柔性梁响应子循环计算研究*

缪建成1,2 朱平1 陈关龙1 施光林1

(1.上海交通大学机械与动力工程学院,上海 200240)(2.江苏张家港沙洲工学院机械工程系,张家港 215600)

摘要 根据 Hamilton 原理和假设模态离散化,建立了柔性梁绕定点旋转过程的动力学模型,并通过假设模态法对方程进行了离散处理.在此基础上,基于中心差分法的计算原理,提出了柔性梁动力学方程的子循环计算公式,分别建立了其同步更新格式和子步更新格式,在子循环积分过程中,通过步长修正保证了计算的精度和稳定性.计算结果表明:所提出的算法能在保持合适的精度要求下,有效地提高响应的计算效率,并且通过积分步长的修正可以提高计算稳定性,有效地处理了方程的刚性问题.

关键词 柔性多体动力学, 假设模态, 数值积分, 子循环技术, 步长修正

引 言

近几十年来,柔性多体系统动力学(FMD)的 研究得到了人们的普遍关注,该学科在航空航天、 机器人、车辆技术等许多领域均具有强烈的应用背 景.研究的兴趣包括理论建模和控制技术两个方 面,研究成果主要包括:(1)、建模原理和方法; (2)、数值计算及主动控制;(3)、试验及计算校验.

FMD 模型一般是一组非线性、时变和强耦合的微分或微分 - 代数方程,通常不易得到精确的解析解,一般的处理方法是对系统方程进行离散化,将无限自由度的连续系统离散化为有限自由度的离散系统,通过计算机进行数值积分得到系统的近似解^[1].

FMD 数值计算中主要存在两个问题,首先,大范围运动变量与高频弹性变形变量的共存造成数 值病态(Stiff or ill condition).另外,由于方程系数 矩阵的时变性和非线性,初始条件或参数的摄动很 容易导致仿真结果的较大偏差甚至发散.

目前,针对上述问题的理论研究进展不大,在 仿真时大多是采用传统的数值积分方法,如普遍应 用于多体系统动力学软件中的 Newmark 算法、 Runge-Kutta 算法以及 Gear 算法等^[2~4].

为了提高 FMD 计算效率,人们尝试了多种相 关技术的研究,包括单向递推集建模计算^[5-8],计算 机符号运算^[9-10],自适应网格技术^[11]以及并行计 算方法^[12-13]等.上述技术均能有效提高 FMD 计算 效率,并已逐步嵌入商用动力学软件中(如 Recur-Dyn),拓展了多体动力学软件的应用范围.

1978年,Belytschko^[14]等首次提出子循环算法 (sub-cycling),基本原理是根据有限单元的网格大 小或刚度进行区域划分,对不同的区域采用不同时 间步长(主时域大步长,子时域小步长)进行数值 积分.该类算法能够在保持适当计算精度的前提下 有效提高计算效率.Mark^[15]等采用该算法进行过 冲击问题仿真计算,计算时间只有原算法的15%; 高晖^[16]等将该方法用于汽车白车身的碰撞过程分 析,计算耗时只有原算法的39.3%,实践证明该算 法能有效提高常微分方程尤其是刚性微分方程的 计算效率.除了在结构有限元动力分析中得到应用 之外,子循环算法还被引用到其他学科的计算领 域,郑阳明^[17,18]等人曾尝试采用该类算法进行微 波电路的分析计算,在保持适当精度的前提下使计 算效率提高近一倍.

Wasfy^[19]等指出,如果能应用子循环方法进行 FMD 问题计算,将可能大幅度提高其计算效率,然 而迄今为止,适用于 FMD 计算的子循环算法尚未 见报道.

本文第二节根据 Hamilton 原理和假设模态离 散化方法,建立柔性梁绕定点旋转过程中的变形位 移场一阶完备的一次近似耦合模型;第三节在此基 础上,参考有限元子循环计算的基本原理,提出动

²⁰⁰⁷⁻⁰⁷⁻⁰² 收到第1稿,2007-09-11 收到修改稿.

^{*} 中国电子科技集团第十四研究所预研项目

力学模型的子循环计算方法,推导了其同步更新公 式和子步更新公式;第四节对该模型进行了数值计 算,通过计算结果的对比分析,证明该算法可以在 保持合适的精度和满足稳定性要求下,有效地提高 响应的计算效率.

1 旋转柔性梁动力学模型

1.1 动力学模型建立

考虑图 1 所示在水平面内作回转运动的柔性 梁动力问题,OXoYo 为系统的固定坐标系,OXY 为 固结在梁上的浮动坐标系,大范围旋转运动形成一 个非惯性场,梁在非惯性场中由于惯性和弹性而产 生振动,忽略梁的重力影响,梁的参数定义如下:L 为梁的长度,A₀ 为梁的横截面积,E 为材料弹性模 量,I 为截面对中性轴的惯性矩,ρ 为梁的材料密 度,τ 为作用于柔性梁联结端的外部驱动力矩,θ 为 大范围运动的角位移.

