主动约束层阻尼梁有限元建模与动态特性研究*

郑玲 谢熔炉 王宜 李以农

(重庆大学机械传动国家重点实验室,重庆 400030)

摘要 基于弹性、粘弹性和压电材料的本构关系,利用 Hamilton 原理,推导了主动约束层阻尼梁的有限元动 力学模型.结合压电材料的机电耦合特性,采用自感电压的位移反馈,研究了主动约束层阻尼梁的闭环控制 特性.求解了主动约束层阻尼简支梁的动态特性如固有频率、模态损耗因子及频率响应特性等.对被动控 制、主动控制和主被动混合控制的控制效果进行了分析比较.研究了粘弹性层与约束层厚度等参数对减振 控制效果的影响.

关键词 主动约束层, 粘弹性, 有限元, 压电

引 言

主动约束层阻尼(ACLD)技术是一种具有典 型智能结构特征的主/被动一体化振动控制技术. 这种主/被动一体化振动控制方法集被动控制安 全、可靠和主动控制能适应环境变化,控制效率高 的优点于一体,可使系统在较宽频带上获得很好的 阻尼特性,具有优越的减振、降噪控制效果.

1993年, Baz和 Ro提出了主动约束层阻尼 (ACLD)的概念^[1]. 1994年, Shen推导了悬臂梁ACLD 结构的八阶微分方程, 用复模量表示粘弹性材料的本 构关系, 分析了主动约束层阻尼方法的阻尼效果^[2]. Inman等用解析法研究了主动约束层阻尼悬臂梁的振 动响应, 比较了主动控制(AC)、被动控制(PCLD)和 ACLD的振动控制效果和能量消耗^[3]. Vasundara等建 立了ACLD 悬臂板的有限元模型, 研究了结构参数与 控制增益对频率响应特性的影响^[4]. 石银明等^[5]建立 了主动约束层阻尼梁的动力学模型, 采用 GHM 模型 描述粘弹性材料的特性, 通过模型降阶, 直接求解了 模态频率、模态阻尼及结构响应.

基于弹性、粘弹性和压电材料的本构关系,建 立了 ACLD 梁的有限元动力学模型,研究了 ACLD 梁的动态特性,分析了结构、材料等参数对减振控 制效果的影响.

1 压电材料及其本构关系

压电材料具有机电耦合效应. 当压电材料受到压力 作用时,会在它的两端面间出现电压,这是压电效 应;反之当它的两端面间出现电压时,会产生纵向 的剪切变形,这是逆压电效应. 正压电效应反映了 压电材料具有将机械能转化为电能的能力,逆压电 效应反映了压电材料具有将电能转化为机械能的 能力.

压电材料机电耦合本构关系为:

$$\begin{cases} \varepsilon_{\lambda} = s_{\lambda u}^{E} \sigma_{u} + d_{j\lambda} E_{j} & (\lambda, u = 1, 2, 3, 4, 5, 6) \\ D_{i} = d_{iu} \sigma_{u} + \varepsilon_{ij}^{\sigma} E_{j} & (i, j = 1, 2, 3) \end{cases}$$
(1)

式中: ε_{λ} 是应变张量, σ_{u} 是应力张量, $d_{j\lambda}$ 是压电应 变常数, $s_{\lambda u}^{E}$ 是电场强度 E 为零(或常数)时的弹性 柔顺系数, E_{j} 为电场强度, D_{i} 为电位移, $\varepsilon_{ij}^{\sigma}$ 是应力 为零时的介电常数.

一维情况下,压电材料的本构关系根据不同的 自变量可简化为四类不同的压电方程组,其中最为 常用的有以下两类:

$$\begin{cases} \varepsilon = S_{11}^{\varepsilon} \sigma + d_{31} E\\ D = d_{31} \sigma + \varepsilon_{33}^{\sigma} E \end{cases}$$
(2)

或者

$$\begin{cases} \sigma = C_{11}^{D} \varepsilon - h_{31} D \\ E = h_{31} \varepsilon + \beta_{33}^{s} D \end{cases}$$
(3)

其中 C_{11}^{D} 是电位移为零(或常数)时弹性刚度常数,称为开路弹性刚度常数. β_{33} 是应变为零(或常数)时的介质隔离率, h_{31} 是压电劲度常数.

