基于 Push-over 分析的钢-混凝土组合框架抗震性能研究*

谭丽芳 蒋丽忠 董立冬

(中南大学土木建筑学院,长沙 410075)

摘要 通过建立 push - over 分析方法中的等效单自由度体系,分析得到钢 - 混凝土组合框架结构的等延性 需求谱.利用有限元软件对组合框架进行非线性静力推覆分析,基于位移模式把多自由度体系转换为等效 单自由度体系,建立其等效加速度与等效位移曲线.按现行抗震规范建立组合框架结构谱加速度与谱位移 曲线,从而对该类结构进行抗震评估.用非线性动力时程分析方法对本文提出方法进行了比较,验证了该方 法的可靠性.

关键词 静力弹塑性分析, 非线性动力时程分析, 钢-混组合框架

引 言

结构的抗震分析方法分为静力分析法和动力 分析法.静力弹塑性分析方法是目前在国外普遍使 用的结构抗震能力的评估方法,在我国逐步得到推 广应用.动力分析法主要是非线性动力时程分析, 它能够计算地震反应全过程中各个时刻结构的内 力和变形状态,给出结构开裂和屈服的顺序,发现 应力变形和塑性集中的部位,从而判明结构的屈服 机制,薄弱环节以及可能的破坏类型,但它计算量 大,结果的准确性很大程度上依赖于输入的地面运 动情况^[1]. 以水平力分布模式进行的静力弹塑性分 析的结果的精确性在很大程度上依赖于水平力模 式的洗取^[2].该方法的几种水平力加载模式都存在 与实际地震作用不相符合[3]的缺陷.另外,在确定 地震位移需求响应时,通常是根据静力弹塑性分析 得到基底剪力一顶点位移关系曲线结果,再等效为 单自由度体系后进行的. 但按水平力模式的分析, 这一等效缺乏严密的理论基础. 究其原因, 在强地 震作用下,水平力模式是随着结构的弹塑性程度不 断发展而不断发生变化.这就使得基于水平力模式 的静力弹塑性分析方法的前提条件不能成立.这是 基于水平力分布模式来研究静力弹塑性分析方法 一直未很好解决的理论问题.水平力分布模式保持 不变的静力弹塑性分析方法与实际地震作用下水 平地震作用分布模式不断变化之间的差距,已成为

静力弹塑性分析方法研究的一个重点问题.针对 push-over方法中的加载模式,本文在弹性阶段采 用弹性时程分析下得到的位移加载模式,塑性阶段 采用塑性时程分析下得到的塑性位移加载模式,并 采用基于位移模式等效成单自由度体系,基于抗震 规范中的弹性反应谱建立谱加速度与谱位移曲线, 利用弹塑性时程分析验证该方法的准确性.

1 组合框架的弹塑性静力推覆分析

本文等效单自由度体系的推导过程基于位移 模式即位移形状向量 {u} 进行^[4],多自由度体系在 地震作用下的动力方程为

 $[M] \{ \ddot{y} \} + [C] \{ \dot{y} \} + \{ F(y) \} = -M \{ 1 \} \ddot{y}_0$

(1)

设 $\{y\}$ 由结构顶点位移 y_i 和位移形状向量 $\{u\}$ 表示,即 $\{y\} = \{u\}y_i$,式(1)可写成

$$[M] \{u\} \ddot{y}_{t} + [C] \{u\} \dot{y}_{t} + \{F(y)\} = -[M] \{1\} \ddot{y}_{0}$$
(2)

上式两边乘{u}^T可得

$$\{u\}^{T}[M] \{u\} \ddot{y}_{t} + \{u\}^{T}[C] \{u\} \dot{y}_{t} + \{u\}^{T} \{F(y)\} = -\{u\}^{T}[M] \{1\} \ddot{y}_{0}$$

$$(3)$$

 $u \{ Y \{ F(y) \} = -\{ u \} [M] \{ 1 \} y_0$ (3)

$$y_{t} = \frac{\left\{u\right\}^{T} \left[M\right]\left\{1\right\}}{\left\{u\right\}^{T} \left[M\right]\left\{u\right\}} y_{e}$$

$$\tag{4}$$

式(3)化为

今

$$\{\,u\,\}^{\,\,T}\left[\,M\,\right]\,\{\,1\,\}\,\ddot{y}_{e}\,+\,\{\,u\,\}^{\,\,T}\left[\,C\,\right]\,\{\,u\,\}\,\times$$

²⁰⁰⁷⁻¹⁰⁻¹⁹ 收到第1稿,2008-05-16 收到修改稿.

