一类高维映射不变圈的计算*

徐慧东 谢建华 (西南交通大学应用力学与工程系,成都 610031)

摘要 在一类高维映射中实现了由 Looss 等人提出的映射不变圈的算法.首先分析了不变圈的分岔条件,然 后通过 Fredholm 择一方法分析了在计算不变圈过程中出现的一类方程解的存在性,再根据不变圈上映射到 自身的不变性,通过分析振幅各阶项的系数,最终在一高维映射中实现了不变圈的计算.

关键词 映射, Neimark-Sacker 分岔, Fredholm 择一方法

引 言

自 20 世纪 30 年代以来,力学中的非线性问题 日益为科学家们所注意.研究非线性问题的方法除 了进行实验研究外,在理论研究方面,只有为数很 少的非线性微分方程可求得精确解,一般情况下只 能用近似方法求解. 定量研究方法有解析方法和数 值方法.现有的解析方法较多,主要有摄动法;渐近 法;谐波平衡法;还有较便于处理阻尼系统的多重 尺度法;频闪法等.然而这些方法都是用来求微分 方程的近似解,对映射方程的求解大部分采用的是 数值解法. 如, Natsiavas^[1]分析了一类具有简谐激 励的两自由度分段线性系统,并通过数值模拟方法 得到了拟周期响应,并描述了系统通向混沌的道 路. Ivanov^[2]认为在多自由度碰撞振动系统中当一 对复共轭特征值穿越单位圆时可能存在 Hopf 分 岔. 文献^[3] 研究了一个碰撞振子余维二分岔和 Hopf 分岔. 文献[4] 建立了两自由度碰撞振动系统 Hopf 分岔的分析方法. 文献[5]讨论了一类三自由 度碰撞振动系统的 Hopf-Hopf 分岔. 上述文献中对 分岔中出现的不变圈和环面都是模拟得到的数值 解. 文献[6]系统的研究了微分系统的稳定性和分 岔问题,并对微分系统的分岔不变圈和环面解的计 算做了详细的分析. 文献 [7] 通过映射研究了高维 微分系统的分岔.目前,对映射方程求解的解析方 法很少,文献[8]给出了一般形式的映射不变圈的 解析计算方法,并对一个具体的平面映射的不变圈进行了计算.本文把此方法具体应用到一类高维的 三维映射中,分析了其分岔的条件,然后对不变圈 进行了具体计算.

1 分岔条件

考虑平面单参数映射 $F:(\mu,x) \mapsto F(\mu,x), R \times R^2 \rightarrow R^2$. 在 $(\mu,x) = (0,0)$ 附近, $F(\mu,x) \neq C^k$ ($k \ge 6$)类函数. 如果映射 F 满足下面的条件: (1) 在 $\mu = 0$ 附近, $F(\mu,0) = 0$; (2) $DF(\mu,0)$ 有一对复共轭特征值 $\lambda(\mu)$ 和 $\overline{\lambda}(\mu)$, $\exists |\lambda_0| = |\overline{\lambda}_0| = 1(\lambda_0 = \lambda(0))$; (3) $\frac{d|\lambda(\mu)|}{d\mu}\Big|_{\mu=0} \neq 0$; (4) $\lambda_0^n \neq 1, (n = 1, 2, 3, 4)$; (5) $a(0) = \operatorname{Re}[\frac{(2\lambda_0 - 1)\overline{\lambda}_0^2g_{20}(0)g_{11}(0)}{2(1 - \lambda_0)}] - \frac{|g_{11}(0)|^2}{2} - \frac{|g_{20}(0)|^2}{4} + \operatorname{Re}[\frac{\overline{\lambda}_0g_{21}(0)}{2}])$

Neimark-Sacker 定理表明,映射 $F(\mu, x)$ 从原点 x = 0 分岔出一个吸引不变圈.

对于高维映射通常是先通过中心流形一范式 方法进行降阶简化,获得一个两维映射,然后应用 Neimark-Sacker 定理来分析高维映射不动点的 Hopf 分岔.

²⁰⁰⁶⁻¹¹⁻²⁰ 收到第1稿,2007-03-18 收到修改稿.

