# 桁架结构振动的主动模糊控制中主动杆 数目与位置优化\*

司洪伟 李东旭

(国防科技大学航天与材料工程学院,长沙 410073)

摘要 研究了采用自适应模糊控制器抑制桁架结构振动时的主动杆数目与位置优化问题.通过定义输入能 量相关矩阵优化了主动杆的数目.基于主动杆的控制能量配置准则,给出了主动杆优化配置的模型.研究基 于整数编码的遗传算法用于大型离散体中的作动器组合优化问题.最后针对挠性空间智能桁架结构的振动 控制仿真,使用基于整数编码的遗传算法(GAs)优化主动杆位置.结果表明对于采用自适应模糊控制律的离 散体结构振动控制是行之有效的.

关键词 智能桁架 模糊控制 振动控制 整数编码 ,主动杆

### 引言

大型桁架结构因具有集散简单、可靠性强、对 任务的适应度大等特点而在航天结构中得到广泛 的应用,但是作为一种极具代表性的大型离散含间 隙结构<sup>[1]</sup>,其结构动力学特性很复杂,大型航天桁 架结构的动力学特性主要表现为:多体、高维、非线 性、时变、低频、密频以及小阻尼等特性<sup>[2]</sup>.主动构 件(Active Members)是智能桁架结构的关键部位,本 文中的主动杆是指用于结构振动精密控制,通常需 要较小的作动位移、较大作动力的主动构件.主动 杆的优化主要包含大小、数目、位置优化三个部分. 大小的优化通常是根据所控制的对象,先期进行论 证和制造;数目与位置优化是我们研究的主要问 题.

编码就是将所要优化的参数按照一定的规则 从参数空间映射为编码空间的一个"基因".遗传算 法的编码规则(1)应使用能易于产生与所求问题 相关的且具有低阶、短定义长度模式的编码方案; (2)应使用能使问题得到自然表示或描述的具有最 小编码字符集的编码方案.二进制编码的优点是编 码、解码简单易行,交叉、变异也便于实现.但它也 有一些缺陷,如存在连续函数离散化时的映射误 差,个体编码串长度较短时,可能精度较低;而长度

较长时 又会使搜索空间急剧增大 运行效率低下。 浮点数编码使用的是决策变量的真实值 所以也叫 真值编码,目前,使用基于二进制和浮点数编码的 遗传算法优化作动器的位置已经取得了很大的进 展[34],但是更进一步地说,对于离散体的组合优化 问题 最直接的编码是基于整数的编码 能直接满 足所求解问题的性质,如离散体的桁架结构的优化 问题,作动器配置方法大致有:基于系统可控性/客 观性的准则、基于系统能量准则、基于系统响应的 配置准则、基于失效和可靠性准则、基于控制/观测 溢出的配置准则以及其他性能的配置准则 文献 [5.6. 指出:对结构系统进行控制不仅与控制时作 动器/传感器的数目、位置有关,而且与控制方法、 增益等有关,在基于系统可控性/可观性的配置准 则中,没有考虑后面因素的影响.采用基于系统能 量的配置准则进行作动器/传感器的优化配置时, 还可同时考虑控制方法和增益的影响 随着科学技 术的发展,对结构的使用要求的提高,结构系统的 一体化设计是重要的发展方向,考虑控制增益的作 动器/传感器配置方法将得到进一步的发展,在实 际控制中 控制律的设计确实是和配置、结构参数 相互耦合在一起的.结构振动主动模糊控制已经取 得了一定的进展[7~10],但是,目前作动器优化只局 限于线性反馈律 模糊控制本质上是一种非线性反

<sup>2006-04-19</sup> 收到第1稿, 2006-05-16 收到修改稿.

<sup>\*</sup> 国家自然科学基金资助项目(10472006)

馈,目前没有研究适合于主动模糊控制的作动器优 化配置方法.理论上,模糊控制在实际控制中不需 要结构动力学模型,但是在主动构件优化配置中, 在本文中,为了便于计算和仿真,采用线性的结构 动力学模型.