图 1 旋转柔性梁示意图 Fig. 1 A rotational flexible beam

图 2 为柔性梁上任意点 P₀ 的变形位移示意 图. x 为未变形时 P₀ 点在梁上的位置,变形后 P0 点到达 P 点. P 点关于固定坐标系 OXoYo 的坐标可 以表达为:

Y

图 2 旋转柔性梁变形示意图

Fig. 2 Deformation of the rotational flexible beam

$$\boldsymbol{r}_{p} = \boldsymbol{A}(\boldsymbol{r}_{0} + \boldsymbol{r}_{1}) \tag{1}$$

其中,A为浮动坐标系相对于固定坐标系的方向余 弦阵.

$$\mathbf{A} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

 r_0 为 P_0 点关于浮动坐标系 OXY 的坐标向量, 其坐标为[x,0]^T, r_1 为 P_0 点的变形位移坐标阵,其 坐标为[$u_1(x,t), u_2(x,t)$]^T,可表示为:

$$\boldsymbol{r}_{1} = \begin{bmatrix} u_{1}(x,t) \\ u_{2}(x,t) \end{bmatrix} = \begin{bmatrix} w_{1}(x,t) + w_{c}(x,t) \\ w_{2}(x,t) \end{bmatrix} = \begin{bmatrix} w_{1}(x,t) - \frac{1}{2} \int_{0}^{x} (\frac{\partial w_{2}(\xi,t)}{\partial \xi})^{2} d\xi \\ w_{2}(x,t) \end{bmatrix}$$
(2)

其中, $w_1(x,t)$ 为 P_0 点到达P点而引起的梁的轴向 伸长量, $w_2(x,t)$ 为横向弯曲变形量,对于细长梁, 横向弯曲变形量比轴向伸长量要大许多,可认为 $w_2(x,t) \approx u_2(x,t); w_c(x,t)$ 为由于横向弯曲变形 引起的梁的轴向缩短量,系统的动能可以表示为:

$$T = \frac{1}{2} \int_{0}^{L} \rho A_0 \dot{\boldsymbol{r}}_p^T \dot{\boldsymbol{r}}_p \mathrm{d}x \tag{3}$$

其中, r, 由方程(1) 求一次导数得出为:

$$H = \frac{1}{2} \int_0^L EA_0 \left[w_1'(x,t) \right]^2 dx + \frac{1}{2} \int_0^L EI \left[w_2''(x,t) \right]^2 dx$$
(5)

其中, $w'_1(x,t)$ 和 $w''_2(x,t)$ 分别为 $w_x(x,t)$ 和 $w_2(x,t)$ 对x的一阶和二阶偏导数.根据方程(3)和(5)可 以计算动能和势能的变分,外力虚功为外力矩 τ 所 做的虚功,表示为:

$$\delta W_{F} = \tau \delta \theta$$
(6)
根据 Hamilton 变分原理:
$$\int_{-1}^{2} (\delta T - \delta H + \delta W_{F}) dt$$

可以建立柔性梁系统一次近似耦合模型的动力学 方程为^[20]:

$$\int_{0}^{L} \{ \rho A_{0}(\ddot{w}_{1} - 2\dot{\theta}\dot{w}_{2} - \ddot{\theta}w_{2} - \dot{\theta}^{2}(x + w_{1})) - EA_{0}w_{1}^{'} \} dx = 0$$

$$\int_{0}^{L} \{ \rho A_{0}(\ddot{w}_{2} + 2\dot{\theta}\dot{w}_{1} + \dot{\theta}(x + w_{1}) - \dot{\theta}^{2}w_{2} + \dot{\theta}^{'}w_{1} + \dot{\theta}^{'}(x + w_{1}) - \dot{\theta}^{2}w_{2} + \dot{\theta}^{'}w_{1} + \dot{\theta}^{'}(x + w_{1}) - \dot{\theta}^{2}w_{2} + \dot{\theta}^{'}w_{1} + \dot{\theta}^{'}(x + w_{1}) - \dot{\theta}^{'}w_{2} + \dot{\theta}^{'}w_{1} + \dot{\theta}^{'}w_{1} + \dot{\theta}^{'}w_{2} + \dot{\theta}^{'}w_{2} + \dot{\theta}^{'}w_{1} + \dot{\theta}^{'}w_{2} + \dot{\theta}^{'}w_{$$

$$\frac{\partial}{\partial \theta} \left[\int_{x}^{L} B(\xi, x) \,\mathrm{d}\xi \right]) + E I w_{2}^{""} \,\mathrm{d}x = 0 \qquad (8)$$

$$\int_{0}^{\mu} \rho A_{0} \left\{ \ddot{\theta} \left[x^{2} + w_{1}^{2} + w_{2}^{2} + 2x(w_{1} + w_{c}) \right] + (x + w_{c}) \ddot{w}_{2} - w_{c} \ddot{w}_{c} + 2\dot{\theta} \left[x(\dot{w}_{c} + \dot{w}) \right] + (x + w_{c}) \right\}$$