²⁰⁰⁸⁻⁰⁷⁻²⁸ 收到第1稿,2008-12-09 收到修改稿.

^{*}国家自然科学基金资助项目(50775225)

压电材料常数之间存在下列关系:

$$C_{11}^{E} = C_{11}^{D} - \frac{h_{31}^{2}}{\beta_{33}^{s}} \quad d_{31}C_{11}^{E} = \frac{h_{31}}{\beta_{33}^{s}}$$
(4)

其中 C_{Π}^{E} 表示电场强度 E 为零(或常数)时压电材料的弹性刚度常数.

2 有限元模型的建立

建立有限元模型以前,先做如下假设:(1)不 计转动惯量,不计压电约束层和基梁的剪切变形; (2)同一截面任一点的横向位移相同;(3)粘弹性 材料(VEM)的杨氏模量与压电约束层及基梁相比 可忽略不计,粘弹性层只有剪切变形;(4)各层均 满足线性理论;(5)各层之间理想连续,无相对滑 移;(6)压电层上所加电压均布;(7)各层密度及 厚度均匀.

主动约束层阻尼梁及单元如图 1 所示. 主动约 束层阻尼梁单元的节点位移向量为:

图1 主动约束层阻尼梁及单元

Fig. 1 Active constrained layer damping beam and element

$$\{ U^{(e)} \} = \{ w_i^{(e)} \ \theta_i^{(e)} \ u_{ci}^{(e)} \ u_{bi}^{(e)} \ w_j^{(e)} \ \theta_j^{(e)} \ u_{cj}^{(e)} \ u_{bj}^{(e)} \}$$
(5)

其中,基梁纵向位移为 u_b 、约束层的纵向位移为 u_c 、梁的挠度为w和转角为 θ .

位移模式可写为:

$$w = a_1 + a_2\xi + a_3\xi^2 + a_4\xi^3 \ \theta = a_2 + 2a_3\xi + 3a_4\xi^2$$
$$u_c = b_1 + b_2\xi \quad u_b = c_1 + c_2\xi \tag{6}$$

其中 $\xi = x/L_e$ 是无量纲坐标, L_e 为单元长度.

单元位移向量与节点位移向量的关系为:
$$w = [N_w] \{ U^{(e)} \}, u_e = [N_{ue}] \{ U^{(e)} \},$$

$$w = [N_{ub}] \{ U^{(e)} \}$$
$$u_b = [N_{ub}] \{ U^{(e)} \}$$

位移形函数:

$$\begin{bmatrix} N_{uc} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 - \xi & 0 & 0 & \xi & 0 \end{bmatrix}$$
(7)
$$\begin{bmatrix} N_{ub} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 - \xi & 0 & 0 & 0 & \xi \end{bmatrix}$$
(8)
$$\begin{bmatrix} N_w \end{bmatrix} = \begin{bmatrix} 1 - 3\xi^2 + 2\xi^3 & (\xi - 2\xi^2 + \xi^3) L_e & 0 & 0 \end{bmatrix}$$

$$3\xi^{2} - 2\xi^{3} \quad (-\xi^{2} + \xi^{3})L_{e} \quad 0 \quad 0]$$
(9)

粘弹性材料的剪切变形为:

$$\gamma = \frac{1}{h_v} \left[d \frac{\partial w}{\partial x} + (u_c - u_b) \right]$$
(10)

其中 $d = h_v + \frac{h_c + h_b}{2}$

用节点位移表示为:
$$\gamma = [N_{\gamma\nu}] \{ U^{(e)} \}$$
 (11)