 基于自适应变论域模糊控制的智能结构 一体化建模

设结构系统共有 n<sub>c</sub>个作动器,其机电一体化的有限元模型为

 $M{\ddot{x}} + C{\dot{x}} + K{x} = B \times F_c$  (1) 式中包含 n 个线性微分方程 ,n 为结构系统的总体 自由度数 ; $\ddot{x}, \dot{x}, x$ 分别为 $n \times 1$ 维的加 速度、速度和 位置矢量 ;M, C, K分别为 $n \times n$  维的总体质量矩 阵、阻尼矩阵和刚度矩阵 ;B为 $n_c$ 个作动器位置的 矢量组成的 $n \times n_c$ 位置矩阵 ; $F_c$ 为 $n_c \times 1$ 维作动器 产生的控制力向量 ,且

 $F_{c} = K_{v} \{ V(t) \}$  (2)

式中  $K_v = diag(k_{wi}^3)$ 为对角阵  $k_{wi}^3$ 为第 i 个作动器在单位电压作用下产生的控制力  $K_v$  反映了各作动器的控制效能.

设 $\varphi_e$ 为前 $n_e$ 阶特征向量构成的 $n \times n_e$ 维矩

阵,q为前 $n_c$ 阶模态坐标组成的向量,作模态截断  $\{x\} = \varphi_c \{q\}$ ,将系统坐标转换到模态坐标,得

 $\ddot{q} + g_s(\dot{q}) + g_d(q) = \varphi_c^T B F_c = f$ (3) 式中, g\_s(\dot{q}) 是速度阻尼项, g\_d(q) 是位移阻尼项, f = [f\_1 f\_2 ... f\_n] 为 n\_c × 1 维模态控制力.

变论域模糊控制系统是一种输入与输出变量 论域取值合理变化的模糊控制系统,如图1所示。 文献[11]基于 Lyapunov 原理提出参数自适应律的 概念,得到了自适应模糊控制系统稳定性的一般准 则[12],但并没有使用变论域技术,所以控制效果不 佳 ;文献 13]指出变论域模糊控制器表现为一个 n 元分片插值函数,并建议采用一种基于经验公式的 实用伸缩因子,并引入积分调节自适应原理,控制 效果明显较佳,但这样设计的模糊控制器就带有很 大的随机性和偶然性,控制器的性能不能从根本上 得到改善,因为多输入多输出系统总是可以看成是 多输入单输出的叠加,所以文中考虑多输入单输出 的系统 本文针对隶属度函数的中心取值以及输入 与输出变量论域取值的问题,从理论上设计一种基 于参数自适应律的输入与输出的伸缩因子,基于 Lvapunov 原理设计一种稳定的自适应变论域模糊 控制系统.



图 1 自适应变论域模糊控制器

Fig.1 Adaptive fuzzy controller based on scaling universe of discourse

记为

#### 1.1 变论域模糊控制器

所谓变论域是指论域  $\vec{E} = (E_1, E_2, ..., E_n)$ 和 U可以随着变量  $\vec{e}$  和 u 的变化而进行合理的调整,

$$E_{i}(\overrightarrow{e}) = \begin{bmatrix} -\alpha_{i}(\overrightarrow{e})E_{i}^{0}, \alpha_{i}(\overrightarrow{e})E_{i}^{0} \end{bmatrix}$$

$$U(u) = \begin{bmatrix} -\beta(u)U_{0}, \beta(u)U_{0} \end{bmatrix}$$
(4)

式中, $\alpha_i(\vec{e})$ (i = 1, 2, ..., n)和 $\beta(y)$ 称为论域的 伸缩因子  $[ - E_i^0, E_i^0 ]$ 和 $[ - U_0, U_0 ]$ 称为初始论 域.以三角形隶属度函数为例( $2p_i + 1$ )表示  $e_i$ 论 域的划分个数(2q + 1)表示 u论域的划分个数.