^{*}国家自然科学基金资助项目(10472096)

2 主要思想

巴拿赫空间 E 上映射 $X \rightarrow \Phi(\mu, X)$, $\Phi(\mu, X)$ 对 (μ, X) 是充分光滑的. 这里, $\mu \in R^1$, 假设 X = 0 是 一个不动点. 设

$$A_0 = D_X \Phi(0,0) \tag{1}$$

为线性有界算子. A_0 有一对位于单位圆周上的复 共轭特征值 λ_0 , $\overline{\lambda}_0(|\lambda_0| = |\overline{\lambda}_0| = 1)$, 其余的特征 值在单位圆内. 定义 $D_X \Phi(\mu, 0)$ 的特征值 $\lambda(\mu)$ 为 λ_0 的一个扰动, 假设

$$\frac{\mathrm{d}|\boldsymbol{\lambda}(\boldsymbol{\mu})|}{\mathrm{d}\boldsymbol{\mu}}\Big|_{\boldsymbol{\mu}=0} \neq 0 \tag{2}$$

如果 $\lambda_0^n \neq 1(n = 1, 2, 3, 4)$,那么通常情况下在 $\mu = 0$ 附近会从原点 X = 0 分岔出一个不变圈.

在不变圈上映射 $\Phi(\mu, X)$ 满足

$$\Phi(\mu, X(\theta)) = X[f_{\mu}(\theta)]$$
(3)

这里(3)式经历了两次映射,先通过从 S^1 到不变圈上的微分同胚 $X \mapsto X(\theta)$ 作用,然后再由 S^1 上的一个微分同胚 $\theta \mapsto f_{\mu}(\theta)$ 作用而得到,对不变圈进行适当的参数化^[6,7]有

$$f_{\mu}(\theta) = \theta + \omega(\mu) + o(|\mu|^{N})$$
(4)
因此,我们可以寻找一个解使其满足下式
$$\Phi(\mu, X(\theta)) = X(\theta + \omega)$$
(5)

这里设

$$\begin{cases} X(\theta) = \sum_{p \ge 1} \varepsilon^p X_p(\theta) \\ \mu = \sum_{p \ge 1} \varepsilon^p \mu_p \\ \omega = \sum \varepsilon^p \omega_p \end{cases}$$
(6)

下面考虑 λ_0 不是单位根的一般情况.

3 Fredholm 择一方法

在确定(5)式中 *e* 的各阶项时,每一步需解如 下的方程

$$A_0 Y(\theta) - Y(\theta + \omega_0) = Z(\theta)$$
⁽⁷⁾

(7)式中 Z 是一个已知的 2π 周期的 C^{*} 函数, 而
 2π 周期函数 Y 是未知的. 把 Y(θ)和 Z(θ) 展成傅
 里叶级数带入(7)式并比较各阶傅里叶系数可得
 下式

$$(A_0 - e^{ki\omega_0})Y_k = Z_k, \quad k \in \mathbb{Z}$$
现在通过确定(5)式中 ε 的一次项有
(8)

$$A_0 X_1(\theta) - X_1(\theta + \omega_0) = 0$$

$$\overrightarrow{I} \bigcup \diamondsuit$$
(9)

$$e^{ki\omega_0} = \lambda_0 \tag{10}$$

定义特征向量 ζ₀ 和 ζ₀* 如下

 $A_0\zeta_0 = \lambda_0\zeta_0, A_0^*\zeta_0^* = \lambda_0\zeta_0^*, (\zeta_0, \zeta_0^*) = 1$ (11) 这里 $A_0^* \in A_0$ 的共轭算子, (`,`) 是空间 *E* 和其对 偶空间 *E**上的一个对偶内积.

