一类对称约束碰振系统周期运动分析*

李健 张思进 孙丹 (湖南大学力学与航空航天学院,长沙 410082)

摘要 针对一类具有对称约束的单自由度线性系统,以定相位面为 Poincaré 截面建立起 Poincaré 映射,讨论 了此类周期运动的稳定性问题.并基于胞映射的思想,引人拉回积分等分析手段,得到了该碰振系统对称双 碰周期1的吸引子与吸引域,分析了吸引域随参数的变化规律.最后发现了吸引域的变化和系统分岔图中 出现跳跃现象之间的联系.

关键词 碰振系统, 对称约束, Poincaré 映射, 吸引子, 吸引域

引言

碰撞振动系统可以用来描述许多内部或边界 上有间隙的机械,例如齿轮传动箱、转子轴承工作 时因振动发生的碰撞,航天器伸展对接系统由于关 节间隙导致传动误差诱发的内碰撞等.间隙是机械 结构设计中不可避免的现象,由它引起的碰撞振动 对系统的动力学行为有很大的影响,系统的动态响 应因此会呈现出复杂的周期运动或混沌运动.

近几年来,许多学者对单边约束的系统模型进 行了研究. Shaw^[1]等人分别对单自由度分段线性系 统和冲击振子系统做了较详细的研究,发现并证实 了在这类系统存在倍周期分岔和 Smale 马蹄集等 非线性特征. Nordmark^[2]等从相空间中流与边界相 互作用的关系出发,建立了反映冲击振子碰撞运动 的拉回映射,发现冲击振子的运动中存在的擦边碰 撞现象是振子由周期运动直接进入混沌运动的主 要原因. Bernardo^[3]等人在擦边轨道或滑行轨道附 近引入 ZDM 映射,并通过分段流的局部展开法以 及各段的切换条件,建立起分段映射,最后组装成 全局映射,为一般多维分段光滑动力学系统找到了 统一的建立范式映射的方法.张彦梅^[4]等基于 Poincaré 映射方法对一类两自由度碰撞系统进行 研究,得到了单碰周期1/n的亚谐周期运动的存在 性判据,并精确地找到亚谐周期运动的初始位置.

相对而言,对双边约束的系统研究还比较少. Shaw^[5]利用与分析单边约束系统类似的方法,以其

2006-11-15 收到第1稿,2007-06-11 收到修改稿.

*国家自然科学基金(10402011)资助项目

中一个约束面为 Poincaré 截面建立映射关系,分析 了一类受双边约束振子对称双碰周期运动的稳定 性问题,但没有给出此运动形式的存在性条件. Luo^[6]等针对对称分段线性动力系统,将两个切换 面都作为 Poincaré 截面,建立起基本映射,再运用 组合基本映射的方法,分析了系统周期运动的稳定 性与分岔条件. Virgin^[7]等分别用直接数值求解和 胞映射方法得到了一类碰振系统的吸引域,并将结 果进行了比较.但由于积分精度等原因,得到的域 边界比较粗糙,而且有些本应是吸引域中的胞在用 胞映射计算时却成为了陷胞.

本文对一类具有对称约束的单自由度线性系统进行了研究,并以定相位面为 Poincaré 截面讨论 了此类周期运动的稳定性问题. 在数值模拟过程 中,我们发现系统存在多吸引子共存现象,并基于 胞映射^[8]的思想,引入拉回积分等分析手段,得到 了该碰振系统对称双碰周期1运动在不同参数条 件下的吸引子与吸引域. 通过与 Poincaré 映射分岔 图进行对比分析,发现了吸引域的改变与系统出现 跳跃现象之间的联系.

1 周期对称碰振运动 Poincaré 映射的建立 与分岔分析

考虑如图1所示的单自由度线性含对称约束的 碰振系统.不考虑阻尼,滑块在间隙中的运动由以下 线性微分方程表示(其中假设固有频率ω₀为1):

 $\ddot{x} + x = f \cos \omega t$ (1) 假设振子在 t^* 时刻与刚性约束面发生碰撞,则位 移满足条件:

$$x(t^*) = |\delta|, (\delta > 0)$$

$$(2)$$

该条件确定的平面称为碰撞面.我们这里假定碰撞 是瞬间完成的,碰撞前后只有速度分量发生改变, 则对应的碰撞条件为:

$$\dot{x}^{+}(t^{*}) = -r\dot{x}^{-}(t^{*}) \tag{3}$$

其中 $\dot{x}^{-}(t^{*}), \dot{x}^{+}(t^{*})$ 分别表示振子碰撞前和碰撞 后的速度, $r(0 < r \le 1)$ 为碰撞恢复系数.

