激光脉冲作用引起的梁形微谐振器的振动

方岱宁 孙玉鑫

(清华大学工程力学系,北京 100084)

摘要 在激光脉冲作用下,有两个因素需要考虑:一个是热传导的非傅立叶效应,另一个是温度场与应变场的耦合导致能量耗散,使物体的机械能转化为热能,并且这是不可逆的.本文综合考虑上面两个因素,研究 了激光脉冲作用下微米尺度梁谐振器的热弹性耦合问题.采用 Fourier 变换与 Laplace 变换相结合的方法求 解梁的横向振动,并分析不同环境温度与能量吸收深度的影响.

关键词 热弹性耦合 微米梁谐振器 积分变换

引言

激光脉冲会在固体中产生热应力^[12],由于激 光脉冲技术在材料加工和无损检测中的应用日益 发展,这种激发机制越来越引起科研工作者的重 视.当在固体上作用激光脉冲时,固体吸收激光能 量,导致局部温度升高,从而引起热膨胀,产生热应 力.

在快速激光加热过程中,有两个效应变得十分 重要.一个是热传导的非傅立叶效应,这是对傅立 叶热传导效应的修正.在传统的工程应用中,用于 加热的激光能流密度低,脉冲持续时间长,因此用 傅立叶热传导方程可以成功的描述.然而,在快速 激光加热过程中,能流密度高,持续时间短,固体中 产生了热梯度很大的区域,或者在边界上可以有超 高的加热速度.正如许多作者指出的,在这种情况 下 经典傅立叶模型不再适应^[3].傅立叶热传导理 论中假定热的传播速度为无穷大,这在实际过程中 是不成立的.而非傅立叶效应考虑到能量载子的碰 撞过程所需的平均自由时间(即热松弛时间),可以 消除这种矛盾.另一个是温度场与应变场的耦合导 致应力波的耗散,这种耗散导致物体的机械能转化 为热能,这种过程是不可逆的.

现有文献对梁的研究大多采用傅立叶热传导 理论,对非傅立叶热传导模型应用比较少.而且对 热冲击作用下微米尺度梁的热弹性耦合振动的讨 论比较少.Tang^[4]采用 Green 函数方法研究了空间 有限介质受到激光脉冲作用后温度的分布情况. Kidawa^[5]研究了调和移动的热源作用下的梁的横 向振动,应用 Green 函数方法得到解析解.但没有 考虑热弹性耦合,即只考虑温度场对振动的影响, 而没有考虑振动对温度场的影响.Boley^[6]研究了 两端简支的矩形梁突然加热所产生的振动.Huniti 等^[7]研究了杆中热作用产生的位移与应力,文中采 用了 Laplace 变换技术.

本文采用 Lord 和 Shulmar^[8]提出的包含单松 弛时间的广义热弹性理论研究了激光脉冲作用下 微米尺度梁谐振器的热弹性耦合问题,分析了不同 环境温度以及不同能量吸收深度对梁的振动特性 的影响.

1 问题的数学描述

本文中考虑两端简支的均质弹性薄梁的小挠 度振动.梁长为 $L(0 \le x \le L)$,宽为 $b(-b/2 \le y$ $\le b/2$),厚为 $h(-h/2 \le z \le h/2)$.本文定义 x 轴 沿梁的长度方向 ,y 和z 轴分别对应宽度和厚度方 向.平衡态时 ,梁内部没有初应力和初应变 ,并且各 处温度与室温相同 ,为 T_0 .

本文采用 Euler-Bernoulli 梁假设,即梁的横截 面在弯曲后仍然保持为平面,并且绕 y 轴旋转一个 小角度,按照这个假设,梁的位移分量分别为

$$u = -z \frac{\mathrm{d}w}{\mathrm{d}x}, v = 0, w(x, y, z, t) = w(x, t)$$
(1)

这样 梁的热激横向振动可以用如下的偏微分方程 进行描述

$$EI\frac{\partial^4 w}{\partial x^4} + \rho A \frac{\partial^2 w}{\partial t^2} + bh^2 \beta \frac{\partial^2 K}{\partial x^2} = 0 \qquad (2)$$

式中 *E* 是杨氏模量 ,*I* = $bh^3/12$ 是截面惯性矩 , ρ 是梁的密度 ,w 是横向挠度 ,x 是沿梁轴向的长度 , *t* 代表时间 , $\beta = E\alpha_T/(1-2v)$, α_T 是热膨胀系数 , *v* 是泊松比.

式(2)中K为热矩,定义为

$$K = \frac{1}{h^2} \int_{-h/2}^{h/2} \theta(x \, z \, t) z \, dz$$
 (3)

其中, $\theta = T - T_0$ 为谐振器与环境的温差,T(x, z, t)是梁中的温度场分布, T_0 为环境温度.