^{*}国家自然科学基金(50438020,50778177)和湖南省杰出青年基金资助项目(07JJ1009)

$$\frac{\{u\}^{T}[M]\{1\}}{\{u\}^{T}[M]\{u\}}\dot{y}_{e} + \{u\}^{T}\{F(y)\} = -\{u\}^{T}[M]\{1\}\ddot{y}_{0}$$
(5)

将上式写成以下等效单自由度体系的动力万程为 $M_e \ddot{y}_e + C_e \dot{y}_e + F_e = -M_e \ddot{y}_0$ (6)

等效质量 $M_e = \{u\}^T [M] \{1\}$ 等效阻尼 $C_e = \{u\}^T [C] \{u\} \frac{\{u\}^T [M] \{1\}}{\{u\}^T [M] \{u\}}$ 等效恢复力 $F_e = \{u\}^T \{F(y)\}$ 等效位移 $y_e = \frac{\{u\}^T [M] \{u\}}{\{u\}^T [M] \{1\}} y_t$

假定多自由度体系与等效单自由体系的基底剪力 相等,则有

$$V_{b} = \sum_{i=1}^{n} F_{i} = \left[\sum_{i=1}^{n} m_{i} c_{i}\right] a_{eff} = M_{eff} a_{eff}$$
(7)

根据动力学原理,等效单自由度体系的等效刚度和 相应的基底剪力分别表示为

$$K_{eff} = \left[\frac{2\pi}{T_{eff}}\right]^2 M_{eff} \tag{8}$$

$$V_b = K_{eff} \cdot u_{eff} \tag{9}$$

$$T_{eff} = 2\pi \sqrt{\frac{M_{eff}}{K_{eff}}} \tag{10}$$

2 组合框架的等延性需求谱

由力的折减系数的物理意义可得

$$mS_a = mS_{ae}/R \tag{11a}$$

$$S_a = S_{ae}/R = \xi_{\gamma} S_{ae} \tag{11b}$$

$$\alpha = k\beta = \frac{S_{ae}}{g} = \frac{R \cdot S_a}{g} = \frac{S_a}{\xi_x \cdot g}$$
(12)

由规范弹性反应谱表达式和式(11)、(12)可得

$$S_{dp} = \frac{uS_a (S_a - 0.45\xi_y g\alpha_{max})^2}{121\pi^2 g^2 \chi^2_{max} \xi_y^2} \ 0 < T \le 0.1s \ (13a)$$

$$S_{dp} = \frac{uS_a T^2}{4\pi^2} \ 0. \ 1s < T \le T_g \tag{13b}$$

$$S_{dp} = \frac{u\xi_{y}T_{g}^{2}}{4\pi^{2}} \left(\frac{S_{a}}{\xi_{y}}\right)^{1-\frac{2}{r}} (\alpha_{max}g)^{\frac{2}{r}} T_{g} < T \leq 5 T_{g} (13c)$$

$$S_{dp} = \frac{uS_a}{4\pi^2} \left(\frac{0.2^r}{\eta} - \frac{S_a}{\xi_y g\alpha_{max}\eta} + \right)$$

$$(13d)$$

上式(13 - a)至(13 - d)结合 Vindic 的第四种 R— U—T模型可得出 A—D格式等延性需求谱,进行 推覆分析后得到的基底剪力—顶点位移曲线等效 成单自由度的 V_b — S_d 曲线,再转换成 S_a — S_d 能力 谱曲线,如果需求谱曲线与能力谱曲线有交点,则 满足抗震要求.

3 基于 Push-over 分析的组合框架抗震性 能评估

某 3 层钢 - 混凝土组合框架,由钢管混凝土柱 和钢 - 混凝土组合梁组成,双跨(2×3900mm)、单 开间(3000mm),第 1 至第 3 层的层高依次为 4000mm,3300mm,3300 mm,钢管混凝土柱采用 φ168mm×6mm的Q235钢管,内填C30 混凝土.钢 梁采用工字钢梁I20a(16Mn 钢).采用Ansys进行 分析,钢 - 混凝土组合框架的组合柱采用 beam188 单元,截面形式采用复合截面,组合梁也采用 beam188 单元.其中钢采用BISO 材料模型,混凝土 采用MISO 材料模型,并加 CONCR 破坏准则,分阶 段加载,弹性阶段采用弹塑性性时程分析弹性阶段 得到的楼层位移模式加载,塑性阶段采用塑性阶段 分析得到的楼层位移模式加载,得到多自由度体系 基底剪力 Vb—顶点位移 Sd 曲线如图 1 所示.

考虑楼板荷载,恒载,活载下的楼层等效质量 为48255Kg,可按式(6)和(7)建立等效单自由度 体系的等效加速度—等效位移曲线.根据图1将曲 线双折线化得出等效屈服位移为0.118m,此时对 应的基底剪力为126680N,由(9),(10)得结构等 效周期为1.343s,考虑1类场地,设计分组二下的 *T_g*为0.3 s. 根据(13 - a)—(13 - d)和 Vindic 的第四种 R—U—T 模型建立八度罕遇地震下 I 类场地结构 阻尼比为 0.05 的等延性需求谱如图 2 所示.

equivalent acceleration - equivalent displacement curve

上图的钢一混凝土结构框架延性需求曲线跟同一等跨、等柱距和等层的钢筋混凝土框架(柱0.5×0.5,0.2×0.3)相比,在同一延性系数条件下,钢筋混凝土框架的需求曲线偏低,因此对于同一能力谱曲线,钢筋混凝土框架的交点要比结构框架的要早,即钢筋混凝土结构的目标位移要小.从得出的钢一混凝土结构能力曲线来看,结构的等效屈服位移取0.118m,若结构的延性系数为u=1.5,则结构的最大位移为0.177m,从图中u=1.5的需求曲线与能力曲线交点来看,交点位移为0.164m,两者数值接近,则此交点的位移为结构的目标位移.