其中:

$$[N_{\gamma\nu}] = \frac{1}{h_{\nu}} [-\frac{6d}{L_{e}}\xi + \frac{6d}{L_{e}}\xi^{2} \quad d(1-4\xi+3\xi^{2}) \quad 1-\xi \quad \xi-1$$

$$\frac{6d}{\xi} - \frac{6d}{\xi^{2}} \quad d(-2\xi+3\xi^{2}) \quad \xi \quad -\xi] \quad (12)$$

$$\frac{6a}{L_e}\xi - \frac{6a}{L_e}\xi^2 \quad d(-2\xi + 3\xi^2) \quad \xi \quad -\xi]$$
(12)

粘弹性层的位移:

$$u_{\nu} = [N_{u\nu}] \{ U^{(e)} \}$$
(13)

其中:

$$N_{u\nu}] = \frac{1}{2} \left(\left[N_{uc} \right] + \left[N_{ub} \right] \right) + \frac{h_c + h_b}{4} \left[N_w \right]'$$
(14)

由能量法推导各层的质量矩阵:

$$\begin{bmatrix} M_b^{(e)} \end{bmatrix} = \rho_b h_b b L_e \left(\int_0^1 \begin{bmatrix} N_{ub} \end{bmatrix}^T \begin{bmatrix} N_{ub} \end{bmatrix} d\xi + \int_0^1 \begin{bmatrix} N_w \end{bmatrix}^T \begin{bmatrix} N_w \end{bmatrix} d\xi \right)$$
(15)

$$\begin{bmatrix} M_{\nu}^{(e)} \end{bmatrix} = \rho_{\nu} h_{\nu} b L_{e} \left(\int_{0}^{1} \begin{bmatrix} N_{u\nu} \end{bmatrix}^{T} \begin{bmatrix} N_{u\nu} \end{bmatrix} d\xi + \int_{0}^{1} \begin{bmatrix} N_{w} \end{bmatrix}^{T} \begin{bmatrix} N_{w} \end{bmatrix}^{T} \begin{bmatrix} N_{w} \end{bmatrix} d\xi \right)$$
(16)

$$\begin{bmatrix} M_c^{(e)} \end{bmatrix} = \rho_c h_c b L_e \left(\int_0^1 \begin{bmatrix} N_{uc} \end{bmatrix}^T \begin{bmatrix} N_{uc} \end{bmatrix} d\xi + \int_0^1 \begin{bmatrix} N_w \end{bmatrix}^T \begin{bmatrix} N_w \end{bmatrix} d\xi \right)$$
(17)

ACLD 梁单元的质量矩阵为

 $\begin{bmatrix} M^{(e)} \end{bmatrix} = \begin{bmatrix} M_b^{(e)} \end{bmatrix} + \begin{bmatrix} M_{\nu}^{(e)} \end{bmatrix} + \begin{bmatrix} M_c^{(e)} \end{bmatrix}$ (18) 由能量法推导各层的刚度矩阵

$$\begin{bmatrix} K_b^{(e)} \end{bmatrix} = E_b b h_b L_e \int_0^1 \begin{bmatrix} N_{ub} \end{bmatrix}_{,x}^T \begin{bmatrix} N_{ub} \end{bmatrix}_{,x} d\xi + E_b I_b L_e \int_0^1 \begin{bmatrix} N_w \end{bmatrix}_{,xx}^T \begin{bmatrix} N_w \end{bmatrix}_{,xx} d\xi)$$
(19)

$$\left[K_{\gamma\nu}^{(e)}\right] = Gbh_{\nu}L_{e}\int_{0}^{1}\left[N_{\gamma\nu}\right]^{T}\left[N_{\gamma\nu}\right]d\xi \qquad (20)$$

$$\left[K_{c}^{(e)}\right] = C_{11}^{E}bh_{c}L_{e}\int_{0}^{1}\left[N_{uc}\right]_{,x}^{T}\left[N_{uc}\right]_{,x}d\xi +$$

$$C_{11}^{D}I_{c}L_{e}\int_{0}^{1} \left[N_{w}\right]_{,xx}^{T}\left[N_{w}\right]_{xx}\mathrm{d}\xi)$$
(21)

当压电材料为被动约束层阻尼时,则有

(25)

$$C_{11}^{E} = C_{11}^{D} = E_{c}$$
 (22)
其中 E_{c} 为约束层的杨氏模量.