设 $I = e^{i\theta}\zeta_0, I^* = e^{i\theta}\zeta_0^*, 那么(7) 式的解存在的 必要条件是$

$$\begin{bmatrix} Z(\theta), I^* \end{bmatrix} = \frac{1}{2\pi} \int_0^{2\pi} (Z(\theta), \zeta_0^*) e^{-i\theta} d\theta = 0$$
$$\begin{bmatrix} Z(\theta), \bar{I}^* \end{bmatrix} = \frac{1}{2\pi} \int_0^{2\pi} (Z(\theta), \bar{\zeta}_0^*) e^{i\theta} d\theta = 0$$
(12)

这里, $[a,b]^{def} = \frac{1}{2\pi} \int_0^{2\pi} (a(\theta), b(\theta)) d\theta.$

如果(12)式能实现,就可以算出(8)式中所有 的 *Y_k*,但是现在的问题是展成傅里叶级数的收敛 性.事实上,如果把(8)投影到由 ζ₀ 生成的不变的 一维空间,可得到下式

$$(\lambda_0 - \lambda_0^k) y_k = z_k, k \neq 1$$
(13)

这里, $y_k = (Y_k, \zeta_0^*), z_k = (Z_k, \zeta_0^*).$ 如果 *k* 足够大, 使得 $\lambda_0 - \lambda_0^k (k \neq 1)$ 非常接近 0 这种情况出现, 那 么在求得 $y_k = z_k/(\lambda_0 - \lambda_0^k)$ 时会出现小的除数因 子,这样就会使(7)式左边的线性算子无界. 然而, 在求解(7)式时不需要 *Z* 的通式, 仅需要 *Z* 有限项 的傅里叶展式即可. 因此, 如果设置下面的条件, (8)式给出的解是唯一的.

 $(Y_1, \zeta_0^*) = (Y_{-1}, \overline{\zeta}_0^*) = 0$ (14)

4 分岔圈的计算

首先给出 Φ 的泰勒展式

$$\Phi(\mu, X) = A_0 X + \sum_{\substack{p+q \ge 2\\q \ge 1}} \mu_p \Phi_{pq}(X, \cdots, X)$$
(15)

这里 Φ_{pq} 是空间 E 上有界的 q 重对称线性算子.

现在通过(6)和(15)来确定(5)式中的 ε 各阶 项.确定(5)中一阶项 ε 有

$$A_0 X_1(\theta) - X_1(\theta + \omega_0) = 0 \tag{16}$$

(16)的一般解为

$$X_1(\theta) = a\zeta_0 e^{i\theta} + \bar{a}\bar{\zeta}_0 e^{-i\theta}$$
(17)

这里定义振幅 $\varepsilon = [X(\theta), I^*]$,于是有下式:

$$\frac{1}{2\pi} \int_0^{2\pi} (X_n(\theta), \zeta_0^*) e^{-i\theta} \mathrm{d}\theta = \begin{cases} 1 & \text{for } n = 0\\ 0 & \text{for } n \ge 2 \end{cases}$$
(18)

因此, $X_1(\theta)$ 有下面的形式

 $X_{1}(\theta) = \zeta_{0}e^{i\theta} + \overline{\zeta}_{0}e^{-i\theta}$ (19) $\widehat{\mathbf{M}}\widehat{\mathbf{z}}(5) \oplus \widehat{-}\widehat{\mathbf{N}}\widehat{\mathbf{M}} \varepsilon^{2} \widehat{\mathbf{A}}$ $A_{0}X_{2}(\theta) - X_{2}(\theta + \omega_{0}) + \mu_{1}\Phi_{11}[X_{1}(\theta)] - \omega_{1}X_{1}^{'}(\theta + \omega_{0}) + \Phi_{02}[X_{1}(\theta), X_{1}(\theta)] = 0$ (20)

根据 Fredholm 择一方法中(12)式的解存在的必要 条件(即相容条件),在(20)式中, $Z(\theta) = -(\mu_1 \Phi_{11} \times [X_1(\theta)] - \omega_1 X_1'(\theta + \omega_0) + \Phi_{02} [X_1(\theta), X_1(\theta)]),$ 将 $Z(\theta)$ 代入(12)式,化简可得

$$\mu_1 \lambda_1 - i\omega_1 e^{i\omega_0} = 0 \tag{21}$$

这里

$$\lambda_1 = (\Phi_{11}(\zeta_0), \zeta_0^*)$$
 (22)

根据扰动理论, μ 在 0 附近时,特征值 $\lambda(\mu)$ 有下面 的形式

$$\lambda(\mu) = \lambda_0 + \mu \lambda_1 + o(\mu^2)$$
(23)