图 1 力学模型 Fig. 1 Mechanical model

以往对碰撞振子的研究,出于简单起见,一般 都是以碰撞面作为 Poincaré 截面^[1,4,5]建立碰撞映 射关系. 但当振子发生擦边分岔或混沌运动(由混 沌运动轨道的稠密性知也存在擦边的轨线)时,碰 撞面与轨线相切,因而会出现不满足 Poincaré 截面 与轨线横截相交这一条件的情况. 为此,本文考虑 选择定相位面 $\Sigma_{\varphi} = \{(t,v,x) \in R^2 \times R^+ | t \pmod{(2n\pi)} = \varphi_0\}$ 为 Poincaré 截面,这样可以使轨线与 Poincaré 截面总是满足横截相交条件.

图 2 对称双碰周期 n 运动

仍然考虑对称双碰周期 n 运动(如图 2). 设 φ_0 为某个 Poincaré 截面的相位,其对应时刻为 t_0 ,则 两次碰撞发生时刻可分别表示为:

$$t_1 = t_0 + \frac{n\pi}{\omega} - \tau, \quad t_2 = t_0 + \frac{2n\pi}{\omega} - \tau \tag{4}$$

这里 τ 为轨线离开第二次碰撞点返回 Poincaré 截 面的时间.这样我们可得到第一次碰撞前的位移及 速度分量:

$$\begin{cases} x(t_1) = A\cos(\frac{n\pi}{\omega} - \tau) + B\sin(\frac{n\pi}{\omega} - \tau) + \\ A_0\cos\omega(t_0 + \frac{n\pi}{\omega} - \tau) \\ v(t_1) = -A\sin(\frac{n\pi}{\omega} - \tau) + B\cos(\frac{n\pi}{\omega} - \tau) - \\ A_0\omega\sin\omega(t_0 + \frac{n\pi}{\omega} - \tau) \end{cases}$$
(5)

其中:
$$v = \dot{x}, A_0 = \frac{f}{1 - \omega^2}, A = x_0 - A_0 \cos \varphi_0, B = v_0 +$$

 $A_0\omega\sin\varphi_0, \varphi_0 = \omega t_0, 碰撞条件为 x(t_1) = -\delta, 该式确 定了时间 \tau 与初始点(x_0, v_0)的关系.$

同理,由 $t_1 \rightarrow t_2$ 时刻的解曲线方程,可得到第 二次碰撞前的位移及速度分量;由 $t_2 \rightarrow t_3$ 时刻,可 得到 t_3 时刻的位移和速度分量如下:

$$\begin{cases} x(t_3) = A^{"}\cos\tau + B^{"}\sin\tau + A_0\cos\omega t_0\\ v(t_3) = -A^{"}\sin\tau + B^{"}\cos\tau - A_0\omega\sin\omega t_0 \end{cases}$$
(6)

其中:

$$A^{''} = \delta - A_0 \cos\omega(t_0 - \tau) ,$$

$$B^{''} = v^+(t_2) + A_0 \omega \sin\omega(t_0 - \tau)$$
(7)

(6)及(7)式确定了 Poincaré 截面上的点 (x_0, v_0) 到 点 $(x(t_3), v(t_3))$ 之间的映射关系,是我们进一步 分析对称双碰周期运动分岔的基础.