(9)

$$w_1\dot{w}_1 + w_2\dot{w}_2] \} \mathrm{d}x = \tau$$

其中

 $B(x,t) = -\dot{\theta}^2 (x + w_1 + w_c) - 2\dot{\theta}w_2 + \ddot{w}_1 + \ddot{w}_c - \theta w_2$ 边界条件为:

$$w_{1}(0,t) = 0, w_{2}(0,t) = 0, w_{1}'(0,t) = 0$$

$$EIw_{2}''(L,t) = 0, EA_{0}w_{1}'(L,t) = 0, EIw_{2}'''(L,t) = 0$$

1.2 动力学方程离散化

方程(7)~(9)一般不易得到精确的解析解, 通常是进行离散化求数值解.假设模态法和有限单 元法常常用作柔性多体系统的离散化方法.有限元 法是对大型复杂柔性多体系统进行离散化的有效 手段,遗憾的是,有限元离散后的动力学系统仍会 保留相当可观的自由度数,这在系统求解尤其是控 制过程是个突出的问题.假设模态法是经典的弹性 连续体近似解基本方法,虽然对于复杂形状、复杂 边界和复杂载荷的情况,要构造一个合适的假设模 态是非常困难甚至可能办不到的,但是在比较典型 的梁结构如机械臂、连杆机构等的计算和主动控制 研究中,假设模态法仍然是一种合适的离散化手 段.事实上,在柔性多体系统的动力学与控制研究中,有限元法常常用于系统动力学性态的研究,而 假设模态法常常用于主动控制设计的研究.根据前述,采用假设模态法进行离散化,设:

$$w_1(x,t) = \boldsymbol{\varphi}_1(x)\boldsymbol{q}_1(t) \tag{10}$$

$$w_2(x,t) = \boldsymbol{\varphi}_2(x) \boldsymbol{q}_2(t) \tag{11}$$

其中, $q_1(t)$ 和 $q_2(t)$ 分别为其模态坐标列向量, $\varphi_1(x)$ 和 $\varphi_2(x)$ 分别为梁的纵向振动和横向振动的模态函数 行向量,采用悬臂梁的模态函数,其元素分别为:

$$\varphi_i^{(1)}(x) = \sin \frac{(2i-1)}{2L} x, \quad i = 1, 2, \cdots, n \quad (12)$$

$$\varphi_i^{(2)}(x) = \cos\beta_i x - \cosh\beta_i x + \gamma_i (\sin\beta_i x - \sinh\beta_i x), \quad i = 1, 2, \cdots, n$$
(13)

其中,

$$β_1L = 1.875, \quad \beta_2L = 4.694,
 β_iL = (i - 0.5)π, \quad i \ge 3
 γ_i = -\frac{\cos\beta_iL + \cosh\beta_iL}{\sin\beta_iL + \sinh\beta_iL}
 对方程(7) ~ (9) 进行离散化可以得到$$

$$\begin{bmatrix} M_{\theta\theta} & M_{\theta q_1} & M_{\theta q_2} \\ M_{q_1\theta} & M_{q_1q_1} & 0 \\ M_{q_2\theta} & 0 & M_{q_2q_2} \end{bmatrix} \begin{bmatrix} \theta \\ \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + 2\dot{\theta} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & G_{q_1q_2} \\ 0 & G_{q_2q_1} & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & K_{q_1q} & 0 \\ 0 & 0 & K_{q_2q_2} \end{bmatrix} \begin{bmatrix} \theta \\ q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} Q_{\theta} \\ Q_{q_1} \\ 0 \end{bmatrix} + \begin{bmatrix} \tau \\ 0 \\ 0 \end{bmatrix}$$
(14)