这里 λ_1 由(22)式给出. 现在,由于(10)式,严格穿 越条件(2)可表示为

$$\operatorname{Re}(\lambda_1 e^{-i\omega_0}) \neq 0 \tag{24}$$

因此由方程(21)实部和虚部对应相等和(24)式可得

$$\boldsymbol{\mu}_1 = \boldsymbol{\omega}_1 = 0 \tag{25}$$

根据(18)式,由(20)式最终可得 *X*₂(*θ*)有下 面的形式

$$\begin{cases} X_{2}(\theta) = X_{2}^{(2)} e^{2i\theta} + X_{2}^{(0)} + \overline{X}_{2}^{(2)} e^{-2i\theta} \\ X_{2}^{(2)} = (\lambda_{0}^{2} - A_{0})^{-1} \Phi_{02}(\zeta_{0}, \zeta_{0}) \\ X_{2}^{(0)} = 2(1 - A_{0})^{-1} \Phi_{02}(\zeta_{0}, \zeta_{0}) \end{cases}$$
(26)

现在确定(5)中三阶项 ε^3 有

$$A_{0}X_{3}(\theta) - X_{3}(\theta + \omega_{0}) + \mu_{2}\Phi_{11}[X_{1}(\theta)] - \omega_{2}X_{1}'(\theta + \omega_{0}) + 2\Phi_{02}[X_{1}(\theta), X_{2}(\theta)] + \Phi_{03}[X_{1}(\theta), X_{1}(\theta), X_{1}(\theta)] = 0$$
(27)

由相容条件(12)可得

$$\mu_2 \lambda_1 - i\omega_2 \lambda_0 + \lambda_0 \Lambda_2 = 0 \tag{28}$$

$$\& \Xi ,$$

 $\Lambda_{2} = \bar{\lambda}_{0} \left(2\Phi_{02} \left(\zeta_{0}, X_{2}^{(0)} \right) + 2\Phi_{02} \left(\bar{\zeta}_{0}, X_{2}^{(2)} \right) + 3\Phi_{03} \left(\zeta_{0}, \zeta_{0}, \bar{\zeta}_{0} \right), \zeta_{0}^{*} \right)$ (29)

因此,可解得

$$\mu_{2} = -\frac{\operatorname{Re}(\Lambda_{2})}{\operatorname{Re}(\lambda_{1}\overline{\lambda}_{0})},$$

$$\omega_{2} = \frac{\operatorname{Re}(\lambda_{1}\overline{\lambda}_{0})\operatorname{Im}\Lambda_{2} - \operatorname{Im}(\lambda_{1}\overline{\lambda}_{0})\operatorname{Re}(\Lambda_{2})}{\operatorname{Re}(\lambda_{1}\overline{\lambda}_{0})} (30)$$

根据(18)式,X₃(θ)可唯一被决定,具有下面的形式

$$\begin{cases} X_{3}(\theta) = X_{3}^{(3)}e^{3i\theta} + X_{3}^{(1)}e^{i\theta} + \overline{X}_{3}^{(1)}e^{-i\theta} + \overline{X}_{3}^{(3)}e^{-3i\theta} \\ X_{3}^{(3)} = (\lambda_{0}^{3} - A_{0})^{-1}(2\Phi_{02}(\zeta_{0}, X_{2}^{(0)}) + \Phi_{03}(\zeta_{0}, \zeta_{0}, \zeta_{0}) \\ (X_{3}^{(0)}, \zeta_{0}^{*}) = 0 \end{cases}$$

 θ)] -

通过确定(5)中 n 阶项
$$\varepsilon^n$$
 有
 $A_0X_n(\theta) - X_n(\theta + \omega_0) + \mu_{n-1}\Phi_{11}[X_1(\theta) - X_n(\theta + \omega_0)]$

$$\omega_{n-1}X_{1}^{'}(\theta+\omega_{0})+F_{n}(\theta)=0$$
(32)