假设规则中的模糊集合为标准模糊集(即具有 一致性和完备性的规则集),中心为  $\bar{u}_i$  (i = 1,2, ..., 2q + 1),采用乘积推理机、单值模糊器以及中心 平均解模糊器,三角形隶属度函数的重合度为0.5, 可得

$$u = \frac{\sum_{l=1}^{M} \overline{u}^{l} (\prod_{i=1}^{n} \mu_{A_{i}^{l}}(e_{i}))}{\sum_{l=1}^{M} (\prod_{i=1}^{n} \mu_{A_{i}^{l}}(e_{i}))}$$
(5)

采用自适应论域后,将输出隶属度函数中心 $u_i$  (*i* = 1 2 ,... 2 q + 1)用论域  $\beta U_0$  表示成[ -  $\beta U_0$  , - ( q - 1) $\beta U_0 / q$  ,... , - 2 $\beta U_0 / q$  0 , $\beta U_0 / q$  2 $\beta U_0 / q$  ,... , ( q - 1) $\beta U_0 / q$  , $\beta U_0$ ],将输入变量的三角形隶属度 函数  $\mu_{A_i}$ (  $e_i$  (  $A_i^i$  表示  $e_i$  的第j 个模糊集合)用输入 隶属度函数的论域来表示.即

$$\begin{aligned}
\mu_{A_{i}^{1}}(e_{i}) &= \begin{cases} 1 & e_{i} \leq -\alpha_{i}E_{i} \\
-p_{i}e_{i}\bigwedge(\alpha_{i}E_{i}) - (p_{i} - 1) & -\alpha_{i}E_{i} \leq e_{i} \leq -(p_{i} - 1)\alpha_{i}E_{i}/p_{i} \\
\mu_{A_{i}^{2}}(e_{i}) &= \begin{cases} p_{i}e_{i}\bigwedge(\alpha_{i}E_{i}) + p_{i} & -\alpha_{i}E_{i} \leq e_{i} \leq -(p_{i} - 1)\alpha_{i}E_{i}/p_{i} \\
-p_{i}e_{i}\bigwedge(\alpha_{i}E_{i}) - (p_{i} - 2) & -(p_{i} - 1)\alpha_{i}E_{i}/p_{i} \leq e_{i} \leq -(p_{i} - 2)\alpha_{i}E_{i}/p_{i}
\end{aligned}$$

$$\mu_{A_{i}^{2p_{i}+1}}(e_{i}) = \begin{cases} p_{i}e_{i}/(\alpha_{i}E_{i}) + (p_{i}-1) & (p_{i}-1)\alpha_{i}E_{i}/p_{i} \leq e_{i} \leq \alpha_{i}E_{i} \\ 1 & \alpha_{i}E_{i}/p_{i} \leq e_{i} \end{cases}$$
(6)

#### 1.2 稳定性设计

#### 考虑非线性系统

$$x^{(n)} = f(x \, \dot{x} \, \dots \, x^{(n-1)}) + bu$$
  

$$y = x$$
(7)

目标是基于模糊逻辑系统设计一个反馈控制器  $u = u(x | (\vec{\alpha}, \beta)), 使得系统输出在一定程度上跟踪$  $逼近理想输出 <math>y_m(t), 文献 12$ ]只考虑输出的隶属 度函数的分布自适应,而没有考虑到输入的分布自 适应,文献 13]设计了基于经验公式的变论域自适 应控制,但是这样设计的控制系统带有很大的随机 性,不能从理论上完全保证控制系统的稳定性.基 于控制系统设计的经验,本文设计一种变论域的稳 定的  $\vec{\alpha}$  和  $\beta$  自适应律.