化简(2)式可得

$$\frac{Eh^2}{12} \frac{\partial^4 w}{\partial x^4} + \rho \frac{\partial^2 w}{\partial t^2} + \beta h \frac{\partial^2 K}{\partial x^2} = 0 \qquad (4)$$

设梁的初始温度分布为 $T(x,z,0) = T_0$,即 $\theta(x,z,0) = 0.$ 在t = 0时刻在上表面(z = h/2) 施加均匀分布的激光脉冲,脉冲的时间轮廓为非高 斯形式

$$I(t) = \frac{I_0 t}{t_p^2} \exp\left(-\frac{t}{t_p}\right) \tag{5}$$

其中,_{tp}是激光脉冲的持续时间,I₀是激光的能量 密度,定义为单位面积激光束携带的能量.图1所 示为不同持续时间的脉冲的时间轮廓.

图 1 激光脉冲的时间轮廓图

Fig. 1 Temporal profile of the laser pulse

根据文献 4] 热源 Q(z,t) 可以如下描述

$$Q(z,t) = \frac{R}{\delta} \exp\left(\frac{z-h/2}{\delta}\right) (t)$$
(6)

其中 δ 是热能的吸收深度_R是表面的吸收率.

考虑热弹性耦合问题以及热传导的非傅立叶 效应,梁中的温度场分布用如下偏微分方程描述

$$k\nabla^{2}\theta + \mathbf{Q}(z,t) = \rho c_{v} \frac{\partial \theta}{\partial t} + \beta T_{0} \frac{\partial e}{\partial t} + \tau_{0}\rho c_{v} \frac{\partial^{2} \theta}{\partial t^{2}} + \tau_{0}\beta T_{0} \frac{\partial^{2} e}{\partial t^{2}}$$
(7)

其中 k 是热传导率 c_v 是比热 τ_0 是松弛时间 $e = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$ 是体积应变.

把(1)式和(6)式代入(7)式 得到

$$k \frac{\partial^{2} \theta}{\partial x^{2}} + k \frac{\partial^{2} \theta}{\partial z^{2}} + \frac{R}{\delta} \exp\left(\frac{z - h/2}{\delta}\right) (t) = \rho c_{v} \frac{\partial \theta}{\partial t} - T_{0} \beta z \frac{\partial^{3} w}{\partial x^{2} \partial t} + \tau_{0} \rho c_{v} \frac{\partial^{2} \theta}{\partial t^{2}} - \tau_{0} T_{0} \beta z \frac{\partial^{4} w}{\partial x^{2} \partial t^{2}}$$

$$(8)$$

上下表面的边界条件为绝热 即

$$\left.\frac{\partial \theta}{\partial z}\right|_{z=\pm h/2} = 0 \tag{9}$$

对于薄梁,当其厚度比较小时,可以假定 θ 沿 厚度方向成正弦 sin(pz)分布,则

$$\int_{-h/2}^{h/2} \frac{1}{h^2} \frac{\partial^2 \theta}{\partial z^2} z \mathrm{d}z = -p^2 K \qquad (10)$$

其中 $p = \pi / h$.

把(8)式 z/h² 对 z 在区间[-h/2,h/2]内积 分 得

$$k \frac{\partial^2 K}{\partial x^2} - kp^2 K - \rho c_v \frac{\partial K}{\partial t} + \frac{T_0 \beta h}{12} \frac{\partial^3 w}{\partial x^2 \partial t} - \tau_0 \rho c_v \frac{\partial^2 K}{\partial t^2} + \frac{\tau_0 T_0 \beta h}{12} \frac{\partial^4 w}{\partial x^2 \partial t^2} + \frac{Ra_\delta}{2h} I(t) = 0$$
(11)

其中 $a_{\delta} = \frac{(1+2a)+(1-2a)e^{(1/a)}}{e^{(1/a)}} a = \frac{\delta}{h}.$

这样可以得到考虑热弹性耦合问题的控制方

程组为

$$\begin{cases} \frac{Eh^2}{12} \frac{\partial^4 w}{\partial x^4} + \rho \frac{\partial^2 w}{\partial t^2} + \beta h \frac{\partial^2 K}{\partial x^2} = 0\\ k \frac{\partial^2 K}{\partial x^2} - k \rho^2 K - \rho c_v \frac{\partial K}{\partial t} + \frac{T_0 \beta h}{12} \frac{\partial^3 w}{\partial x^2 \partial t} - \\ \tau_0 \rho c_v \frac{\partial^2 K}{\partial t^2} + \frac{\tau_0 T_0 \beta h}{12} \frac{\partial^4 w}{\partial x^2 \partial t^2} + \\ \frac{Ra_\delta}{2h} I(t) = 0 \end{cases}$$

$$(12)$$

2 方程式的求解

本 文 考 虑 两 端 简 支 等 温 的 梁, 采 用 有 限 Fourier 正弦变换与 Laplace 变换相结合的方法来求 解方程组(12).对于两端简支等温的梁,其边界条件为

$$\begin{cases} w \mid_{x=0} = w \mid_{x=L} = 0\\ \frac{\partial^2 w}{\partial x^2} \mid_{x=0} = \frac{\partial^2 w}{\partial x^2} \mid_{x=L} = 0\\ K \mid_{x=0} = K \mid_{x=L} = 0 \end{cases}$$
(13)