其中, $M_{\theta\theta}$ 为系统转动惯量, $M_{q_1q_1}$ 和 $M_{q_2q_2}$ 为柔性梁纵 向振动和横向振动的广义弹性质量阵, M_{\thetaq_1} 、 M_{\thetaq_2} 、 $M_{q_1\theta}$ 和 $M_{q_2\theta}$ 代表大范围运动和弹性变形之间的惯性 耦合, $G_{q_1q_2}$ 和 $G_{q_2q_1}$ 来源于陀螺效应, $K_{q_1q_1}$ 和 $K_{q_2q_2}$ 为刚 度阵, Q_{θ} 和 Q_{q_1} 为惯性力项.各变量表达如下:

$$M_{\theta\theta} = J_{1} + q_{1}^{T} M_{1} q_{1} + q_{2}^{T} M_{2} q_{2} + 2U_{11} q_{1} - q_{2}^{T} D_{1} q_{2}$$

$$M_{q_{1}\theta} = M_{\thetaq_{1}}^{T} = -Rq_{2}$$

$$M_{\thetaq_{2}} = M_{q_{2}\theta}^{T} = U_{12} + q_{1}^{T} R$$

$$G_{q_{1}q_{2}} = -G_{q_{2}q_{1}}^{T} = -R$$

$$K_{q_{1}q_{1}} = K_{1} - \dot{\theta}^{2} M_{1}$$

$$K_{q_{2}q_{2}} = K_{2} - \dot{\theta}^{2} M_{2} + \dot{\theta}^{2} D_{1}$$

$$Q_{\theta} = -2\dot{\theta} [(q_{1}^{T} M_{1} \dot{q}_{1} + q_{2}^{T} M_{2} \dot{q}_{2}) + U_{11} \dot{q}_{1} - q_{2}^{T} D_{1} \dot{q}_{2}]$$

$$Q_{q_{1}} = \dot{\theta}^{2} U_{11}^{T}$$

其中, K₁ 和 K₂ 为结构动力学中的广义弹性刚度 阵, 各相关的常值矩阵表达为:

$$\boldsymbol{M}_{q_1q_1} = \boldsymbol{M}_1 = \int_0^L \rho A_0 \boldsymbol{\varphi}_1^T \boldsymbol{\varphi}_1 dx$$

$$\boldsymbol{M}_{q_{2}q_{2}} = \boldsymbol{M}_{2} = \int_{0}^{L} \rho A_{0} \boldsymbol{\varphi}_{2}^{T} \boldsymbol{\varphi}_{2} dx$$
$$J_{1} = \int_{0}^{L} \rho A_{0} x^{2} dx$$
$$\boldsymbol{K}_{1} = \int_{0}^{L} E A_{0} \boldsymbol{\varphi}_{1}^{T} \boldsymbol{\varphi}_{1}^{'} dx, \boldsymbol{K}_{1} = \int_{0}^{L} E I \boldsymbol{\varphi}_{2}^{"T} \boldsymbol{\varphi}_{2}^{"} dx$$
$$\boldsymbol{U}_{1j} = \int_{0}^{L} \rho A_{0} x \boldsymbol{\varphi}_{j} dx \quad j = 1, 2$$
$$\boldsymbol{D}_{1} = \int_{0}^{L} \rho A_{0} x \boldsymbol{S}(x) dx, \boldsymbol{R} = \int_{0}^{L} \rho A_{0} \boldsymbol{\varphi}_{1}^{T} \boldsymbol{\varphi}_{2} dx$$
$$\boldsymbol{S}(x) = \int_{0}^{x} \boldsymbol{\varphi}_{2}^{'T}(\boldsymbol{\xi}) \boldsymbol{\varphi}_{2}^{'}(\boldsymbol{\xi}) dx$$

2 子循环计算

为方便阐述子循环算法的基本原理和构造过 程,假设所研究对象为细长梁,可以忽略其纵向变 形,这在很多场合(如柔性机械臂,弹性连杆等)中 都是适用的,可以这样处理的另一个原因是子循环 算法可以方便的推广到完备的梁旋转动力学方程 (14)的求解.根据细长梁假设,可以得到惯性系下 简化动力学方程(见式15).

由 Belytschko^[14]等提出的子循环算法根据有 限单元的网格大小或刚度进行区域划分,对不同的 区域采用不同时间步长进行数值积分,恰当地处理 不同区域界面单元或界面节点间的相互作用力是 保证子循环计算

$$\begin{bmatrix} M_{\theta\theta_1} & M_{\theta q_2} \\ M_{q_2\theta} & M_2 \end{bmatrix} \begin{bmatrix} \theta \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & K_{q_2 q_2} \end{bmatrix} \begin{bmatrix} 0 \\ q_2 \end{bmatrix} = \begin{bmatrix} Q_{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} \tau \\ 0 \end{bmatrix}$$
(15)

成功实现的关键,根据这一原理,对柔性梁动力学方 程的求解也可以考虑采用子循环计算方法,虽然在 动力学模型中不存在单元或节点的概念,但是旋转 变量和弹性变量之间的耦合关系以及不同的变化速 率,使柔性梁动力学模型同样适合于子循环计算.