令  $e = y_m - y = y_m - x$ ,  $\vec{e} = (e, e, ..., e^{(n-1)})$ ,  $\vec{k} = (k_n, k_{n-1}, ..., k_1)$ , 使多项式  $s^n + k_1 s^{(n-1)} + ... + k_n$ 所有根均在复平面左半开面上, 然后 根 据 等 效 控 制 器 的(Certainty Equivalent controller)原理,选择控制律

$$u^{*} = \frac{1}{b} \left[ - f(\vec{x}) + y_{m}^{(n)} + \vec{k}^{\mathrm{T}} \vec{e} \right]$$
 (8)

则可以得到下面的闭环控制系统方程 e<sup>(n)</sup>+

 $k_1 e^{(n-1)} + \dots + k_n = 0$ ,从  $\vec{k}$  的选择可知,当  $t \to \infty$ 时  $e(t) \to 0$ ,即系统的实际输出渐近地收敛于理想 输出  $y_m$ .从式(8)中将  $f(\vec{x})$ 取出,代入式(7)则有  $e^{(n)} = -\vec{k}^T \vec{e} + b[u^* - u]$  (9) 令  $e_1 = e_1 e_2 = e_1 \dots e_n = e_{n-1}^{(n-1)}$ ,而  $\vec{e} = (e_1, e_2, \dots, e_{n-1})$ ,  $e^{(n-1)}$ ,求导得  $\vec{e} = (e_1, e_2, \dots, e_{n-1})$ ,而以  $\vec{e} = \Lambda \vec{e} + \vec{u} u^* - u]$  (10) 式中

$$\Lambda = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ -k_n & -k_{n-1} & \dots & \dots & \dots & \dots & -k_1 \end{bmatrix},$$

从上面的式(5)和式(6)可知,针对a和 $\beta$ 设计 自适应律,在理论上控制输出解释式共有 $\prod_{i=1}^{n}$ (2 $p_i$ 

$$V = \frac{1}{2}\vec{e}^{\mathrm{T}}P\vec{e} + \frac{b}{2\gamma}f^{\mathrm{T}}(\vec{\alpha},\beta)f(\vec{\alpha},\beta)$$
(11)

式中,γ 是 正 常 数, P 是 一 个 正 定 矩 阵 且 满 足 Lyapunov 方程,且满足

$$\Lambda^{\mathsf{T}}P + P\Lambda = -Q$$
(12)  
式中, Q 是一个任意的正定矩阵.

从式(11)可以看出构造 Lyapunov 函数极其繁 杂,设计出来的控制系统是以牺牲实时性为前提 的.为避免分段 Lyapunov 函数问题,在设计中,我们 可以先确定 α 和 β 中的一个,由于输入隶属度函数 比较繁杂,选择先确定 α ,根据控制系统收敛的经 验,设

$$\alpha_i(e_i) = 1 - \lambda_i \exp(-k_i e_i^2)$$
 (13)

式中,<sub>λi</sub>、k<sub>i</sub>为已知的常数.将(13)式依次代入(6) 和(5)式,则有

$$u = \frac{\sum_{l=1}^{M} \overline{u}^{l} (\prod_{i=1}^{n} \mu_{A_{i}^{l}}(e_{i}))}{\sum_{l=1}^{M} (\prod_{i=1}^{n} \mu_{A_{i}^{l}}(e_{i}))} = \beta \times \tau^{T} \times \xi \quad (14)$$

式中 , $\beta$ 为可调节的一个参数 , $\tau \in R_{i=1}^{\prod(2p_i+1)}$ 是一个 通过初始论域  $U_0$ 表示中心的向量 , $\xi \in R_{i=1}^{\prod(2p_i+1)}$ 是 一 个 向 量 , 其 第 m 元 素 为  $\xi_m$  =

$$\frac{\prod_{i=1}^{n} \mu_{A_{i}^{l}}(e_{i})}{\sum_{l=1}^{M} \prod_{i=1}^{n} \mu_{A_{i}^{l}}(e_{i})}.$$
  
考虑 Lyapunov 函数

$$V = \frac{1}{2}\vec{e}^{T}P\vec{e} + \frac{b}{2\gamma}(\beta^{*} - \beta)^{2}$$
 (15)

