基于 BP 神经网络的 U 型电热微致动器仿真分析*

尹婷婷1 高行山1,2 张娟1,2 邓子辰1

(1. 西北工业大学工程力学系, 西安 710072) (2. 大连大学辽宁省智能信息处理重点实验室, 大连 116622)

摘要 以 BP 神经网络、随机有限元法为基础,对 U 型电热微致动器进行了仿真分析. 首先利用有限元分析 软件 ANSYS 对 U 型电热微致动器进行有限元分析得到具体结构尺寸对微致动器最大位移的影响,然后通 过建立的 BP 神经网络来拟合响应与输入之间的关系,根据蒙特卡罗模拟原理获得足够多的样本值对训练 后的网络进行误差分析,结果证明本文提出的分析方法是可行有效的.

关键词 U型电热微致动器, BP神经网络, 随机有限元, 蒙特卡罗法

引 言

微致动器由于具有许多优良性能,在 MEMS 测 试机构^[1]、器件设计及微机械装置中有着广泛的应 用前景,但是由于微致动器尺寸微小、结构复杂、不 易测量等原因,目前关于微致动器的研究大部分仍 停留在实验室研究阶段,在工程实际中也多用有限 元方法^[2,3]对其进行分析求解. 但是由于结构工程 的很多方面存在着不确定性因素,确定性有限元计 算方法在实际应用中已经不能满足精度的要求.因 此人们很自然地想到在有限元计算中考虑不确定 因素. 将常规 FEM 推广用于随机力学问题的分析 已经受到了人们广泛的关注^[1]. 随机有限元方法 (SFEM)^[4]可有效地处理结构分析中所涉及的有 关参数的随机性, SFEM 将蒙特卡罗法 (Monte carlo)与有限元法直接结合,对随机变量的样本使 用有限元程序反复计算,再对结果进行统计,可较 准确的确定结构的随机力学特性. 与确定性 FEM 相比,SFEM 在物理建模上更合理、科学,尤其是当 有关参数的统计特性可知时,SFEM 可提供较精确 的分析结果.近年来,人们开始将人工神经网 络^[5-7]应用于工程实际中,利用神经网络的非线性 映射能力来拟和极限状态函数,使之达到工程要求 的精度.因此本文提出了基于 BP 神经网络的随机 有限元分析法,并针对 U 型电热微致动器进行随 机有限元仿真分析.

1 基本原理

1.1 理论分析

U型电热微致动器是通过力、电、热、磁等能量 之间的转换来实现特有功能的器件^[8],其基本结构 单元为梁单元,微致动器结构示意图如图1所示.

梁结构的有限单元法的基本控制方程^[9,10]为: [K] { δ } = [Q] (1)

其中 *K* 为整个结构的刚度矩阵,δ、*Q* 分别为结构全 部节点的位移列阵和载荷列阵.将 *Q* 作为随机变 量,由于结构刚度及载荷的不断变化,由(1)得到

 $[K + \Delta K] \{\delta + \Delta \delta\} = [Q + \Delta Q]$ (2)

化简(2),得到

$$[K] \{\Delta\delta\} = [\Delta Q] - [\Delta K] \{\delta + \Delta\delta\}$$
(3)

由于 $\Delta \delta \leq \delta \perp K$ 为可逆矩阵,得到

 $\{\Delta\delta\} \ge [\Delta K]^{-1} [\Delta Q] - 2[K]^{-1} [\Delta K] \{\delta\}$ (4)

由于K、 δ 均为连续性变量,所以 $\Delta\delta$ 是与K、 δ 有关的连续性变量.

²⁰⁰⁸⁻⁰⁴⁻⁰⁹ 收到第1稿,2008-05-06 收到修改稿.

^{*} 辽宁省智能信息处理重点实验室开放课题(2005-5)

BP 神经网络是一种有监督学习、单向传播的多 层前馈式网络. 网络由输入层、输出层和至少一个隐 层构成,采用反向传播学习算法,将误差信号按原联 接通路反向计算,由梯度下降法调整各层神经元的 权值和阈值,隐含层的第*i*个神经元的输入为

 $net_j = \sum W_{ij}O_i$ (5) 其中 W_{ij} 为神经元 j 和神经元 i 的连接权值, 第 j 个 神经元的输出为

 $O_j = f(net_j)$ (6) 其中 f 为激励函数.

