\ (0.5\sin(15t) + 0.25\sin(10t)) \frac{0.2 \|y\|_2^2}{\|y\|_2 + 0.5} & t \ge 5 \end{cases}$$

(25)

$$f_{a2} = \begin{cases} 0 & t < 10\\ 3\sin(2u) & t \ge 10 \end{cases}$$
(26)

针对上述两个故障设计两个相应的观测器来检测 发生了哪一种故障.

(1) 对
$$f_{a1}$$
设计观测器
 $\hat{x}^{1}(t) = A\hat{x}^{1}(t) + L(y - \hat{y}^{1}) + f(\hat{x}^{1}, u, t) +$
 $Bu(t) + E_{1}w_{1}^{1} + Dw_{2}^{1}$
 $\hat{y}^{1} = C\hat{x}^{1}$
(27)

式中

$$w_{1}^{1} = \begin{cases} -\rho_{11} \frac{F_{1}^{1} e_{y}^{1}}{\|F_{1}^{1} e_{y}^{1}\| + \delta} & \text{if } e_{y}^{1} \ge 0\\ 0 & \text{if } e_{y}^{1} = 0 \end{cases}$$

式中

$$w_{1}^{2} = \begin{cases} -\rho_{12} \frac{F_{1}^{2} e_{y}^{2}}{\|F_{1}^{2} e_{y}^{2}\| + \delta} & \text{if } e_{y}^{2} \neq 0 \\ 0 & \text{if } e_{y}^{2} = 0 \end{cases},$$
$$w_{2}^{2} = \begin{cases} -\rho_{2} \frac{F_{2} e_{y}^{2}}{\|F_{2} e_{y}^{2}\| + \delta} & \text{if } e_{y}^{2} \neq 0 \\ 0 & \text{if } e_{y}^{2} = 0 \end{cases}$$

 $e_{y}^{2} = \hat{y}^{2} - y, \notin E r_{2} = ||e_{y}^{2}||_{2}$

设未知输入扰动 d 为幅值不超过 100 的随机噪 声,仿真步距 0.001,采用算法 ode45. 仿真初始条件为 $x_1(0) = 0.5, x_2(0) = 0.2, x_3(0) = 0.1, x_4(0) = 0.1$. 两 个观测器的所有状态变量初值为 0. 仿真设计参数为 δ = 0.001, $\rho_{11} = 8, \rho_{12} = 3, \rho_2 = 100$.

图2~图7为发生f_{a1}故障,未发生f_{a2}故障时的

仿真波形图.其中图 2 为两个残差 r_1 和 r_2 的波形 图,图 3 ~ 图 6 分别为 4 个滑模变结构输出信号 $w_1^1, w_1^2, w_2^1, w_2^2$ 的波形图,图 7 为扰动 d 的波形图. 图 8 为发生 f_{a2} 故障,未发生 f_{a1} 故障时两个残差的 波形图.图 9、图 10 分别为 f_{a1} 和 f_{a2} 故障同时发生 时,残差 r_1 、 r_2 的仿真波形图.

Fig. 9 Detection of fault f_{a1}, fault f_{a2} simultaneously

图 10 f_{al}和f_{a2}同时发生故障,残差 r₂波形图

图 11 f_{a1} 发生故障, f_{a2} 未发生故障, 残差波形图 Fig. 11 Detection of fault f_{a1} with fault f_{a2} free

为进一步校核所设计故障诊断系统对扰动的 鲁棒性,将未知输入扰动 d 改为幅值不超过 150 的 白噪声,相应观测器参数仅将值 ρ₂ 改变为 150. 图 11 为此种情况下,发生f_{a1}故障,未发生f_{a2}故障时两 个残差的仿真波形图. 从图中可看到,虽然与之前 相比未知输入扰动增加了 50%,观测器在保证对 扰动具有鲁棒性的同时,仍对故障保持灵敏.

从以上仿真结果可看出,若两个残差 r_1 和 r_2 保 持在零域,表示没有任何故障发生;当发生 f_{a1} 故障, 未发生 f_{a2} 故障时,残差 r_1 维持在零域不变,而 r_2 则 发生很大变化;当发生 f_{a2} 故障,未发生 f_{a1} 故障时,残 差 r_2 维持在零域不变, r_1 则发生很大变化;当 f_{a1} 和 f_{a2} 故障同时发生,残差 r_1 和 r_2 在故障发生的相应时 刻均发生很大变化,由此达到了判别故障源的目的.