沿轨线式(10)对 Lyapunov 求关于时间的导数并保证

$$\dot{V} = -\frac{1}{2}\vec{e}^{\mathrm{T}}Q\vec{e} + (\beta^{*} - \beta \mathbf{I}\frac{1}{2}\tau^{\mathrm{T}}\xi(\vec{b}^{\mathrm{T}}P\vec{e} + \vec{e}^{\mathrm{T}}P\vec{b}) - \frac{b}{\gamma}\dot{\beta}] < 0 \qquad (16)$$

取  $\dot{\beta} = \frac{\gamma}{2b} \tau^{\mathrm{T}} \xi (\vec{b}^{\mathrm{T}} P \vec{e} + \vec{e}^{\mathrm{T}} P \vec{b}),$ 从式(16)中可以看 出  $\dot{V} < 0.$  2 主动杆数目与位置优化

对于一个给定的结构系统及其相应的控制准 则,所要求的模态控制力为

$$f = \varphi_c^{\mathrm{T}} \times B \times F_c \tag{17}$$

定义输入能量相关矩阵为

$$r_v = \int_0^{t_f} (f \times f^{\mathrm{T}}) \mathrm{d}t$$
 (18)

设输入能量相关矩阵 r<sub>x</sub> 的特征值为

$$\Lambda_{v} = \{\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}\}$$
(19)

式(19)中非零特征值的数量 m<sub>e</sub>即是结构控制系统 中所要求的独立的作动器数目.输入能量相关矩阵 特征值的大小表明了作动器产生的能量多少.

在实际控制系统中,我们给定约束系数  $k_v$ ,且  $k_v \leq 1$ ,设  $l_v$ 为作动器的最佳数目,当如下关系式 成立时

$$\sum_{i=1}^{l_v \to \min} \lambda_i / \sum_{i=1}^{m_v} \lambda_i > k_v$$
 (20)

式(20)/。中即为实际控制系统所需的最优作动器的数目.对于不同的结构系统,约束系数的取值也不同.对于对称性的大型空间桁架,其模态较密集, 通常 k。取0.65~0.85;对于模态稀疏的结构系统, 例如悬臂梁,通常 k。取0.8~0.95.

结构系统上的作动器的位置对结构系统振动 控制效果具有重要的影响,因此有必要对作动器的 位置进行优化,为使作动器实现优化配置,定义控 制力价值函数

$$V = \int_{0}^{t_{f}} (F_{c}^{\mathrm{T}} \times F_{c}) \mathrm{d}t = \int_{0}^{t_{f}} \{f^{\mathrm{T}} \times$$

[( $\varphi_e^{\mathrm{T}} \times B$ )<sup>-1</sup>]( $\varphi_e^{\mathrm{T}} \times B$ )<sup>-1</sup> × f  $\exists t$  (21) 根据系统能量相应配置准则 ,作动器优化可以认为 价值函数最小时的情形 . 式中 ( $\varphi_e^{\mathrm{T}} \times B$ )如果不是 方阵 ,求逆可以通过矩阵的奇异值分解来完成 .

#### 3 基于整数编码的遗传算法

#### (1)整数编码(Integer Coded)

按照有限元方法的节点和构件的排列顺序进 行编号,定义染色体为 $C = [p_1, p_2, \dots, p_{n_p}]$ ,其中,  $n_p$ 为可能被配置作动器的杆配置, $p_1, p_2, \dots, p_n$ 为 整数,且满足  $1 \leq p_i \leq n_p$ .选取随机数  $pick \in (0, 1)$ ],整数编码为

round[ min bound + ( max bound -

min bound )  $\times$  pick ] (22)

max bound 和 min bound 分别为变量的最大限制和最小限制, round 表示取整.

(2)选择操作

在遗传算法中,选择操作是从旧种群中选择优 质个体,淘汰部分个体,产生新种群的过程.适应度 (Fitness)是评价个体好坏的指标,适应度越大,繁 殖的概率越大,遗传算法正是基于适应度对个体进 行选择,以保证优质个体在下一代中产生更多的子 个体.两两竞争法(Tourmament)每次随机地在种群 P1中选取两个个体,选择适应度大的个体;若两者 相同,只取其中的一个,直到选出的个体数为种群 数目(Sizepop),得到种群 P2.