初始条件为

$$\begin{cases} w \mid_{t=0} = 0 \left. \frac{\partial w}{\partial t} \right|_{t=0} = 0 \\ K \mid_{t=0} = 0 \left. \frac{\partial K}{\partial t} \right|_{t=0} = 0 \end{cases}$$
(14)

对方程(12)进行有限傅立叶正弦变换,得

$$\begin{cases} w_m(m,t) = \int_0^L w(x,t) \sin\left(\frac{m\pi x}{L}\right) dx \\ K_m(m,\tau) = \int_0^L K(x,\tau) \sin\left(\frac{m\pi x}{L}\right) dx \end{cases}$$
(15)

其逆变换公式为

$$\begin{cases} w(x,t) = 2 \sum_{m=1,3}^{\infty} w_m(m,t) \sin\left(\frac{m\pi x}{L}\right) \\ K(x,t) = 2 \sum_{m=1,3}^{\infty} K_m(m,t) \sin\left(\frac{m\pi x}{L}\right) \end{cases}$$
(16)

则边界条件(13)自动满足.

方程(12) 及初始条件(14) 变换后得

$$\begin{cases} \frac{\partial^2 w_m}{\partial t^2} + A_1 w_m - A_2 K_m = 0\\ A_3 K_m + A_4 \frac{\partial K_m}{\partial t} + A_5 \frac{\partial w_m}{\partial t} + A_6 \frac{\partial^2 K_m}{\partial t^2} + \\ A_7 \frac{\partial^2 w_m}{\partial t^2} + A_8 t e^{(-t/t_p)} = 0 \end{cases}$$
(17)

$$\begin{cases} w_m \mid_{t=0} = 0 \left. \frac{\partial w_m}{\partial t} \right|_{t=0} = 0 \\ K_m \mid_{t=0} = 0 \left. \frac{\partial K_m}{\partial t} \right|_{t=0} \end{cases}$$
(18)

其中 $r = m\pi/L$ m = 1.3.5 r... 式中各系数为

$$A_{1} = \frac{Eh^{2}}{12\rho} A_{2} = \frac{r^{2}\beta h}{\rho} A_{3} = k(r^{2} + \rho^{2}),$$

$$A_{4} = \rho c_{v} A_{5} = \frac{T_{0}\beta hr^{2}}{12} A_{6} = \tau_{0}\rho c_{v},$$

$$A_{7} = \frac{\tau_{0}T_{0}\beta hr^{2}}{12} A_{8} = \frac{RI_{0}a_{\delta}}{rt_{p}^{2}h}$$
(19)

再对(17)式进行关于 τ 的 Laplace 变换和逆变

换 求得 w_n(m,t)的解为

$$w_m(m,t) = \sum_{\alpha} \frac{b_0 e^{\alpha t}}{c_{\alpha}}$$
 (20)

式中 ,
$$\alpha$$
 是方程 $\sum_{n=0}^{6} c_n \alpha^n = 0$ 的解 , $c_{\alpha} = \sum_{n=1}^{6} nc_i \alpha^{i-1}$,
 $b_0 = -A_2 A_8 t_p^2$, $c_0 = A_1 A_3$, $c_1 = 2A_1 A_3 t_p + B_1$,
 $c_2 = A_1 A_3 t_p^2 + 2B_1 t_p + B_2$, $c_3 = B_1 t_p^2 + 2_2 B t_p + A_4$, $c_4 = B_2 t_p^2 + 2A_4 t_p + A_6$, $c_5 = A_4 t_p^2 + 2A_6 t_p$,
 $c_6 = A_6 t_p^2$, $B_1 = A_1 A_4 + A_2 A_5$, $B_2 = A_3 + A_1 A_6$
 $+ A_2 A_7$.

最后由(16)式可以得到梁的横向振动位移为

$$w(x,t) = 2\sum_{m=1,3}^{\infty} \sum_{r...,a} \frac{b_0 e^{at}}{c_a} \sin\left(\frac{m\pi x}{L}\right)$$
(21)

3 计算结果分析

本文中分析温度对热弹性耦合的影响,根据文 献 9 ~ 11],不同温度下,硅的材料参数不同,如表 1 所示.