输入信号从输入层节点依次传过各隐含层节 点,最后传到输出层节点,每层节点的输出只影响 下一层节点的输出.神经网络的学习过程由正向和

反向传播二部分组成. 在正向传播过程中,每一层 神经元的状态只影响到下一层神经元的状态. 如果 输出层不能得到期望输出值,即实际输出值和期望 输出值之间存在误差,从而转入反向传播过程,将 误差信号沿原来的连接通路返回. 通过修正各层神 经元之间的连接权值和阀值,逐次地向输入层传播 并进行计算,再进行正向传播. 通过这二个过程的 反复运用,使得误差信号达到最小.

根据 Kolmogorov 多层神经网络映射存在定

理^[11]:假定 BP 网络中隐节点可以根据需要自由设定,那么一个三层网络可以以任意精度逼近任何一个连续函数.由此可以通过 BP 神经网络把响应 Δδ 与基本输入 K、δ 之间复杂的、无法用显式表达的函数关系建立起来并进行求解.

2 微致动器随机有限元分析

以 BP 神经网络、蒙特卡罗法为基础对电热微 致动器进行随机有限元分析:对影响结构变化行为 的随机变量进行抽样,通过对其进行有限元分析以 求得悬臂梁末端的最大位移值,再用蒙特卡罗法进 行多次抽样,对抽样结果进行分析比较,完善程序, 从而可以对不同尺寸微致动器的行为进行预测.

2.1 确定基本变量及分布

主要研究微致动器各部分的尺寸对结构力学 行为的影响,因此选取微致动器的9个尺寸 *l*₁、*l*₂、 *l*₃、*w*₁、*a*₁、*a*₂、*b*₁、*b*₂、*b*₃(如图1所示)作为基本输入 变量,即 BP 神经网络输入层的9个节点,输出层为 一个节点,为微致动器的最大位移量.9个基本输 入变量均服从正态分布,利用自适应重要抽样筛选 样本点法[12],采用有限元分析软件计算结构的 水平最大位移量,得到40组样本数据如表1所示, 单位为μm.

				1 44		umpro at				
Samples	l_1	l_2	a_1	a_2	b_1	b_2	b_3	l_3	w_1	Max Displacement
1	35	190	9	7.5	4	25.5	4	33	35	5.73
2	40	60	5	3	2.8	18	3.8	40	60	1.51
3	40	350	10	7	10	22	10	20	50	1.80
4	50	200	7	8	2	20	2	40	40	7.74
5	60	250	10	8	3	25	3	40	40	10.1
6	70	50	10	2	2.2	15	2	50	5	0.26
7	70	75	20	4	4.5	20	4.6	75	90	0.63
8	70	250	15	13	5	35	5	45	50	6.42
9	70	300	13	12	4	20	4	35	60	8.63
10	70	300	70	18	17	62	16	300	5	1.50
11	80	200	120	17	14	70	15	300	10	1.24
12	80	350	9	6	8	19	8	25	40	2.28
13	80	450	3	2	4	30	4	69	80	4.21
14	80	550	5	5	7	36	7	48	70	2.08
15	90	150	80	19	19	48	23	450	5	1.55
16	99	240	7.5	3	3	22.5	3	60	54	12.5
17	90	400	12	8	12	30	12	40	60	1.64
18	100	90	18	8	6.4	22	6.6	60	20	0.70
19	100	200	70	40	10	20	10	200	200	0.463
20	100	250	8	4	4	23	4	50	50	6.71

表1 样本数据 Table 1 sample data

21	100	300	40	22	1	19	2	100	80	6.44
22	100	400	13	5	15	60	15	40	50	1.06
23	110	450	19	13	1	24	1	38	50	15.50
24	120	300	10	6	5	25	5	100	40	9.51
25	120	500	4	5	6	20	6	25	90	2.07
26	120	650	9	7	20	70	20	80	40	0.29
27	130	550	6	4	9	40	9	70	80	1.74
28	150	200	90	20	20	70	28	400	80	2.68
29	170	700	11	9	36	90	42	30	35	0.45
30	200	200	200	100	30	100	35	600	50	0.72
31	200	200	20	10	6	30	6	100	100	3.23
32	200	300	100	16	13	55	15	200	100	3.29
33	200	400	60	40	11	30	10	100	300	2.50
34	250	200	30	20	7	15	7	100	150	1.07
35	250	300	130	20	20	80	24	400	95	2.86
36	300	300	50	50	2	18	3	100	200	2.96
37	300	450	80	15	12	60	10	50	70	3.22
38	300	500	150	30	24	75	29	200	120	2.02
39	400	350	60	40	20	90	28	350	200	2.38
40	400	400	40	60	20	40	33	400	130	1 02

2.2 BP 神经网络模型的建立及训练

将表 1 中的 40 组数据作为 BP 神经网络的训 练模式对,对网络进行学习,采用 L – M 算法"trainlm"^[13],得到随机变量与极限状态方程之间的关 系.其中网络参数的初始值为[– 1,1]上的随机 数,输入层采用"tansig"传输函数,隐含层采用 "purelin"传递函数,输出层采用"sigmoid"型传递 函数,取为 $f(x) = \frac{1}{1 + e^{-x}}$.