(3)交叉操作

交叉操作用以产生新的个体,从而检测搜索空  
间中新的点.基于整数编码的遗传算法交叉操作把  
参数
$$a$$
、 $b$ 操作成 $g_1(a,b)g_2(a,b)$ .函数 $g_1,g_2$ 采  
取的形式具有多样化,只需满足 $a + b = g_1(a,b)$   
+  $g_2(a,b)$ 就行,我们采用如下方法:

 $g_1(a, b) = round[(1 - \alpha)a + \beta b]$ 

 $g_2(a, b) = round[(1 - \beta)b + \alpha a]$  (23) 其中,  $\alpha$ ,  $\beta$ 为(0,1)区间上的随机数.

(4) 变异操作

变异操作的最终效果是把某个个体的参数 *c* 操作成域内的另一值 *c*'.随机选取个体为

 $pos = round[pick \times \sum lenchrom]$  (25) 式中,随机数  $pick \in (0, 1]$ , lenchrom 为个体长度. 则变异操作为

$$c' = \begin{cases} c + round((\max bound - c) \times (1 - rand^{(\frac{1 - pop_{cur}}{pop_{max}})})) & \text{if } rand > 0.5 \\ c - round((c - \min bound) \times (1 - rand^{(\frac{1 - pop_{cur}}{pop_{max}})})) & \text{if } rand \leq 0.5 \end{cases}$$
(26)

#### 4 计算与仿真

参考文献[14]设计 T 型航天桁架,共有 52 个 铰链节点,斜杆 71 根,直杆 90 根,杆件使用铝材 料.直杆长度为 0.335 m,所有桁架单元的外径为 3.968 mm,内径为 3.078 mm,节点编号如图 4 所示, 固结点为 1、2、27 和 28 节点.T 型航天桁架的 1 – 5 阶的模态频率分别为 14.64 Hz、16.26 Hz、30.41 Hz、33.97 Hz 和 62.93 Hz,其中,第一和第二阶模 态、第四和第五阶模态为密频模态,第三阶模态为 扭转模态,反映了桁架结构的动力学特性.主动构 件使用文献[15]设计主动杆的方法,使用 PZT-5 压 电陶瓷作为主动材料,压电陶瓷片的直径为 15 mm,厚度 1 mm,压电堆的长度为 0.08 m,由 70 片压 电陶瓷片组成.

进行数值仿真计算,为减少仿真时间,在系统 收敛稳定的条件下,系统仿真步长取为0.1.当取 12,3,4,5根主动杆时,式(20)左边分别为0. 657260.865590.957910.990870.99564,从理论 上讲,取3根主动杆已经足够.从图2中可以看出, 在迭代初期,适应度取值较大,随着迭代次数的增加,适应度变化也较大,适应度趋向于收敛.主动杆 位置优化结果如表1所示,位置示意图如图3下, 加粗部分为主动杆.

建立 T 型桁架结构基于模态空间的结构动力 学模型,使用模态控制方法,则模糊控制器为双输 入和单输出的模糊逻辑系统,使用 Mamdani 型模糊 逻辑系统,实践表明,隶属度函数的类型对模糊控 制影响并不大,所以在本文中使用三角形隶属度函 数,解模糊方法为面积中心法.

表 1 优化结果(种群规模 10,交叉概率 0.9,变异概率 0.2)

 Table 1
 Optimal results using the integer coded GAs

( Population size  $p_{\scriptscriptstyle op}$  = 10 , probability of crossover  $p_{\scriptscriptstyle c}$  = 0.9 ,

probability of mutation  $p_m = 0.2$ )

| Optimal type      | Max generations | Fitness  | The locations |
|-------------------|-----------------|----------|---------------|
| Only an actuator  | 100             | 252.2126 | 150           |
| total 2 actuators | 200             | 987.2810 | 150 25        |
| total 3 actuators | 200             | 2988.5   | 122 102 100   |