方程(15)中,变量 θ 描述大范围转动的角度, 一般为慢变分量,考虑采用较大的时间步长进行积 分计算,该循环一般称为主步循环.变量 q₂ 为梁横 向变形模态坐标列向量,一般由多个模态坐标组 成,虽然可以根据各阶模态频率的高低进一步细分 为不同的积分步长,但是为了方便起见,本文将其 一并归入快变分量,各阶变形模态坐标采用一致的 小积分步长,称为子步循环.基础算法采用中心差 分格式,根据子循环算法的基本原理,可以定义如 下异步差分格式.

$$\theta^{t} = \frac{1}{\Delta t_{1}^{2}} \left[\theta^{t - \Delta t_{1}} - 2\theta^{t} + \theta^{t + \Delta t_{1}} \right]$$
(16)

$$\overset{\cdot}{\theta}_{1}^{\prime} = \frac{1}{2\Delta t_{1}^{2}} \left[-\theta^{\prime - \Delta t_{1}} + \theta^{\prime + \Delta t_{1}} \right]$$
(17)

$$\ddot{q}_{2}^{\prime} = \frac{1}{\Delta t_{2}^{2}} \left[\boldsymbol{q}_{2}^{\prime - \Delta t_{2}} - 2\boldsymbol{q}_{2}^{\prime} + \boldsymbol{q}_{2}^{\prime + \Delta t_{2}} \right]$$
(18)

$$\dot{q}_{2}^{\prime} = \frac{1}{2\Delta t_{s}} \left[-\boldsymbol{q}_{2}^{\iota - \Delta t_{2}} + \boldsymbol{q}_{2}^{\iota + \Delta t_{2}} \right]$$
(19)

其中, $\Delta t_1 = m\Delta t_1$,变量的右上角标代表离散时间 步,考虑 t 时刻系统平衡状态,将公式(16)~(19) 代入方程(15)中,整理后得到动力学平衡方程 (20)~(21).

$$\frac{M_{\theta\theta}^{\prime}}{\Delta t_{1}^{2}} \left[\theta^{\prime - \Delta t_{1}} - 2\theta^{\prime} + \theta^{\prime + \Delta t_{1}} \right] + \frac{U_{12}}{\Delta t_{2}^{2}} \left[q_{2}^{\prime - \Delta t_{2}} - 2q_{2}^{\prime} + q_{2}^{\prime + \Delta t_{2}} \right] = -2 \theta^{\prime} (q_{2}^{\prime})^{T} M D \dot{q}_{2}^{\prime} + \tau \qquad (21)$$

$$\frac{U_{12}}{\Delta t_{1}^{2}} \left[\theta^{\prime - \Delta t_{1}} - 2\theta^{\prime} + \theta^{\prime + \Delta t_{1}} \right] + \frac{M_{2}}{\Delta t_{2}^{2}} \left[q_{2}^{\prime - \Delta t_{2}} - 2q_{2}^{\prime} + q_{2}^{\prime + \Delta t_{2}} \right] = -K_{q,q_{2}} q_{2}^{\prime} \qquad (22)$$

其中, $MD = M_2 - D_1$.

由于变量之间的耦合,在同步更新时,需要计 算慢变分量和快变分量之间的相互作用力,根据公 式(15),可以方便地得到 *t* 时刻快变分量(*q*₂)对慢 变分量(*θ*)的作用力为:

$$F_{q_2\theta_1} = Q_{\theta} - M_{\theta q_2} \ddot{q}_2$$
(23)
慢变分量(θ)对快变分量(q_2)的作用力为:

$$\mathbf{f}_{\theta q_2^n} = -\mathbf{M}_{q_2 \theta} \hat{\boldsymbol{\theta}} \tag{24}$$

将(23)和(24)代入方程(21)和(22)中,对公 式(21)和(22)进行消项计算,可以得到如下格式 的数值积分格式.

$$\theta^{t+\Delta t} = [\mathbf{M}\mathbf{M}^{t}]^{-1}\Delta t_{1}^{2}[\mathbf{M}_{2}(\tau-2\theta^{t}(\mathbf{q}_{2}^{t})^{T}\mathbf{M}\mathbf{D}\mathbf{q}_{2}^{t}) + U_{12}(\mathbf{q}_{2}^{t})^{T}(\mathbf{K}_{2}-(\theta^{t})^{2}\mathbf{M}\mathbf{D})] + 2\theta^{t}-\theta^{t-\Delta t} \quad (25)$$
$$\mathbf{q}_{2}^{t+\Delta t_{2}} = [\mathbf{M}\mathbf{M}^{t}]^{-1}\Delta t_{2}^{2}[-\mathbf{M}_{\theta\theta}^{t}(\mathbf{q}_{2}^{t})^{T}(\mathbf{q}_{2}^{t})^{T}(\mathbf{K}_{2}-(\theta^{t})^{T}\mathbf{M}\mathbf{M}_{2}^{t})]$$