为简化计算,在这一节中设 φ_0 ,则碰撞条件 $x(t_1) = -\delta$ 可简化为:

$$(x_0 - A_0)\cos(\frac{n\pi}{\omega} - \tau) + v_0\sin(\frac{n\pi}{\omega} - \tau) + A_0\cos(\frac{n\pi}{\omega} - \tau) = -\delta$$
(8)

在计算系统周期运动的分岔之前,我们必须先求出 映射(6)的不动点(x₀,v₀):

$$\begin{cases} x_0 = (\zeta_{11}\sin^2\tau + \zeta_{12}\sin\tau + \zeta_{13}\cos^2\tau + \zeta_{14}\cos\tau - A_0)/\zeta_{15} \\ v_0 = (\zeta_{21}\sin^2\tau + \zeta_{22}\sin\tau + \zeta_{23}\cos^2\tau + \zeta_{24}\cos\tau)/\zeta_{25} \end{cases}$$
(9)

将(9)式代入(8)式中,可得到时间 *τ*满足的方程, 并可用数值方法求得时间 *τ*.

为了讨论其稳定性,我们需要计算 Poincaré 映射(17)在该不动点处的 Jacobi 矩阵:

$$D\boldsymbol{P} = \begin{bmatrix} \frac{\partial x(t_3)}{\partial x_0} & \frac{\partial x(t_3)}{\partial v_0} \\ \frac{\partial v(t_3)}{\partial x_0} & \frac{\partial v(t_3)}{\partial v_0} \end{bmatrix}$$
(10)

求导过程中注意将 τ 看作(x₀, v₀)的函数,利 用(16)式,得到 *DP* 各分量为:

$$\begin{cases} \frac{\partial x(t_3)}{\partial x_0} = -r^2 \cos \frac{n\pi}{\omega} \sin(\frac{n\pi}{\omega} - \tau) \sin\tau + (S_1 \sin\tau + S_2 \cos\tau) \frac{\partial \tau}{\partial x_0} \\ \frac{\partial x(t_3)}{\partial v_0} = r^2 \cos \frac{n\pi}{\omega} \cos(\frac{n\pi}{\omega} - \tau) \sin\tau + (S_1 \sin\tau + S_2 \cos\tau) \frac{\partial \tau}{\partial v_0} \\ \frac{\partial v(t_3)}{\partial x_0} = -r^2 \cos \frac{n\pi}{\omega} \sin(\frac{n\pi}{\omega} - \tau) \cos\tau + (S_3 \sin\tau + S_4 \cos\tau) \frac{\partial \tau}{\partial x_0} \\ \frac{\partial v(t_3)}{\partial v_0} = r^2 \cos \frac{n\pi}{\omega} \cos(\frac{n\pi}{\omega} - \tau) \cos\tau + (S_3 \sin\tau + S_4 \cos\tau) \frac{\partial \tau}{\partial v_0} \end{cases}$$

得到 DP 之后,我们便能够计算出它在不动点处的特征值(12),通过对该特征值的分析即可得系统(1)的分岔参数.

 $\lambda_{1,2} = [\operatorname{Tr}(D\boldsymbol{P}) \pm \sqrt{\Delta}]/2$ (12) $\ge \underline{\Delta} = [\operatorname{Tr}(D\boldsymbol{P})]^2 - 4\operatorname{Det}(D\boldsymbol{P}).$

2 对称双碰周期1运动的吸引子和吸引域

在对系统(1)进行数值模拟时,我们发现系统 在某一范围内会出现共存吸引子的现象.取f = 1, $r = 0.8, \delta = 0.5$,以碰撞面为 Poincaré 截面,系统随 参数 ω 变化的分岔图如图 3 所示.其中(a),(c) 表示 Poincaré 截面上 v 随 ω 的变化,(b),(d)表示 相位 φ 随 ω 的变化.(a),(b)计算方向为 $\omega = 2 \rightarrow \omega = 6$,(c),(d)计算方向为 $\omega = 6 \rightarrow \omega = 2$.

图 3 系统(1)随参数变化的分岔图 Fig. 3 Bifurcation of system (1) varying with parameter

分岔图显示,在 $\omega \approx 3.6 \cong \omega \approx 5.5$ 区域内,系 统存在其它形式的运动与对称双碰周期1运动共 存的现象.其中,在 $\omega \approx 3.6 \cong \omega \approx 3.9$ 区间会出现 非碰撞运动,在 $\omega \approx 3.9 \cong \omega \approx 4.5$ 区间有类似混 沌运动发生.图4给出了当 $\omega = 4$ 时,系统在不同初 始条件下得到的对称双碰周期1吸引子和混沌吸 引子的相平面图.