这里 F_n 是已知函数,能够由 $X_k(k \le n - 1)$ 和 μ_k, ω_k ($k \le n - 2$)这些项容易算出.因此一般地有下面的 表达式

$$\begin{cases} \omega_{2p+1} = \mu_{2p+1} = 0, \, \overline{X} \, \overline{f} \, \forall \, p \in Z \\ X_{2p}(\theta) = \sum_{k=1}^{p} \left[X_{2p}^{(2k)} e^{2ki\theta} + \overline{X}_{2p}^{(2k)} e^{-2ki\theta} \right] + X_{2p}^{(0)} \\ X_{2p+1}(\theta) = \sum_{k=0}^{p} \left[X_{2p+1}^{(2k+1)} e^{(2k+1)i\theta} + \overline{X}_{2p+1}^{(2k+1)} e^{-(2k+1)i\theta} \right] \end{cases}$$

$$(33)$$

考虑三维映射
$$f_{(a,b)}: R^{3} \to R^{3}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} ax + (1-a)(1-by^{2}) \\ z \\ x \end{pmatrix}$$
(34)

映射(34)有两个不动点

$$\overline{X}_1(b) = [(-1+\sqrt{1+4b})/2b, (-1+\sqrt{1+4b})/2b, (-1+\sqrt{1+4b})/2b]^T, (b \ge -1/4, b \ne 0)$$

 $\overline{X}_2(b) = [(-1-\sqrt{1+4b})/2b, (-1-\sqrt{1+4b})/2b, (-1-\sqrt{1+4b})/2b]^T, (b \ge -1/4, b \ne 0)$
考虑 $\overline{X}_1(b)$ 失稳产生不变圈的过程. 可算出
 $\begin{bmatrix} a & (1-\sqrt{1+4b})(1-a) & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$Df_{(a,b)}(\bar{X}_{1}) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
(35)

(35)的特征方程为

 $\lambda^{3} - a\lambda^{2} - (1 - \sqrt{1 + 4b})(1 - a) = 0$ (36) 设(36)的根为 $\lambda_{0} = \alpha + i\beta, \overline{\lambda}_{0} = \alpha + i\beta, (\alpha^{2} + \beta^{2} = 1), \lambda_{3} = \gamma, 由根与系数关系$

$$\begin{cases} \gamma = (1 - \sqrt{1 + 4b})(1 - a) \\ \alpha = -1/2\gamma \\ a = 2\alpha + \gamma \\ \oplus (37) \oplus \oplus f - \mathfrak{K} \end{cases}$$
(37)

$$a = 1 - \frac{1 \pm \sqrt{5 + 4/(1 - \sqrt{1 + 4b})}}{2(2 - \sqrt{1 + 4b})},$$

 $(-1/4 \le b < 0, b \ge 14/25)$ (38) 当 a, b 满足(38)时,有($|\lambda_0| = |\overline{\lambda}_0| = 1$)成立.例 如,取 $b_0 = 0.85$,由上式(根号前取负号),可得 a_0 = 0.15812315962446.通过计算可得

 $a(0) = \operatorname{Re}(\overline{\lambda}_0 c_1(0)) = -0.0489 < 0$

由 Neimark-Sacker 分岔定理可知,映射(34)的不动点 $\bar{X}_1(b)$ 在 $a_0 = 0.1581$ 处发生 Hopf 分岔, 一定会产生一个吸引的 Hopf 圈.

下面对此 Hopf 不变圈进行解析计算. 令

$$\begin{cases} x = X + (-1 + \sqrt{1 + 4b})/2b \\ y = Y + (-1 + \sqrt{1 + 4b})/2b \\ z = Z + (-1 + \sqrt{1 + 4b})/2b \\ a = \mu + a_0 \end{cases}$$
(39)

映射(34)在变换(39)下变为

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \rightarrow \begin{pmatrix} (\mu + a_0) X - b(1 - (\mu + a_0)) (Y + M)^2 + (\mu + a_0 - 1) (M - 1) \\ Z \\ X \end{pmatrix} (40)$$

这里
$$M = (-1 + \sqrt{1 + 4b})/2b$$
. 容易算得

$$A_0 = \begin{bmatrix} a_0 & -2b(1 - a_0)M & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0.1581 & -0.9241 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{bmatrix}$$
(41)