ACLD 梁单元的刚度矩阵为

$$[K^{(e)}] = [K_b^{(e)}] + [K_c^{(e)}] + [K_{\gamma\nu}^{(e)}]$$
(23)
E电力所做的虚功:

$$\delta W_{c} = \int_{0}^{l_{c}} bV(t) \delta D dx = \int_{0}^{l_{c}} bV(t) \frac{h_{31}}{\beta_{33}^{s}} \delta(\frac{\partial u_{c}}{\partial x}) dx =$$
$$\{\delta U^{(e)}\} \{f^{(e)}\}$$
(24)

广义力为:

$$\{f^{(e)}\} = \frac{h_{31}bV(t)L_{e}}{\beta_{33}^{s}}\{0 \ 0 \ -1 \ 0 \ 0 \ 1\}^{T}$$

压电材料的感应电压可描述为^[6]:

$$V_{s}(t) = C_{s} \sum_{element}^{i} \{ \int_{0}^{1} ([N_{ue}]]_{,x} - h[N_{w}]_{,x} - d\xi \} \{ U^{(e)} \}$$

$$(26)$$

这里, $C_s = -k_{31}^2/(g_{31}C)$ (27)

其中:k₃₁为机电耦合常数,g₃₁是压电电压常数,C 是传感层电容.

$$C = 8.854(10^{-12})A\varepsilon_{33}/h_c$$
 (28)

其中 A 是面积, ε₃₃是应变为零时的介电常数. 采用位移反馈:

$$V(t) = K_p V_s(t) \tag{29}$$

因此,主动约束层阻尼梁单元的动力学方程为

$$[M^{(e)}] \{ \hat{\delta}^{(e)} \} + [K^{(e)}] \{ \delta(e) \} = \{ f^{(e)} \}$$
(30)

$$\mathfrak{A} \oplus \mathfrak{A} \mathfrak{A} \oplus \mathfrak{A} \mathfrak{A} \mathfrak{A} \oplus \mathfrak{A} \oplus \mathfrak{A} \oplus \mathfrak{A} \oplus \mathfrak{A} \mathfrak{A} \mathfrak{A} \mathfrak{A} \mathfrak$$

3 模型验证

3.1 基梁

如图 2 所示为一简支梁,几何和物理参数为:L=0.3m,b=0.03m, h_b =4.0mm, ρ_b =2.71×10³kg/m², E_b =70Gpa.

图 2 简支梁

Fig. 2 The simple supported beam

由解析法求解简支梁的固有频率:

$$\omega_n = (n^2 \pi^2 / L^2) \sqrt{Y_3 I_3 / (\rho_3 A_3)}$$
(32)
首先计算基型的固有频率 并与解析解和 AN-

SYS 软件的计算结果进行比较. 表 1 是基梁的固有 频率.

可以看出:本文计算结果与解析法和 ANSYS 求得结果相近,误差较小,表明本文建立的有限元 模型是正确的.

表1 基梁的固有频率

Fable 1 Natural	frequencies	for the	base	beam
-------------------	-------------	---------	------	------

	Mode 1 Frequency (rad/s)	Mode 2 Frequency (rad/s)	Mode 3 Frequency (rad/s)	Mode 4 Frequency (rad/s)
Analytical method	644.0	2574.0	5792.0	10297.0
ANSYS	643.5	2573.5	5788.9	10288.7
Results from this paper	643.6	2574.5	5795.2	10314.0

3.2 主动约束层阻尼梁

如图 1 所示为主动约束层简支梁,几何和物理参数为:L = 0.3m,b = 0.03m, $h_b = 4.0$ mm, $h_c = 0.5$ mm, $h_v = 1.0$ mm, $\rho_b = 2.71 \times 10^3$ kg/m², $\rho_v = 1.0 \times 10^3$ kg/m², $\rho_c = 7.5 \times 10^3$ kg/m², $E_b = 70$ Gpa, $E_c = 49$ Gpa,压电材料 采用 PZT-5H, $C_{11}^E = 6.0 \times 10^{10}$ N/m², $C_{11}^D = 7.1 \times 10^{10}$ N/ m^2 , $h_{31} = -6.5 \times 10^8$ V/m, $\beta_{33}^s = 3.91 \times 10^7$ V²/N,粘弹性 层材料采用复模量模型来描述:

图 3 部分覆盖主动约束层阻尼简支梁 Fig. 3 The simple supported beam partiallycovered ACLD

基梁表面全部覆盖约束层阻尼时,图1中的 L_1 和 L_2 都为零.部分覆盖约束层阻尼时, L_1 =0.1m, L_2 =0.1m.全覆盖被动约束层阻尼梁(PCLD,约束 层采用压电材料,但不考虑压电作用)、全覆盖主动 约束层阻尼梁(ACLD,开环状态)、部分覆盖主动 约束层阻尼梁(P_ACLD,开环状态)的固有频率和 损耗因子见表2所示.

比较 ACLD(开环)和 PCLD 可以看出,压电效 应使固有频率和损耗因子略有增加,尽管这种增加 并不显著.对比本文与文献[6]的计算结果,吻合 情况良好,表明本文建立的计算模型是正确、有效 的,能进一步用于 ACLD 梁的动态特性分析.

		Table 2	Inatural 1	requencies a	inu ioss ia	ctors			
		Mode 1		Mode 2		Mode 3		Mode 4	
		Frequency	Loss	Frequency	Loss	Frequency	Loss	Frequency	Loss
		(rad/s)	factor	(rad/s)	factor	(rad/s)	factor	(rad/s)	factor
	Base beam	644.0	0	2574.0	0	5792.0	0	10297	0
PCLD	Results from this paper	582.8	0.0521	2205.5	0.0231	4895.3	0.0116	8666.5	0.0068
	Results from Gao etal ^[7]	586.4	0.0612	2206.4	0.0242	4893.4	0.0119	8653.2	0.0069
ACLD Open loop	Results from this paper	584.9	0.0571	2206.8	0.0237	4897.1	0.0118	8669.3	0.0069
	Results from Gao etal ^[7]	587.1	0.0633	2206.6	0.0245	4893.5	0.0119	8653.2	0.0069
	P_ACLD Open loop	575.8	0.0061	2470.3	0.0005	5495.5	0.0039	9548.6	0.0013

表2 固有频率和损耗因子

 Table 2
 Natural frequencies and loss factors

4 动态特性分析

4.1 开环特性

采用上述的 ACLD 梁有限元动力学模型,研究、分析主动约束层阻尼梁的动态特性.激励与响应点均取梁的中点.

图 4 为前 4 阶的幅频特性.可以看出,与基梁相 比,纯主动(AC,无粘弹性层,且压电层开环)和主动约 束层阻尼(ACLD,开环)的固有频率向低频移动,这主 要是由于附加质量的作用.此外,由于粘弹性层的剪 切变形导致振动能量耗散作用增强,因此,主动约束 层阻尼(ACLD,开环)的前 4 阶共振幅值显著下降.

Fig. 5 Amplitude-frequency characteristics of the beam covered with the different thickness of viscoelastic layer

图 5 为粘弹性层厚度对一阶振幅的影响.可以 看出,减小粘弹性厚度使一阶振幅增大,即阻尼耗 散作用减小,振动抑制效果明显减弱

图 6 为 PZT 约束层厚度对一阶振幅的影响.可 以看出,当 PZT 约束层厚度增加时,一阶振幅明显减 弱,这显示了约束层在抑制粘弹性材料剪切变形方 面所发挥的重要作用.合适的约束层厚度既取决于 附加质量,又影响到约束层阻尼梁的减振抑制效果.