4 组合框架的动力时程分析

对该组合框架在水平方向输入8度EL—Centrol 波,历时8秒,时间间隔0.02秒,共400个点, 地震波曲线如图3所示,组合框架的楼层位移时程 和基底剪力时程曲线如图4和图5所示.

图 5 基底剪力时程结果 Fig. 5 Base shear time history result

在同一8度罕遇地震作用下,非线性静力分析 得到的目标位移为0.164m,此时对应的基底剪力 为132890N,而动力时程分析得到的最大位移为0. 1495m,最大基底剪力为131745N,静力分析结果偏 大,位移相对误差9%,基底剪力相对误差0.9%, 因此,验证了非线性静力分析过程是合理可靠的.

5 结论

本文利用基于位移模式的等效单自由度体系 与钢 - 混凝土组合框架结构等延性需求谱的有效 结合,改进了能力谱计算方法,并在组合框架结构 进行推覆分析时采用了分阶段加载,更好地模拟了 组合框架结构在地震作用下受力过程的变化,建立 了组合框架结构等效加速度与等效位移曲线,并按 现行抗震规范建立了其谱加速度与谱位移曲线,分 析结果与同一8度罕遇地震下的非线性动力时程 分析比较表明,该改进的 push—over 方法具有较好 的可靠性.

参考文献

1 王连广,张海霞,吴利权. 钢骨高强混凝土框架结构非

线性地震反应分析. 沈阳建筑工程学院学报,2003,19 (4):247~249 (Wang Lianguang, Zhang Haixia, Wu liquan, Nonlinear seismic responses analysis of steel encased high-strength concrete frame structure. *Journal of Shenyang Architectural and Civil Engineering University*, 2003,19(4):247~249(in Chiaese))

- 2 钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构,2001,31(4):3~6 (Qian Jiaru,Luo Wenbin. Displacement Based Seismic Design Methodology for Building Structures. Journal of Building Structures,2001,31(4):3~6(in Chiaese))
- 3 G Fealla. Evaluation of the R/C structures seismic response by means of nonlinear static pushover analysis. 11th World Conference on Earthquake Engineering Acapulco Mexico, 1996
- 4 叶燎原,潘文. 结构静力弹塑性分析(push-over)的原理

和计算实例. 建筑结构学报,2000,21(1):37~43(Ye Liaoyuan, Pan Wen. The principle of nonlinear static analysis (Push-over) and numerical examples. *Journal of Build-ing Structures*,2000,21(1):37~43(in Chiaese))

- 5 周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用.地震工程与工程振动,2004,24(1):30~38 (Zhou Dingsong, Lv Xilin. Application of ductility demand spectra in performance-based seismic design. *Earthquake Engineering and Engineering Vibration*,2004,24(1):30~ 38(in Chiaese))
- 6 胡吉,石启印,蔡万军.低周反复荷载下新型组合框架结构受力性能的试验.四川建筑科学研究,2006,32(6):62~66(Hu Ji,Shi Qiyin,Cai Wanjun,The test of forced behaviors for new style composite frame under low reversed cyclic loads. *Sichuan Building Science*,2006,32(6):62~66(in Chiaese))

PUSH-OVER ANALYSIS ON THE STEEL-CONCRETE COMPOSITE FRAME STRUCTURE WITH THREE STORIES*

Tan Lifang Jiang Lizhong Dong Lidong

(School of Civil Engineering and Architecture, Central South University, Changsha 410075, China)

Abstract Based on the establishment of equivalent single degree of system in the push-over method, the equal ductility demanding spectrum of a steel-concrete composite fame structure was obtained, and the composite fame was analyzed by using inelastic static push-over method of ANSYS software. The several degrees of freedom system were converted to single degree of system based on displacement mode, the equivalent acceleration-equivalent displacement curve was built, and the spectrum acceleration-spectrum displacement curve of the composite fame structure was established according to the current seismic code. So the seismic performance of the structure was evaluated. The reliability of the push-over method was validated by comparing with the inelastic dynamic time-history analysis.

Key words nonlinear static analysis, nonlinear dynamic time-history analysis, steel-concrete composite frame structure

Received 19 October 2007, revised 16 May 2008.

^{*} The project supported by the Natural Science Foundation of China (50438020, 50778177) and The Outstanding Youth Fund of Hunan Province (07JJ1009)