$$(\theta^{t})^{2}MD) - U(\tau - 2\theta^{t}(\boldsymbol{q}_{2}^{t})^{T})] + 2\boldsymbol{q}_{2}^{t} - \boldsymbol{q}_{2}^{t-\Delta t} \quad (26)$$

$$\ddagger \psi, MM^{t} = M_{\theta\theta}^{t}M_{2} - U_{12}^{T}U_{1}12$$

定义如下符号.

$$S_{1}^{t} = \tau - 2\dot{\theta}^{t} (\boldsymbol{q}_{2}^{t})^{T} \boldsymbol{M} \boldsymbol{D} \boldsymbol{q}_{2}^{t}$$

$$S_{2}^{t} = (\boldsymbol{q}_{2}^{t})^{T} (\boldsymbol{K}_{2} - (\dot{\boldsymbol{\theta}}^{t})^{2} \boldsymbol{M} \boldsymbol{D})$$

$$\boldsymbol{\mathcal{T}} \boldsymbol{\mathcal{R}} (25), (26) \boldsymbol{\Pi} \boldsymbol{\mathcal{U}} \boldsymbol{\mathcal{G}} \boldsymbol{\mathcal{H}} :$$

$$q_{1}^{t+\Delta t_{1}} = \frac{\Delta t_{1}^{2}}{\boldsymbol{M} \boldsymbol{M}^{t}} [\boldsymbol{M}_{2} S_{1}^{t} + \boldsymbol{U}_{12} S_{2}^{t}] + 2q_{1}^{t} - q_{1}^{t-\Delta t_{1}} \quad (27)$$

$$q_{1}^{t+\Delta t_{2}} = \frac{\Delta t_{2}^{2}}{\boldsymbol{M} \boldsymbol{M}} [-M_{\theta \theta}^{t} S_{2}^{t} - \boldsymbol{U}_{12} S_{1}^{t}] + 2\boldsymbol{q}_{1}^{t} - \boldsymbol{q}_{2}^{t-\Delta t_{2}} \quad (28)$$

方程(27),(28)共同组成子循环的同步更新 格式.在此计算之后,进入子步更新阶段,其更新格 式与公式(28)一致,第*j*子步的更新公式为.

$$\boldsymbol{q}^{t+(j+1)\Delta t_2} = \frac{\Delta t_2^2}{\boldsymbol{M} \boldsymbol{M}^{t+j\Delta t_2}} \begin{bmatrix} -\boldsymbol{M}_{\theta\theta}^{t+j\Delta t_2} \boldsymbol{S}_2^{t+j\Delta t_2} - \boldsymbol{M}_{\theta\theta}^{t+j\Delta t_2} \boldsymbol{S}_2^{t+j\Delta t_2} \end{bmatrix}$$

 $U_{12}S_{1}^{t+j\Delta t_{2}}] + 2q_{2}^{t+j\Delta t_{2}} - q_{2}^{t+(j-1)\Delta t_{2}}$ (29) 公式(29)子步更新时, S_{1} 及 S_{2} 的计算依赖于 $\dot{\theta}^{t+j\Delta t_{2}}$ 的值,但是此积分步中的 $\dot{\theta}^{t+j\Delta t_{2}}$ 为未知量,为 得到 $\dot{\theta}^{t+j\Delta t_{2}}$ 在子步时的值,按照梯形法则,可根据已 求得的 $\dot{\theta}^{t}$ 和 $\dot{\theta}^{t+\Delta t_{1}}$ 及其导数,参考类似于 Neal Mark O^[15]等人提出的常加速度法,假设:

$$\hat{\theta}^{i+j\Delta t_2} \doteq \hat{\theta}^i \tag{30}$$

$$\dot{\theta}^{\iota+j\Delta\iota_2} \doteq (1-\frac{j}{m})\dot{\theta}^{\iota} + \frac{j}{m}\dot{\theta}^{\iota+j\Delta\iota_2}$$
(31)

将公式(30)和(31)所估算出的 θ^{ι+jΔl2}和 θ^{ι+jΔl2}代入

方程(29)中,即可方便的对子步更新中的 q₂ 变量 进行积分计算.