计算 A₀ 的特征值为

$$\lambda_0 = 0.54109103897986 - 0.84096402279998i, |\lambda_0| = 1$$

 $\overline{\lambda}_0 = 0.54109103887986 + 0.84096402279998i$

 $\lambda_3 = -0.92405891813525, |\lambda_3| < 1$ (42) 相应可算得 A_0 与特征值 $\lambda_0, \overline{\lambda}_0, \lambda_3$ 对应的特征向 量 $\zeta_0, \overline{\zeta}, \zeta_3$ 和 A_0^* 与特征值 $\overline{\lambda}_0$ 对应的特征向量 ζ_0^* 为

$$\begin{bmatrix} \zeta_0 & , \bar{\zeta} & , \zeta_3 \end{bmatrix} = \begin{bmatrix} 0.5766 + 0.0542i & 0.5766 - 0.0542i & -0.5313 \\ -0.2883 + 0.5023i & -0.2883 - 0.5023i & -0.6222 \\ 0.2664 + 0.5142i & 0.2664 - 0.5142i & 0.5750 \end{bmatrix}$$
$$\zeta_0^* = \begin{bmatrix} 0.6077 \\ -0.3039 + 0.4722i \\ 0.2327 + 0.5111i \end{bmatrix}$$
(43)

这里,
$$(\zeta_0, \zeta_0^*) = (\zeta_0, \overline{\zeta}_0^*) = 1.$$

计算可得
 $\Phi_{11} = \begin{bmatrix} 1 & 1.0976 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$
 $\Phi_{02}(L_i, L_j) = \begin{bmatrix} -b(1-a_0)n_in_j \\ 0 \\ 0 \end{bmatrix},$
 $L_i = \begin{bmatrix} m_i \\ n_i \end{bmatrix}, \quad L_j = \begin{bmatrix} m_j \\ n_j \end{bmatrix}, \quad (a_0 - 1)\Phi_{12} = \Phi_{02}.$
(44)

其它的 $\Phi_{pq}=0.$

分岔临界条件判断:

 $\lambda_1 = (\Phi_{11}(\zeta_0), \zeta_0^*) = 0.15809717985827 + 0.36797645822704i$ $\lambda_1 \overline{\lambda}_0 = -0.22390999531281 + 0.33206280443234i$ $\operatorname{Re}(\lambda_1 \overline{\lambda}_0) = -0.22390999531281 < 0, 可知在分岔$ 点附近的 $\mu < 0(\mu = a - a_0)$ 一边会分岔出一个不变 圈. 通过计算可得

$$\Phi_{02}(\zeta_0, \zeta_0) = \begin{bmatrix} 0.\ 1211 - 0.\ 2072i \\ 0 \\ 0 \end{bmatrix},$$
$$\Phi_{02}(\zeta_0, \overline{\zeta}_0) = \begin{bmatrix} -0.\ 2400 \\ 0 \\ 0 \end{bmatrix}.$$

于是根据(26)式,算得

$$X_2^{(2)} = \begin{bmatrix} 0.\ 0479 + 0.\ 1105i \\ 0.\ 0519 - 0.\ 1087i \\ -0.\ 1204 - 0.\ 0022i \end{bmatrix}, X_2^{(0)} = \begin{bmatrix} -0.\ 2718 \\ -0.\ 2718 \\ -0.\ 2718 \end{bmatrix}.$$

可算得

$$\Phi_{02}(\zeta_{0}, X_{2}^{(0)}) = \begin{bmatrix} -0.0561 - 0.0977i \\ 0 \\ 0 \end{bmatrix},$$

$$\Phi_{02}(\bar{\zeta}_{0}, X_{2}^{(2)}) = \begin{bmatrix} 0.0498 + 0.0038i \\ 0 \\ 0 \end{bmatrix},$$

$$\Phi_{02}(\zeta_{0}, X_{2}^{(2)}) = \begin{bmatrix} -0.0283 + 0.0411i \\ 0 \\ 0 \end{bmatrix},$$

$$\Lambda_{2} = 0.0919 - 0.0682i. \quad (45)$$

$$R_{B}(31) \stackrel{\circ}{\to} 0632i = \begin{bmatrix} -0.0282i + 0.0411i \\ 0 \\ 0 \end{bmatrix},$$

