en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张国策,E-mail:gczhang@hainanu.edu.cn

中图分类号:O321

文献标识码:A

文章编号:1672-6553-2024-22(3)-88-005

DOI:10.6052/1672-6553-2023-013

参考文献 1
胡海岩.论固有振型的节点规律[J].动力学与控制学报,2018,16(3):193-200.HU H Y.On node number of a natural mode-shape [J].Journal of Dynamics and Control,2018,16(3):193-200.(in Chinese)
参考文献 2
胡海岩.杆在固有振动中的对偶关系[J].动力学与控制学报,2020,18(2):1-8.HU H Y.Duality relations of rods in natural vibrations [J].Journal of Dynamics and Control,2020,18(2):1-8.(in Chinese)
参考文献 3
肖和业,盛美萍,赵芝梅.弹性边界条件下带有任意分布弹簧质量系统的梁自由振动的解析解[J].工程力学,2012,29(9):318-323.XIAO H Y,SHENG M P,ZHAO Z M.An analytic solution for a beam with arbitrarily distributed spring-mass systems under elastic boundary condition [J].Engineering Mechanics,2012,29(9):318-323.(in Chinese)
参考文献 4
李海超,庞福振,张航,等.阶梯厚度圆柱壳自由振动特性分析[J].振动工程学报,2020,33(6):1226-1233.LI H C,PANG F Z,ZHANG H,et al.Free vibration analysis of stepped cylindrical shells [J].Journal of Vibration Engineering,2020,33(6):1226-1233.(in Chinese)
参考文献 5
黄慧春,张艳雷,陈立群.超临界下受迫输液管2:1内共振的响应特性[J].噪声与振动控制,2014,34(2):8-11.HUANG H C,ZHANG Y L,CHEN L Q.Resonance analysis of a forced fluid-conveying pipe with 2:1 internal resonances under supercritical fluid velocity [J].Noise and Vibration Control,2014,34(2):8-11.(in Chinese)
参考文献 6
康厚军,丛云跃,郭铁丁.《结构动力学》中多频激励多自由度系统稳态解的新方法[J].动力学与控制学报,2021,19(2):91-98.KANG H J,CONG Y Y,GUO T D.A new method for steady-state response of multi-DOF system with multi-frequency harmonic excitations in structural dynamics [J].Journal of Dynamics and Control,2021,19(2):91-98.(in Chinese)
参考文献 7
李英杰,赵广,吴学深,等.航空花键-转子系统自激振动研究综述[J].航空学报,2022,43(8):625532.LI Y J,ZHAO G,WU X S,et al.Review of research on self-excited vibration of aviation spline-rotor system [J].Acta Aeronautica et Astronautica Sinica,2022,43(8):625532.(in Chinese)
参考文献 8
李飞胤,马少杰,张合.颗粒自激式冲击-振动耦合力学试验方法及试验研究[J].振动与冲击,2023,42(3):227-234.LI F Y,MA S J,ZHANG H.Particle self-excited impact-vibration coupled mechanical test method and test study [J].Journal of Vibration and Shock,2023,42(3):227-234.(in Chinese)
参考文献 9
张云飞,杨鄂川,李映辉.变截面粘弹性旋转梁非线性参数振动研究[J].动力学与控制学报,2018,16(5):418-423.ZHANG Y F,YANG E C,LI Y H.Studies on nonlinear parametric vibration of a rotating viscoelastic beam with variable cross-sections [J].Journal of Dynamics and Control,2018,16(5):418-423.(in Chinese)
参考文献 10
唐冶,王涛,丁千.主动控制压电旋转悬臂梁的参数振动稳定性分析[J].力学学报,2019,51(6):1872-1881.TANG Y,WANG T,DING Q.Stability analysis on parametric vibration of piezoelectric rotating cantilever beam with active control [J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(6):1872-1881.(in Chinese)
参考文献 11
GIURGIUTIU V.structural health monitoring with piezoelectric wafer active sensor[M].2nd ed.Oxford,UK:Academic Press,2014.
参考文献 12
ZHOU S D,HEYLEN W,LIU L.Structural Dynamics [M].Beijing:Beijing Institute of Technology Press,2016.
参考文献 13
陈立群,戈新生,徐凯宇,等.理论力学[M].北京:清华大学出版社,2006.
参考文献 14
刘习军,张素侠.工程振动测试技术[M].北京:机械工业出版社,2016.LIU X J,ZHANG S X.Engineering vibration testing technology [M].Beijing:China Machine Press,2016.(in Chinese)
参考文献 15
殷祥超.振动理论与测试技术[M].3版.徐州:中国矿业大学出版社,2017.
参考文献 16
胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2005.
参考文献 17
闻邦椿,刘树英,陈照波,等.机械振动理论及应用[M].北京:高等教育出版社,2009.WEN B C,LIU S Y,CHEN Z B,et al.Theory of mechanical vibration and its applications [M].Beijing:Higher Education Press,2009.(in Chinese)
参考文献 18
李俊峰,张雄.理论力学[M].2版.北京:清华大学出版社,2010.
参考文献 19
闻邦椿,刘树英,张纯宇.机械振动学[M].2版.北京:冶金工业出版社,2011.
参考文献 20
师汉民,黄其柏.机械振动系统——分析·建模·测试·对策[M].3版.武汉:华中科技大学出版社,2013.SHI H M,HUANG Q B.Vibration systems:analyzing,modeling,testing,controling [M].3rd ed.Wuhan:Huazhong University of Science and Technology Press,2013.(in Chinese)
参考文献 21
胡准庆.机械振动基础[M].北京:北京交通大学出版社,2013.HU Z Q.Foundation of mechanical vibration [M].Beijing:Beijing Jiaotong University Press,2013.(in Chinese)
参考文献 22
黄迎春.船艇振动与噪声[M].哈尔滨:哈尔滨工程大学出版社,2015.
参考文献 23
陈虹微.机械振动机理及控制技术[M].北京:中国纺织出版社,2019.
参考文献 24
李有堂.机械振动理论与应用[M].2版.北京:科学出版社,2020.
参考文献 25
刘延柱,陈立群,陈文良.振动力学[M].3版.北京:高等教育出版社,2019.LIU Y Z,CHEN L Q,CHEN W L.Mechanics of vibrations [M].3rd ed.Beijing:Higher Education Press,2019.(in Chinese)
参考文献 26
刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.LIU Y Z,CHEN L Q.Nonlinear vibrations [M].Beijing:Higher Education Press,2001.(in Chinese)
目录contents