图 2 适应度-迭代次数关系变化图

Fig.2 Fitness along with the maximum number of generations

设置参数为  $k_i = 1(i = 1.2)$ 为 1, $\lambda_1 = 0.97$ ,  $\lambda_2 = 0.8$ , $\beta_0 = 1$ ,将论域分为七个隶属度函数,分 别用表示 positive big(PB), positive middle(PM), positive small (PS), zero (ZR), negative small (NS), negative middle(NM)和 negative big(NB) 表示,使用如表 2 的模糊控制规则,设激励类型为 谐波  $f(t) = 0.05 \sin(10t)$ ,进行仿真,从 2.5 s 后施 加模糊控制力,得到节点 52 的位移如图 4 所示,各 主动杆的控制电压如图 5 所示,从图中可以看出自 适应变论域模糊控制器具有很好的效果.



Table 2 Fuzzy control rules list

| U E<br>EC | NB | NM    | NS   | ZR | PS | РМ | PB |
|-----------|----|-------|------|----|----|----|----|
| NB        | NB |       | NM   |    | NB | NS | ZR |
| NM        | NM |       | NM   |    | NS | ZR | PS |
| NS        |    |       |      | NS | ZR | PS |    |
| ZR        | NS |       | I NS | ZR | PS | 1  | PM |
| PS        |    |       | ZR   | Р  | S  | PM |    |
| PM [      | NS | ZR    | PS   |    | РМ |    |    |
| PB 🗧      | ZR | ZR PS |      | PM |    |    | PM |



图 3 主动杆配置示意图

Fig.3 Location of active members in a truss









图 5 各主动杆上的电压 Fig.5 Voltage of each active member

## 5 结论

目前,将控制增益直接考虑到作动器优化建模 中去的研究只局限于线性反馈控制律,而对于非线 性反馈控制律,如模糊控制律,还没有成熟的方法, 本文首次使用数值方法进行求解,解决非线性反馈 控制律设计作动器优化的问题. 一般来说,对于梁、板等连续疏频结构,作动器 布置在根部能起到很好的控制效果,但是对于大型 离散密频结构,作动器还应考虑布置在适当远离根 部的位置.在仿真中主动杆配置在 12 – 50 节点、27 - 35 节点和 31 – 17 节点.

基于整数编码的遗传算法由于交叉生成新个 体的能力有限,所以易收敛未成熟解,选择合适的 参数对于基于整数编码的遗传算法很重要<sup>[16,17]</sup>.通 常浮点数编码遗传算法的交叉概率 ≤0.6,变异概 率≤0.1,在本文中取交叉概率 0.9,变异概率 0.2, 就是为了增强生成新个体的能力.

#### 参考文献

- 阎绍泽.航天器中含间隙机构非线性动力学问题及其研究进展.动力学与控制学报 2002 2(2) 48~52(Yan Shaoze. Development and Problems of Nonlinear Dynamics of the Mechanisms with Clearances for Spacecrafts. *Journal of Dynamics and Control*, 2002, 2(2) 48-52(in Chinese))
- 2 徐建国.复杂挠性结构系统动力学、稳定性与控制.郑州 黄河水利出版社,2002(Xu Jiangguo. Complex flexible structural system dynamic, stable and control. Zhongzhou: Huanghe Irrigation Press 2002(In Chinese))
- 3 Yan YJ, Yam LH. Optimal design of number and locations of actuators in active vibration control of a space truss. Smart Materials and Structures 2002, 11(2) 496 ~ 503
- 4 张宏伟,徐世杰,黄文虎.作动器传感器配置优化的遗传 算法应用.振动工程学报,1999,12(4):529~534(Zhang Hongwei, Xu Shijie, Huang Wenhu. Global optimization of actuators/sensors placement using a float-encoding genetic algorithm. *Journal of Vibration Engineering*, 1999,12(4):529~ 534(In Chinese))
- 5 Yongli Junjiro Onoda ,Kenji Minesugi. Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression. Acta Astronautica 2002, 50(6) 335 ~ 341
- 6 刘福强,张令弥.作动器/传感器优化配置的研究进展. 力学进展 2000 25(4) 506~516(Liu Fuqiang, Zhang Lingmi. Advances in optimal placement of actuators and sensors. *Advances in Mechanics* 2000 25(4) 506~516(In Chinese))
- 7 Sreenatha AG ,Makarand Pradhan . Fuzzy logic controller for position control of flexible structures . Acta Astronautica 2002 50