3 计算结果分析

给定图 1 所示的梁与文献[20]相同的参数 值,梁长度 L = 8m,横截面积 $A_0 = 7$. 2968 * 10⁻⁵ m²,截面惯性矩 I = 8. 2189 * 10⁻⁹m⁴,材料密度 $\rho =$ 2. 7667 * 10³kg/m³,弹性模量 E = 6. 8952 * 10¹⁰N/ m². 初始角速度为 0,大范围运动驱动力矩规律见 下公式(图 3),其中,T = 10s, $\tau_0 = 4$ Nm.

Fig. 3 Function of the driving moment

根据第2、3节所推导的柔性梁动力学模型和 子循环算法,采用 Matlab 编程(其中部分系数的计 算利用符号运算技术).进行了该梁的动力响应计 算,得到梁在旋转过程中的运动轨迹和其顶点的变 形历程,其中,为了验证子循环计算的稳定性和计 算精度,分别采用了每1主步包含5步子循环(5: 1)和每1主步包含10步子循环(10:1)的积分方 式,计算结果分别示于图4~图7中,同时在各图 中还给出了中心差分法计算的结果.

图 5 柔性梁变形历程(5:1)

Fig. 5 Elastic deformation of the flexible beam (5:1)

图6 柔性梁旋转角度历程(10:1)

Fig. 7 Elastic deformation of the flexible beam (10:1)

从图4~图7的计算结果中,可以清楚地看出 随着主步中包含子循环步数的增加,将会同时影响 旋转角度(慢变分量)与弹性变形(快变分量)的计 算结果,其中,图6慢变分量的子循环计算值在初 始时间段内还出现了负值的现象,可能是由于慢变 分量的积分步长设置增大所致,虽然减小主步长可 以解决该问题,但是时间成本的增加是不可避免 的.有趣的是在图7中的弹性变形在转动的过程中 与原始算法计算结果吻合得似乎比图5结果更令 人满意.在梁的驱动力矩消失后(10秒后),无论是 图5还是图7中,都反映出了梁的残余振动并造成 了图4和图6中显示的梁小幅度往复摆动.虽然计 算的结果有偏差,但是子循环和非子循环的计算结

191

果基本上都保持了一致的变化趋势,而且与蔡国 平^[20]等人的计算结果吻合得较好.其中,5:1的子 循环过程耗时 15.8*s*,原始的中心差分算法循环过 程耗时 23.2*s*,二者的比例为 68.1%;10:1的子循 环过程耗时 11.7*s*,只有原始算法耗时的 50.4%. 针对这一现象,采用不同的时间步比例(从1:1~ 10:1)进行了初步的校核,同时对比了计算精度,结 果显示子循环的计算效率和计算精度之间存在一 个折衷的平衡,该平衡点可以通过能量平衡校验或 误差阈值校验方法进一步研究,限于篇幅,有关内 容和结果将另文介绍.

4 结论

本文针对典型的细长梁旋转动力学模型提出 了一种基于中心差分原理的子循环计算方法,通过 将待求变量分解为快变分量和慢变分量,并对不同 变量采用不同积分步长,可以大幅度提高系统仿真 的计算效率.

柔性多体系统动力学方程固有的长周期变量 (刚体位移变量)、短周期变量(弹性变形变量)使 系统方程成为所谓的刚性方程,其积分过程存在易 发散、收敛慢的特点,子循环计算针对这一问题,采 用了多尺度概念的处理方式,使得系统的数值积分 稳定性得到了改善.

在子循环积分过程中,每一主步内进行的子循 环步数不同会对系统积分的精度产生一定的影响, 在一定范围内,计算效率和计算精度之间存在一个 折衷的平衡.

由于子循环计算的异步特征,使其可以很好地 与并行计算结合,这种结合在有限元技术中已经得 到研究.目前,在多柔体动力学计算中已经应用并 行算法以提高积分效率,但是如何将子循环计算和 并行计算结合以提高多体系统响应的计算效率,仍 有待于进一步的深入研究.

参考文献

- 洪嘉振. 计算多体系统动力学. 北京:高等教育版社, 1999(Hong Jiazhen. Compu -tational Multi-body System Dynamics. Beijing: High Education Press, 1999 (in Chinese))
- 2 Negrut D, Jose L O. On an approach for the linearization of

the differential algebraic equations of multibody dynamics. Proceedings of IDETC/MESA 2005,2005 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications. September 2005, Long Beach, USA, DETC 2005-85109