    摘要

    振幅、频率和相位是简谐振动的三要素.其中,相位角的周期是2π.在一个周期(-π,π]内,任意简谐振动响应的初相位必须具有唯一性.该问题常被忽视.将相位角表示成反正切函数时需要考虑反三角函数的值域.在此对部分著作中的常见错误作简要修正.

    Abstract

    Amplitude, frequency and phase are three parameters of simple harmonic vibration. The period of phase angle is 2π. The initial phase angle of any simple harmonic vibration must be unique in the interval (-π,π]. This uniqueness is often overlooked. When the phase angle is expressed in the form of an arctangent function, the value range of the inverse trigonometric function needs to be considered. The common mistakes in some monographs are corrected here.

    关键词

    自由振动受迫振动初相位

  • 引言

  • 振动在土木建筑、国防军工、道路桥梁、防震减灾等工程领域相当重要.根据激励性质不同,机械振动可分为固有振动[12]、自由振动[34]、受迫振动[56]、自激振动[78]和参数振动[910].简谐运动是最常见的振动形式.振幅、频率和相位是简谐振动的三要素.众多参考书介绍振动响应时,初相位常常需要被修正[11-27].

  • 对于线性振动微分方程,一般可以精确求解.求解过程中,先构造振动响应的形式解;然后结合初始条件,分别求得振幅、频率和初相位.在求相位角时,通常先求出初相位的正弦值与余弦值,进而将初相位表示成已知参数组合的反三角函数.但是,反三角函数的值域与初相位的取值范围往往不一致.如果不注意值域,对于特定的系统参数组合,将可能导致与实际情况完全不符的振动响应.此类问题层出不穷,需要重视.

  • 下面以单自由度振动系统为例,分别研究自由振动和受迫振动,在半开半闭区间(-π,π]内就初相位唯一性作简要论述.

  • 1 自由振动

  • 单自由度无阻尼系统自由振动是最基本的振动现象.以单自由度质量-弹簧系统构成的简谐振子为研究对象,质量块偏离平衡位置的距离x随时间t变化的规律满足如下微分方程:

  • mx¨+kx=0
    (1)
  • 式中,m表征质量块的质量,k表征弹簧刚度,两者取值均为正数.

  • 胡海岩[16]等指出,自由振动控制方程(1)的形式解可写作:

  • x(t)=Asinω0t+α
    (2)
  • 式中,固有圆频率:

  • ω0=km>0
    (3)
  • 考虑如下初始条件:

  • x(t=0)=x0,x˙(t=0)=v0
    (4)
  • 将式(2)代入式(4)可得:

  • Asinα=x0,Acosα=v0ω0
    (5)
  • 解之得振幅:

  • A=x02+v02ω02
    (6)
  • 若初始速度非零,则可得初相位[11-25]

  • α=arctanx0ω0v0-π2,π2
    (7)
  • 事实上,式(7)限制了相位角的值域,其余弦值始终为正,这就要求初始速度的代数值大于零.只有当初始速度方向与位移x正方向一致时,式(7)才是正确的.因此,该相位角(7)不一定是原系统(1)的解.如果v0<0,那么初始速度方向与x正方向相反,相位角(7)将给出错误的结果.修正如下:

  • α*=fx0arccosv0ω02x02+v02(-π,π]
    (8)
  • 式中,f为分段函数:

  • (9)
  • 显然,自由振动响应的初相位与初始条件密切相关.综上所述,自由振动系统(1)的响应为:

  • x*(t)=x0costkm+mkv0sintkm
    (10)
  • 2 受迫振动

  • 考虑黏性阻尼力,单自由度振动系统受简谐激励作用时的微分方程为:

  • mx¨+cx˙+kx=hsin(ωt)
    (11)
  • 式中,c表征黏性阻尼系数,h表征简谐激振力的幅值,ω表征简谐激振力的频率,三者取值均为正数.