图4 (a)对称双碰周期1吸引子的相平面图和(b)混沌吸引子的相平面图 Fig. 4 Phase portrait of attractors:

(a)Symmetric double-impact period-1 attractor; (b)Chaotic attractor

为了计算系统对称双碰周期1运动的吸引域, 我们考虑将光滑动力系统的胞映射方法引入到此 碰振系统中.但是由于系统存在对称刚性约束,使 得系统的轨线在与约束面接触时不连续,相轨线会 发生跳跃,近似积分其相轨线时在此处会出现中 断,所以光滑动力系统的胞映射方法不能直接应用 到碰振系统之上.

为此,我们引进拉回积分这一手段,使胞映射 方法能够适用于碰振系统,并且还可以提高所求吸 引域的精度.我们考虑在轨线未越过约束面时使用 大步长 h,假设轨线在 t*时刻越过约束面,便将其 拉回到碰撞的前一时刻 t* - h,重新积分,并同时 将步长缩短至所要求精度(例如 H = h/50).然后当 轨线即将再次穿过约束面时,对其使用碰撞转换关 系式,再继续积分至时刻 t 后,恢复为大步长,并以 此时刻的坐标值作为后续积分运算的初始值.这样 便可使胞映射方法适用于碰振系统,并且在保证计 算精度基础上,又提高了效率.

在对系统(1)进行计算时,我们取定相位面为 Poincaré 截面,采用点映射和胞映射结合的方法. 即在计算不动点时,使用点映射的方法,先将研究 区间 $\Omega = \{x_0, v_0 \mid -\delta \le x_0 \le \delta, -3 \le v_0 \le 3, x_0, v_0 \in R\}$ 粗分为比较少的胞(10×60),以每个胞的中心点 为初始点进行积分计算.经过一定周期运动后,它 如果稳定在 Poincaré 截面上某点的极小邻域内,记 录下这一点,即可得不动点坐标.求得不动点后,再 将区间 Ω 细分(100×600),计算每个胞中心点经 过一次点映射后在 Poincaré 截面上的映射点.如果 后的点所属的胞,进而建立起胞与胞之间的映射关系:C(k) = l. 然后对 l = 1, 2, ..., N 依次检查映射序列 $l \rightarrow C(l) \rightarrow C^2(l) \rightarrow ...$ 若在有限迭代次数 r 内,收敛于对称双碰周期 1 不动点所在的胞,则是该不动点的收敛域. 继续计算下一个胞,直到所有胞计算完毕. 最后经过对映射的分析即可得到吸引域的范围.

当参数为 $f=1,r=0.8,\delta=0.5$ 时,从区间 $\omega \in [4.0,5.5]$ 中选取 6 个点,我们得到系统(1)的不 动点坐标(x_0,v_0)如表(1)所示:

表1 各不动点坐标以及对应的吸引域面积在中所占比例

Table 1 Coordinate of fixed points and the proportion of corresponding domain of attraction in Ω

ω	4.0	4.3	4.6	4.9	5.2	5.5
\mathbf{x}_{0}	0.282	0.242	0.198	0.156	0.083	0.035
\mathbf{v}_0	1.405	1.490	1.569	1.660	1.736	1.815
proportion	56.5%	46.8%	40.9%	23.7%	10.9%	0.2%

各不动点对应的吸引域如图(5)所示,黑色区 域表示对称双碰周期1吸引子的吸引域.其中吸引 域在 *Q* 中所占比例已在表(1)中给出.

Fig. 5 Domain of attraction of symmetric double-impact 1-period motion 由图 5 可见,碰振系统某些吸引子的吸引域也 表现出类似非线性动力系统吸引域的分形特征. 虽 然系统受对称约束,但是得到的吸引域却不是关于 x = 0 对称的. 并且随着ω值的增大,对称双碰周期 1 运动的吸引域面积在Ω中所占比例以大约 10% 的速度逐渐减小,当ω=5.5(图 5(f))时,该比例 接近于0,说明此时产生对称双碰周期1运动的概 率十分小,系统的响应即将完全表现为周期3运 动.而分岔图3(a)显示,系统在ω≈5.5处由周期 1运动突变到周期3运动,即运动状态发生跳跃, 这是一种特殊的动态分岔现象.由此可见,在某些 碰振系统中,吸引域的变化在一定程度上预示着系 统会出现跳跃现象.