学习过程中根据迭代情况适当调整隐含层神 经元个数^[14],当隐含层神经元个数为19时网络收 敛较快,收敛条件为网络的误差小于等于1.0e-2, 网络训练曲线如图2所示.

Fig. 2 The trained curve of BP Neural Networks

网络训练结束后,利用表2中的数据对网络进行测试,测试数据的目标值(有限元分析值)与网络训练值的比较见表2.

表 2 结果对比

Table 2 The contrasts of resul	Table 2	The	contrasts	of	resul
--------------------------------	---------	-----	-----------	----	-------

Samples	l_1	l_2	a_1	a_2	\mathbf{b}_1	b_2	b_3	l_3	\mathbf{w}_1	Object data	Training data	Error
1	50	200	5	2	2	15	2	40	25	12.5	12.5	0
2	66	160	5	2	2	15	2	40	36	9.63	9.63	0
3	200	300	20	10	10	40	10	120	95	5.33	5.31	0.0019
4	300	600	20	10	10	60	15	200	200	20.3	20.3	0
5	390	390	20	20	15	45	15	100	100	4.74	4.80	0.0127
6	400	700	50	40	40	60	20	200	200	0.1.	0.1	0
7	450	800	60	70	40	50	40	1000	200	0.85	0.9	0.0588
8	450	900	40	20	20	90	20	250	200	18.2	18.19	0.00005
9	600	700	50	100	40	70	50	900	350	3.54	3.5	0.0113
10	600	700	50	100	50	60	45	800	350	0.02	0.02	0

由表2可见,此 BP 网络的误差已满足工程所 需的精度,因此可以利用该网络对工程实际中的问 题进行预测,以减少传统有限元计算方法的工作时 间,提高工作效率.

3 结论

以 BP 神经网络、随机有限元法为基础对 U 型 电热微致动器进行了仿真分析,得出以下几点结 论:

(1)随机有限元方法可直接使用现已广泛应用的确定性结构的有限元分析方法,同时运用人工 神经网络的非线性映射能力计算与输入向量对应的响应函数值,而不必采用复杂的结构分析程序 (通常为有限元分析)计算对应的响应函数值,从 而使得计算次数和计算时间较传统分析方法大大 减少.

(2)基于 BP 神经网络的随机有限元法对功能 函数隐式表达或显示表达比较复杂的结构的分析 特别适用,它解决了传统计算方法计算量太大的弊 端.

(3)本文采用的基于 BP 神经网络的有限元法 是利用神经网络的非线性映射能力来逼近结构响 应与基本随机变量之间的关系,因此比较接近真实 情况,误差较小.

(4)利用本文提出的方法可以对相关问题进行预测,在实际应用中可以加大训练样本、取样点的数量以获得较高的精确度,以减少工程实际中的误差.

(5)利用神经网络的泛化能力,根据蒙特卡罗 模拟原理计算结构状态函数值,加上随机抽样法等 技术,可以进一步提高结构分析的效率.

参考文献

1 宋小保.模糊随机有限元动力问题的分析研究[硕士论 文].重庆:重庆大学,2003 (Song Xiaobao. Analysis and research of fuzzy and stochastic finite element method dynamic problems [Bachelor's Thesis]. Chongqing: Chongqing University,2003(in Chinese))