图 6 不同约束层厚度的幅频特性

Fig. 6 Amplitude-frequency characteristics of the beam covered with the different thickness of constrained layer

4.2 闭环特性

图 7 ACLD 梁的幅频特性

Fig. 7 Amplitude-frequency characteristics of ACLD beam

对 ACLD 梁采用闭环反馈控制. 通常的反馈方 式有位移反馈和速度反馈,压电层的自感电压见式 (26),做动器电压按照式(29)进行取值,即为位移反馈,其中K_p称为位移反馈增益系数.

图 7 是不同反馈增益 ACLD 梁的幅频特性,可 以看出,ACLD 梁的闭环控制能有效抑制各模态频 率的共振幅值,且随着反馈增益的增大,振动控制 作用明显增强,但消耗的能量也相应增加.

5 结论

采用能量法,结合 Hamilton 的原理,建立了主 动约束层阻尼梁的有限元模型,对模型进行了验 证,在此基础上,研究和分析了主动约束层阻尼梁 的开、闭环动态特性.研究表明:

1) 计算结果与相关文献算例、ANSYS 计算结果 吻合良好, 证明本文建立的有限元模型是正确的.

2)采用压电层自感应电压的位移反馈闭环控制,能加强粘弹性层的能量耗散作用,有效抑制各模态频率的共振幅值,不同的反馈增益系数,使振动控制的效果有所不同.

3)阻尼层厚度、约束层厚度、反馈增益系数等 均是影响 ACLD 梁振动控制效果的重要因素,如何 建立拓扑优化模型,计算 ACLD 的空间拓扑分布, 使 ACLD 结构在质量、频率约束条件下,获得最佳 的动力学响应特性成为本文下一步的研究工作.

参考文献

- Baz A, Ro J. Partial treatment of flexible beams with active constrained layer damping. *Conference of Engineering Sci*ences Society, ASME-AMD, 1993, 167: 61 ~ 80
- 2 Shen I Y. Hybrid damping through intelligent constrained layer treatments. ASME Journal of Vibration and Acoustics, 1994,116:341 ~ 349
- 3 Huang S C, Inman D J, Austin E M. Some design considerations for active and passive constrained layer damping treatments. *Smart. Mater. Struct*, 1996, 5:301 ~ 313
- 4 Varadan V V, Lim Y H, Varadan V K. Closed loop finite-elements modeling of active/passive damping in structural vibration control. *Smart. Mater. Struct*, 1996, 5:685 ~ 694
- 5 石银明,华宏星,李中付,傅志方.主动约束层阻尼梁的数值模型. 计算力学学报,2002,19(1):99~104 (Shi Yinming, Hua Hongxing, Li Zhongfu, Fu Zhifang. Numerical model of beams with active constrained layer damping. *Chinese Journal of Computational Mechanics*,2002,19(1):99~104(in Chinese))
- 6 Gao J X, Liao W H. Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments. *Journal of Sound and Vibration*, 2005, 280: 329 ~ 357

THE FINITE ELEMENT MODELING OF BEAMS WITH ACTIVE CONSTRAINED LAYER DAMPING TREATMENTS AND THEIR DYNAMIC BEHAVIOR*

Zheng Ling Xie Ronglu Wang Yi Li Yinong

(The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China)

Abstract A finite element dynamic model for beams with active constrained layer damping beam treatments was developed based on the constitutive equations of elastic, viscoelastic and piezoelectric materials and Hamilton principle. The closed-loop control (displacement feedback) systems were investigated, the electro-mechanical coupling characteristics of piezoelectric layers were considered, and the self – sensing voltage in the sensor layer was given. Some dynamic behaviors such as natural frequencies, loss factors and frequency spectrum were obtained. The comparision of vibration suppressions using different treatments such as the passive damping(PCLD), pure active control(AC) and active constrained layer damping(ACLD) was performed. The influence of the viscoelastic layer thickness, piezoelectric layer thickness on the vibration suppression was discussed. Some design suggestions were presented to optimize beam structures with ACLD.

Key words active constrained layer damping, viscoelastic material, finite element method, piezoelectric

Received 28 July 2008, revised 9 December 2008.

^{*} The project supported by the National Natural Science Foundation of China (50775225)