表1 不同温度下硅的材料参数

Table 1 Material parameters of silicon in different temperature

<i>T</i> ₀ (K)	293	500
E(GPa)	165.9	163.3
<i>p</i> (kg/m ³)	2330	2325
<i>k</i> (W/(m ⋅ K))	156	80
<i>c</i> ₀(J∕(kg · K))	713	832
$lpha$ ($ imes 10^{-6} \mathrm{K}^{-1}$)	2.59	3.614

计算中梁的尺寸保持不变,即固定 L/h = 10, b/h = 1/2, h = 10 µm. 松弛时间为 $\tau_0 = 1$ ps,能 量密度为 $I_0 = 1000$ J/m². 对于激光脉冲,持续时 间为 $t_p = \tau_0 = 1$ ps, a 取不同的值,则梁吸收的 能量不同,其激发的振动也有所不同. 下面计算中 将予以分析.

图 2 和图 3 描述了 $a = \delta / h$ 取不同的值时位移 与热矩的振动状态,其中环境温度为室温 $T_0 =$ 293 K.

从图 2 和图 3 中可以明显看出非傅立叶效应, 振动曲线成准周期性, a 越大,最大振幅越小.这是 因为 a 反映了热能的吸收深度, a 越大,能量集中 度越小,能量分布越趋于均匀.此外 a 取不同值时, 振幅不同,但频率是相同的,这说明激光作用不会 改变梁的固有频率.

图 4 和图 5 描述了环境温度 T_0 取不同的值时 位移与热矩的振动状态 ,其中能量吸收深度为 a =1/10.

从图 4 和图 5 可以看出,温度不同时,振动曲 线达到平衡位置的时间也不同,温度越高,所需时 间越长,因而周期越大,频率越小.而不考虑应变场 与温度场的耦合时,振动频率与温度无关.这是因 为考虑热弹性耦合对梁的振动的影响具有热阻尼 的性质,这种热阻尼使梁的振动频率增加.

4 结论

本文研究了两端简支的 Euler-Bernoulli 梁受 到非高斯形式分布的激光脉冲的作用后产生的振 动.由于激光作用,梁内的温度分布发生变化,由于 热弹性耦合作用,梁产生横向振动.本文用傅立叶 正弦变换与拉普拉斯变换相结合的方法得到梁内 的位移与热矩横向振动的表达式.

文中考虑非傅立叶效应,采用热传导的波动方 程,分析了热能吸收深度以及不同环境温度对振动 状态的影响.结果明显反映了非傅立叶效应.

参考文献

- Wang X and Xu X. Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A. 2001, 73:107~114
- 2 Wang X and Xu X. Thermoelastic wave in metal induced by ultrafast laser pulses. J. Thermal Stresses. 2002, 25: 457~473
- 3 Tzou DY. Macro- to Micro-scale Heat Transfer : the Lagging Behavior. Bristol : Taylor & Francis , 1997
- 4 Tang DW and Araki N. Non-Fourier heat conduction be-

havior in finite mediums under pulse surface heating. Materials Science and Engineering A. 2000, 292: $173 \sim 178$

- 5 Kidawa KJ. Application of the Green functions to the problem of the thermally induced vibration of a beam. J. Sound and Vibration. 2003, 262 865~876
- 6 Boley BA. Approximate analyses of thermally induced vibrations of beams and plates. J. Appl. Mech. 1972, 39: 212~216
- 7 Huniti NS, Nimr MA and Naij M. Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model. J. Sound and Vibration. 2001, 242:

 $629 \sim 640$

- 8 Lord HW and Shulman Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 1967, 15: 299~309
- 9 Duwel A, Gorman J, Weinstein M, et al. Experimental study of thermoelastic damping in MEMS gyros. Sensors and Actuators A. 2003, 103-70~75
- 10 The Institution of Electrical Engineers. Properties of Silicon. London and New York : INSPEC, 1988
- 11 Gysin U, Rast S, Ruff P, et al. Temperature dependence of the force sensitivity of silicon cantilevers. *Phys. Rev. B.* 2004, 69 045403

VIBRATION OF MICROSCALE BEAM RESONATOR INDUCED BY LASER PULSE

Fang Daining Sun Yuxin

(Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China)

Abstract In ultrashort-pulsed laser heating, two effects become important. One is the non-Fourier effect in heat conduction. The other is the coupling between temperature and strain rate, which causes transform of mechanical energy associated with the stress wave to thermal energy of the material. In this work, a generalized solution for the coupled thermoelastic vibration of a microscale beam resonator induced by pulsed laser heating is developed. The solution takes into account the above two effects. The finite sine Fourier transformation combined with Laplace transformation is used to obtain the lateral vibration of the beam. And the paper analyzes the effect of different laser pulse energy absorptive depth and environment temperature.

Key words thermoelastic coupling, microscale beam resonator, integral transformation