3 结论

通过对一类具有对称约束的单自由度线性碰 振系统的研究,以定相位面为 Poincaré 截面,利用 Poincaré 映射分析方法建立了对称双碰周期 n 运 动的映射关系式,并在此基础上讨论了周期运动的 稳定性问题.在进行数值模拟时,我们发现系统存 在多吸引子共存现象.为了进一步分析该碰振系统 对称双碰周期1吸引子与吸引域,本文基于胞映射 的思想,引入拉回积分等分析手段,画出了其吸引 域图,给出了吸引域面积随参数的变化规律,并且 与相应的 Poincaré 映射分岔图进行了对照,发现了 吸引域变化和分岔图中出现跳跃现象之间的联系.

- Shaw S W, Holmes P J. A Periodically Forced Piecewise Linear Oscillator. Journal of Sound and Vibration, 1983, 90 (1):129 ~ 155
- 2 A. B. Nordmark. Non Periodic Motion Caused by Grazing Incidence in Impact Oscillators. *Journal of Sound and Vi*bration, 1991, 145(2):279 ~ 297
- 3 Bernardo. M. di, Unified Framework for The Analysis of Grazing and Border – Collisions in Piecewise – Smooth System. *Physical Review Letters*, 2001, 86(12):2554 ~ 2556
- 4 张彦梅,陆启韶,李群宏.一类双自由度碰振系统的亚谐 周期运动存在性.动力学与控制学报,2003,1(1):29~ 34(Zhang Yanmei, Lu Qishao, Li Qunhong. The existence of subharmonic periodic motion in a two-degree-of-freedom vibro-impact system. *Journal of Dynamics and Control*,

2003,1(1):29~34(in chinese))

- 5 Shaw S W. The dynamics of a harmonically excited system having rigid amplitude constraints (part II and I). Journal of Applied Mechanics, 1985, 52(2):453 ~ 464
- 6 Albert C J Luo, Lidi Chen. Periodic Motions and Grazing in a Harmonically Forced, Piecewise, Linear Oscillator with Impacts. Chaos Solitons & Fractals, 2005, 24 (2): 567 ~

578

- 7 L. N. Virgin, C. J. Begley. Grazing Bifurcations and Basins of Attraction in An Impact – Friction Oscillator. *Physica D*, 130,1999:43 ~ 57
- 8 Hsu C S. A Gerenalized Theory of Cell to Cell Mapping for Nonlinear Dynamical Systems. ASME J ApplMech , 1981 , 48 :634 ~ 642

ANALYSIS ON PERIODIC MOTIONS OF A LINEAR VIBRO-IMPACT SYSTEM WITH SYMMETRIC TWO-SIDED CONSTRAINTS*

Li Jian Zhang Sijin Sun Dan

(College of Mechanics and Aerospace, Hunan University, Changsha 410082, China)

Abstract An undamped model for the response of one DOF(degree-of-freedom) systems having two-sided amplitude constraints was proposed. Firstly, the Poincaré map of the period-n motions was set up for the system by using fixed phase plane as Poincaré section, and the stability of periodic motions was also discussed. Then a numerical simulation was carried out, and it was shown that our conclusions were valid. Moreover, the phenomenon of multi-solutions' coexistence in this system was found through the numerical simulation. Finally, a means of pullback integral is introduced into the impact process based on the cell-mapping method, from which the coexistent attractors of the symmetric double-impact period-1 motions were derived, and it was found that the variation of domains of attraction was related to the leap phenomenon after comparing with Poincaré map figures.

Key words vibro-impact system, symmetrical constraints, Poincaré map, attractor, domain of attraction

Received 15 November 2006, revised 11 June 2007.

 $[\]ast$ The project suppoted by National Natural Science Foundation of China (10402011)