- 3 Negrut D, Ottarsson G. On an Implemen- tation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics. Proceed -ings of IDETC/MESA 2005, 2005 ASME /IEEE International Conference on Mecha -tronic and Embedded Systems and Applica -tions. September 2005, Long Beach, USA, DETC2005- 85096
- 4 Gavrea B, Negrut D, Potra F A. The newmark integration method for simulation of multibody Systems: analytical considerations. Proceedings of IMECE 2005, ASME International Mechanical Engineering Congress and Exposition 2005, November 2005, Orlando, USA, IMECE2005-81770
- 5 Book W J. Recursive Lagrange dynamics of flexible manipulator arms. *International Journal of Robotic Research*, 1984, 3(3): 87 ~ 101
- 6 Changizi K, Shabana A A. A recursive formulation for the dynamics analysis of open loop deformable multibody systems. *Journal of Applied Acoust*, 1988, 55:687~693
- 7 Bae D S, Hwang R S and Haug E J. A recursive formulation for real-time dynamic simulation. Advanced in Automation ASME, 1988, 5:499 ~ 508
- 8 Shabana A A, Hwang Y L and Wehage R A. Projection methods in flexible multibody dynamics, Part I: Kinematics, Part II: Dynamics and recursive projection methods. *International Journal for Numerical Methods in Engineering*, 1992, 35:1927 ~ 1966
- 9 Fisette P, Samin J C, Willems P W. Contribution to symbolic analysis of deformable multibody systems. *International Journal for Numerical Methods in Engineering*, 1991, 32: 1621 ~ 1635
- 10 Melzer E. Symbolic computations in flexible multibody systems. Nonlinear Dynamics, 1996,9(1-2):147 ~ 163
- 11 Shi P, McPhee J, Heppler G R. A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics. *Multibody System Dynamics*, 2001, 5:79 ~ 104
- 12 Haug E J. Integrated tools and technologies for concurrent engineering of mechanical systems, Concurrent Engineering Tools and Technology for Mechanical System. Heidelberg, Springer-Verlag, 1993
- 13 Ider S K. Finite element based recursive formulation for re-

al time dynamic simulation of flexible multibody systems. *Computational Structure*, 1991, 40(4):939 ~ 945

- 14 Belytschko T, Robert M. Stability of explicit-implicit mesh partitions in time integration. International Journal for Numeri -cal Methods in Engineering, 1978, 12 (10): 1575 ~ 1586
- 15 Neal M O, Belytschko T. Explicit- explicit subcycling with non-integer time step ratios for structural dynamic systems. *Computers and Structures*, 1989, 31(6):871 ~ 880
- 16 高晖,李光耀,钟志华,张维刚. 汽车碰撞计算机仿真中 的子循环法分析. 机械工程学报,2005,41(11):98~101 (Gao H,Li G Y,Zhong Z H,Zhang W G. Analysis of subcycling algorithms for computer simulation of crashworthiness. *ChineseJournal of Mechanical Engineering*, 2005,41 (11):98~101(in Chinese))
- 17 郑阳明,褚庆昕.多时间步长时域有限差分法.电子学

报,2004,32(9):1504 ~ 1506 (Zheng Yangming, Chu Qingxin. Multi-time- step finite difference time domain method. *Acta Electric Sinica*,2004,32(9):1504 ~ 1506(in Chinese))

- 18 郑阳明,褚庆昕. 多时间步长时域有限差分法分析微波 电路. 微波学报, 2005, 21(4):11~14 (Zheng Yangming, Chu Qingxin. Analysis of Microwave Circuits using Multi-time-step finite difference time domain method. *Journal of Microwave*, 2005, 21(4):11~14 (in Chinese))
- 19 Wasfy T M, Noor A K. Computational strategies for flexible multibody systems. Applied Mechanics Reviews, 2003, 56 (6):553~613
- 20 蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究.力学学报,2005,1:48~56(Cai Guoping, Hong Jiazhen. Assumed mode method of a rotating flexible beam. *Acta Mechanica Sinica*,2005,1:48~56(in Chinese))

STUDY ON SUB-CYCLING ALGORITHM FOR RESPONSE COMPUTATION OF A FLEXIBLE BEAM *

Miao Jiancheng^{1,2} Zhu Pin¹ Chen Guanlong¹ Zhu Dawei¹

(1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
(2. Department of Mechanical Engineering, Shazhou Institute of Technology, Zhangjiagang 215600, China)

Abstract Based on the Hamilton theory and transforming the formulation into a discrete style, the model of a rotational flexible beam was established. Based on this model and the principle of the central difference method, we presented a sub-cycling algorithm for the flexible beam dynamics and established the common-update format and the sub-step update format. During the sub-cycling procedure, the computational precision and stability were assured by means of changing the step sizes. Computational results illustrate that the sub-cycling can enhance the computational efficiency significantly with suitable integral accuracy, and the computational stability can be enhanced by means of modifying the step sizes. As a result, the stiffness problem of the difference equation is solved effectively.

Key words flexible multi-body dynamics, the assumed mode, numerical integral, sub-cycling technique, step-size modification

Received 2 July 2007, revised 11 September 2007.

^{*} Pre-study project for 14th academy of CETC