(11):665~671

- 8 Gustavo Luiz CM , de Abreu José F. Ribeiro. A self-organizing fuzzy logic controller for the active control of flexible structures using piezoelectric actuators. *Applied Soft Computing* ,2002 ,1 (4) 271 ~ 283
- 9 TsoLiang Teng, ChengPing Peng, Chun Chuang. A study on the application of fuzzy theory to structural active control. Compute Methods in Applied. Mechanics and Engineering, 2000,189(99),439~448
- 10 阎石,李宏男. 模糊结构振动控制研究的进展. 沈阳建 筑工程学院学报, 2000, 16(12) 95~98(Yanshi, Li Hongnan. Development of fuzzy structure vibration control. *Jounal* of Shenyang Architecture and Civil Engineering Institute, 2000, 16(12) 95~98(In Chinese))
- 11 Wang LX. Stable adaptive fuzzy control of nolinear systems. IEEE Transactions on Fuzzy Systems , 1993 , l(2):146 ~ 155
- 12 Xihong Wang , Tadashi Matsumoto. New time-domain stability criterion for fuzzy control systems. IEICE Transactions on Fundamental of Electronic , *Communications and Computer Scienc*es , 1996 , E79-A(10): 1700 ~ 1706
- 13 李洪兴.非线性系统的变论域稳定自适应模糊控制.中国科学(E辑),2002,32(2),211~223(Li Hongxing. Adaptive fuzzy control of nonlinear systems based on scaling universe of discourse *"Science in China* (*Series E*),2002,32(2),211~223 (In Chinese))
- 14 Johnson SE , Vlattas J. Modal analysis and active vibration control of the Naval Postgraduate School space truss[ Master 's Thesis ]. California :Naval Postgraduate School , June 1998
- 15 李俊宝.智能桁架结构设计、建模与阻尼控制的理论和 实验研究[博士论文].南京:南京航空航天大学,1996(Li Junbao. Theoretical and experimental study on design, modeling and active damping control of intelligent truss structures [PHD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics,1996(In Chinese))
- 16 Ioannis G. Damousis , Anastasios G. Bakirtzis and Petros S. Dokopoulos. A Solution to the unit-commitment problem using Integer-Coded Genetic Algorithm. *IEEE Transactions on Power Systems* , 2004 , 19(2):1165 ~ 1172
- 17 雷德明. 一种新型自学习模糊控制器. 信息与控制,
  2000 29(6) 559~564 (Lei De-ming. A new type of self-learning fuzzy controller, *Information and Control*, 2000, 29
  (6) 559~564 (In Chinese))

# OPTIMAL DESIGN OF NUMBER AND LOCATIONS OF ACTUATORS WHEN ADOPTING THE ADAPTIVE FUZZY CONTROL IN ACTIVE CONTROL<sup>\*</sup>

Si Hongwei Li Dongxu

( College of Astronautics and Material Engineering, National University of Defense Technology, Changsha 410073, China)

**Abstract** This paper presented the optimal design methodology of number and locations of actuators in active vibration control when adopting adaptive fuzzy control. The number of actuators was determined by defining the energy correlative matrix of the modal control force. Based on the total energy of active member forces , the model of optimal locations was studied. The integer coded genetic algorithms (GAs) were adopted to search the optimal locations of the actuators in large discontinuous structures. Finally the simulations of a space smart truss were done, and the results showed that the integer coded genetic GAs and adaptive fuzzy active vibration control were effective.

**Key words** smart truss , fuzzy control , vibration control , integer coded , active members

Received 19 April 2006 ,revised 16 May 2006.

<sup>\*</sup> The project supported by the National Natural Science Foundation of China (10472006)