 $\begin{aligned} X_{3}^{(3)} &= \begin{bmatrix} -0.0793 - 0.1903i \\ -0.1302 - 0.1595i \\ 0.1059 + 0.1769i \end{bmatrix} \\ \dot{\Sigma} &\equiv X_{3}^{(1)} \ \pi \bar{F} \bar{f} \bar{a}. \ \&f \bar{h} \bar{h} \bar{h} (30) \ d{\hat{I}} \ddot{p} \\ \mu_{2} &= 0.4102, \omega_{2} = 0.0680 \\ \dot{B} \\ \\ X_{1}(\theta) &= \zeta_{0} e^{i\theta} + \bar{\zeta}_{0} e^{-i\theta}, \\ X_{2}(\theta) &= X_{2}^{(2)} e^{2i\theta} + X_{2}^{(0)} + \bar{X}_{2}^{(2)} e^{-2i\theta}, \\ X_{3}(\theta) &= X_{3}^{(3)} e^{3i\theta} + \bar{X}_{3}^{(3)} e^{-3i\theta} \\ \hline \Pi \ddot{q} \ddot{h} H \ X(\theta) \\ \bar{g} \dot{\Delta} d{\hat{I}} \\ X(\theta) &= \varepsilon X_{1}(\theta) + \varepsilon^{2} X_{2}(\theta) + \varepsilon^{3} X_{3}(\theta) + o(\varepsilon^{4}) \\ \mu &= \varepsilon^{2} \mu_{2} + o(\varepsilon^{4}) \\ \omega &= \omega_{0} + \varepsilon^{2} \omega_{2} o(\varepsilon^{4}) \end{aligned}$ (46)

参考文献

- Natsiavas S. Dynamics of multiple-degree-of-freedom oscillators with colliding components. *Journal of Sound and Vibration*, 1993, 165:439 ~ 453
- 2 Ivanov AP. Impact oscillations: linear theory of stability and bifurcations. Journal of Sound and Vibration, 1993, 178: 361~378

- 3 谢建华. 一类碰撞振动系统的余维二分岔和 Hopf 分 岔. 应用数学和力学,1996,17(1):63~72 (Xie Jianhua. Codimension two bifurcations and Hopf bifutcations of an impacting vibrating system. *Applied Mathematics and Mechnics*,1996, 17(1):63~72 (in Chinese))
- 4 Luo GW, Xie JH. Hopf bifurcation of a two-degree-of-freedom vibro-impact system. *Journal of Sound and Vibration*, 1998,213(3):391~408
- 5 丁旺才,谢建华.碰撞振动系统的一类余维二分岔及环面分岔.力学学报,2003,35(4):503~508 (Ding Wangcai, Xie Jianhua. Codimension-2 bifurcation and torus bifurcation of a three-degree-of-freedom vibro-impact system. *Acta Mech Sinica*,2003,35(4):503~508 (in Chinese))
- 6 Iooss G. & D. D. Joseph. Elementary stability and bifurcation on theory. Springer-Verlag, Berlin-Heidelberg-New York, 1980
- 7 Iooss G. Bifurcation of maps and applications. Math. Studies 36, North-Holland, 1979
- 8 Iooss G, A. Arnéodo, P. Coullet and C. Tresser. Simple computation of bifurcating invariant circles for mapping. Dynamical systems and Turbulence. Lecture Note in Math. Springer-Verlag, 1981, 192 ~ 211

COMPUTING BIFURCATING INVARIANT CIRCLES FOR A HIGH DIMENSIONAL MAPPING *

Xu Huidong Xie Jianhua

(Department of Applied Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract Based on the computation method of bifurcating invariant circles for mapping by Iooss et al, first, the condition of bifurcations of invariant circles was analyzed, then a necessary condition was put forward for the solution existence of a kind of equations, which appeared in computing invariant circles by Fredholm method, finally the computation method of bifurcating invariant circles for mapping was achieved in a three-dimensional map.

Key words mapping, Neimark-Sacker bifurcation, Fredholm method

Received 20 November 2006, revised 18 March 2007.

^{*} The project supported by the National Natural Science Foundation of China (10472096)