- 2 牛凯,叶雄英,周兆英,冯焱颖. MEMS 微梁静电致动器 的力学特性研究. 压电与声光,2005,5(27):46~48(Niu Kai, Ye Xiongying, Zhou Zhaoying, Feng Yanying. Research on mechanical properties of MEMS cantilevel actuator based on the reduced order modeling. *Piezoelectrics and Acoustooptics*,2005,5(27):46~48(in Chinese))
- 3 洪政男. 电热式微致动器之制作与性能分析[硕士论 文]. 台湾:逢甲大学,2002 (Hong Zhengnan. On the fabrication and performance analysis of an electro-thermal microactuator[Bachelor's Thesis]. Taiwan: Fengjia University, 2002(in Chinese))
- 4 Haldar A, Mahadevan S. Reliability assessment using stochastic finite element analysis. New York : John Wiley and Sons , Inc ,2000
- 5 孙炜,王耀南.模糊 B 样条基神经网络及其在机器人轨 迹跟踪中的应用.动力学与控制学报,2005,3(1):56~ 59(Sun Wei, Wang Yaonan. A fuzzy B spline basis neural network and its application to robotic tracking control. *Journal of Dynamic and Control*, 2005,3(1):56~59(in Chinese))
- 6 苏建元,孙蔚,孙薇,叶海涛.基于神经网络和模糊逻辑 的工业过程故障诊断与报警系统.动力学与控制学报, 2006,4(3):284~285(Su Jianyuan,Sun Wei,Sun Wei,Ye Haitao. Fault diagnosis and alarm system of induatrial process based on neural network and fuzzy logic. *Journal of Dynamic and Control*, 2006,4(3):284~285(in Chinese))
- 7 黄永安,邓子辰. 基于神经网络与 PID 控制的挠性结构 的混合控制研究. 动力学与控制学报,2005,3(1):47 ~ 48(Huang Yongan, Deng Zichen. Hybrid Control Research on Flexible Structure Based on Neural Network and PID Method. Journal of Dynamic and Control,2005,3(1):47 ~ 48(in Chinese))
- 8 G A Malegiannakis, B Kroplin. Thermo-electro-mechanical coupling problems solved by FE-formulation. *Engineering Computations*, 1997, 6(15):804 ~ 812

- 9 赵经文,王宏钰.结构有限元分析.北京:科学出版社, 2001:8~10(Zhao Jingwen, Wang Hongyu. Finite element analysis of structure. Beijing: Science Press, 2001:8~10 (in Chinese))
- 10 邓建,朱合华. 基于神经网络的岩土工程结构随机有限 元分析. 同济大学学报,2002,30(3):269~272(Deng Jian, Zhu Hehua. Finite element monte-carlo method using neural networks for geotechnical reliability analysis. *Journal* of Tongji University,2002,30(3):269~272(in Chinese))
- 11 焦李成. 神经网络系统理论. 西安: 西安电子科技大学 出版社,1995(Jiao Licheng. The theory of artificial network system. Xian: Xidian University Press, 1995(in Chinese))
- 12 吕震宙,杨子政,基于神经网络的可靠性分析新方法. 机械强度,2006,28(5):699~702(Lv ZhenZhou, Yang

ZiZheng. New reliability analysis method based on artificial neural network. *Journal of Mechanical Strength*, 2006, 28 (5):699~702 (in Chinese))

- 13 朱海峰,李伟,张林. 基于 BP 神经网络整定的 PID 控制. 动力学与控制学报, 2005, 3(4):94~95(Zhu Haifeng,Li Wei,Zhang Lin. PID control based on BP neural network adjusting. *Journal of Dynamic and Control*, 2005, 3 (4):93~95(in Chinese))
- 14 刘叔军,盖晓华.神经网络相平面分区控制器研究与仿 真.动力学与控制学报,2006,4(2):163~164(Liu Shu Jun,Gai Xiao Hua. Research and Simulation of Neural Network Phase Plane Divisional Control. *Journal of Dynamic* and Control,2006,4(2):163~164(in Chinese))

SIMULATION OF U-SHAPED FLEXURAL ELECTRO-THERMAL ACTUATOR BASED ON NEURAL NETWORK*

Yin Tingting¹ Gao Hangshan^{1,2} Zhang Juan^{1,2} Deng Zichen¹

Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China)
Liaoning Key Lab of Intelligent Information Processing, Dalian University, Dalian 116622, China)

Abstract The U-shaped flexural electro-thermal actuators were simulated based on the BP artificial neural network and stochastic finite element method. First the maximal displacement of the actuators, whose concrete sizes affect the geometrical structure, was solved by the finite element method. The relation between the response and the input was simulated through the BP neural network. The Monte Carlo method was applied to get efficient sample data and to analyze the errors. The results show that the proposed method is feasible and effective.

Key words U-shaped flexural electro-thermal actuator, BP neural network, SFEM, Monte Carlo method

Received 9 April 2008, revised 6 May 2008.

^{*} Liaoning Key Lab of Intelligent Information Processing(2005-5)