上述判别决策规则如表1所示,表中"1"代表 r_i ≒0,"0"代表 r_i =0.

表 I 故障诊断决策规则

Table 1 Fa	ult Diagno	osis Decision	Rules
------------	------------	---------------	-------

Fault Decisions	\mathbf{r}_1	r_2
fault free	0	0
fault f _{a2}	1	0
fault f _{al}	0	1
fault f_{a1} , f_{a2} simultaneously	1	1

5 结论

本文针对具有未知输入不确定性和扰动的非 线性系统,提出了一种针对传感器故障和执行器故 障同时存在的多故障诊断方法,采用滑模观测器构 成奉献观测器,使系统对模型不确定具有鲁棒性, 而对故障具有较强的检测与隔离能力.在单关节机 械手中的仿真应用,验证了所提方法的有效性,而 进一步的研究内容则是如何将该设计方法推广到 一般非线性系统中.

参考文献

- Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems. *Journal of Process Control*, 1997,7(6):403 ~ 424
- 2 Pertew A M, Marquez H J, Zhao Q. LMI-based sensor fault diagnosis for nonlinear Lipschitz systems. *Automatic*, 2007, 43(8): 1464 ~ 1469
- 3 Kallesoe C S, Izadi Zamanabadi R, Vadstrup P, Rasmussen H. Observer-based estimation of stator-winding faults in delta-connected induction motors: A linear matrix inequality approach. *IEEE Transactions on Industry Applications*, 2007,43(4):1022~1031
- 4 Fang M, Tian Y, Guo L. Fault diagnosis of nonlinear system

based on generalized observer. Applied Mathematics and Computation, 2007, 185(2): 1131 ~ 1137

- 5 周东华,叶银忠.现代故障诊断与容错控制.北京:清华 大学出,2000.(Zhou Donghua, Ye Yinzhong. Modern fault diagnosis and fault tolerant control. Beijing: Tsinghua University Press,2000 (Chinese))
- 6 闻新.控制系统和智能故障诊断研究.北京航空航天大 学博士后研究工作报告,1998(Wen Xin. Study on intelligence fault diagnosis for control systems. Beijing University of Aeronautics and Astronautics Research Report of Postdoctor,1998(Chinese))
- 7 Walcott B L, Corless M J, Zak S H. Comparative Study of Nonlinear State-Observation Techniques. Int. Jour. of Control, 1987, 45:2109 ~ 2132

- 8 Chee Pin Tan, Christopher Edwards. Sliding mode observers for reconstruction of simultaneous actuator and sensor faults. Proceedings of the 42nd IEEE conference on decision and control, USA, 2003;1455 ~ 1460
- 9 Xiaodong Zhang, Thomas Parisini, and Marios M. Polycarpou. Sensor bias fault isolation in a class of nonlinear systems. *IEEE Transactions on Automatic Control*, 2005, 50 (3):370~376
- 10 王耀南,孙炜. 机器人鲁棒轨迹跟踪控制系统. 动力学 与控制学报,2004,2(1):75~81. (Wang Yaonan, Sun Wei. A robot robust trajectory tracking control system. *Journal of Dynamics and Control*, 2004,2(1):75~81 (Chinese))

MULTIPLE FAULTS DIAGNOSIS METHOD BASED ON SLIDING MODE OBSERVER*

He Jing^{1,2} Qiu Jing¹ Zhang Changfan²

College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China)
 College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412008, China)

Abstract This paper presented a robust multiple faults diagnosis scheme for a class of nonlinear systems with actuator faults and sensor faults. First, the corresponding models were constructed for each possible form of actuator fault. A group of sliding mode observers were then designed, which produce residuals used to indicate different faults. With the use of a simple filter, the sensor faults were transformed into actuator faults, which make it possible that fault detection and isolation methods for actuator faults are applied on the situation where actuator faults and sensor faults occur simultaneously. A single-link robotic arm simulation example was used to illustrate the effectiveness of the proposed methodology.

Key words fault detection, residual generation, sliding mode observer, dedicated observer

⁹¹

Received 21 August 2008, revised 8 October 2008.

^{*} The project supported by the Key National Science Foundation of China (60835004), the National Science Foundation of China (60774069) and the Hunan Natural Science Foundation of China (07JJ3118&06JJ2064)