  • 闻邦椿等[1719]指出,受迫振动稳态响应与初始条件无关,其形式解可写作:

  • x(t)=Bsin(ωt+β)
    (12)
  • 将式(12)代入式(11)可得:

  • Bsinβ=-cωhc2ω2+m2ω02-ω22Bcosβ=mhω02-ω2c2ω2+m2ω02-ω22
    (13)
  • 解之得振幅:

  • B=hc2ω2+m2ω02-ω22
    (14)
  • 稳态响应时的初相位为[16-27]

  • β=arctancωmω2-ω02-π2,π2
    (15)
  • 事实上,式(15)限制了相位角的值域,其余弦值始终为正,这就要求外激励频率必须足够小.只有当激励频率ω小于派生无阻尼系统(1)的固有频率时,式(15)才是正确的.这与实际振动条件不符.因此,该相位角(15)不一定是原系统(11)稳态响应时的初相位.如果外激励振动过快,激励频率较大,那么相位角(15)将给出错误的结果.

  • 考虑到阻尼系数和激励频率的代数值均为正数,由式(13)可知,初相位的正弦值小于零.因此,修正相位角如下所示:

  • β*=-arccosmω02-ω2c2ω2+m2ω02-ω22(-π,0)
    (16)
  • 考虑初始条件(4),根据常微分方程理论,小阻尼情形时受迫振动系统(11)的响应为:

  • x (t) =hk-mω2sin (ωt) -cωhcos (ωt) c2ω2+k-mω22+x0+cωhc2ω2+k-mω22e-ct2ncost4mk-c22m+2mv0+cx04mk-c2e-ct2msint4mk-c22m+

  • ωhc2-2mk+2m2ω2c2ω2+k-mω224mk-c2e-ct2msint4mk-c22m
    (17)
  • 3 数值验证

  • 为了使用龙格-库塔法进行数值计算,引入速度变量vt),将振动方程(11)改写为如下微分方程组:

  • x˙=vv˙=hsin(ωt)-cv-kxm
    (18)
  • 考虑如下参数组合:

  • c=h=0,m=1.0kg,k=1.0N/m
    (19)
  • 此时,系统(18)代表了单自由度无阻尼振动系统(1).特选取初始条件如下:

  • x(t=0)=0.4m,x˙(t=0)=-0.3m/s
    (20)
  • 数值仿真过程中令时间步长为0.0001s,采样点为0.5s,计算结果如图1中蓝色实心圆点所示.

  • 基于文献[11]~文献[25],由式(2,3,6,7)可得解析结果:

  • x1(t)0.5sint-53.1301m
    (21)
  • 因所选初始速度为负数,故需修正相位角.由式(2,3,6,8)可得改进结果:

  • x1*(t)0.5sint+126.8699m
    (22)
  • 图1 自由振动周期响应

  • Fig.1 The periodic response of free vibration

  • 从图1示出了自由振动响应(21)与(22)的对比结果.图中虚线代表文献[11]~文献[25]中的响应解(21).实线代表改进结果(22),与数值仿真结果一致.图例表明,初相位不同,将导致多数时刻振动响应计算结果偏离真实值,甚至包括初始时刻.

  • 再计算受迫振动系统,不妨考虑如下参数组合:

  • c=0.5Ns/m,m=1.0kg,k=1.0N/m
    (23)
  • 初始条件仍为式(20),特选取激励参数为:

  • h=0.4m,ω=1.2rad/s
    (24)
  • 仿真过程中令时间步长为0.0001s,采样点为0.5s,根据式(18)数值计算暂态响应如图2中红色实心圆点所示.图中实线代表小阻尼受迫振动系统的响应(17).两者完全重合.数值验证结果支持式(17)是有阻尼系统(11)的一个解析解.

  • 图2 受迫振动暂态响应

  • Fig.2 The transient response of forced vibration

  • 随着计算时长变大,系统逐渐进入稳态.基于文献[16]~文献[27],由式(12,14,15)可得近似解析结果:

  • x2(t)0.5376sin1.2t+53.7462m
    (25)
  • 因所选激励频率大于固有频率,故上式将给出错误的结果.修正相位角后,由式(12,14,16)可得改进结果.稳态响应近似为:

  • x2*(t)0.5376sin1.2t-126.2538m
    (26)
  • 图3 受迫振动稳态响应

  • Fig.3 The steady-state response of forced vibration

  • 从图3示出了受迫振动稳态响应(25)与(26)的对比结果.图中虚线代表文献[16]~文献[27]中的响应解(25).实线代表改进结果(26),与数值仿真结果吻合.图例表明,相位角不同,将导致多数时刻振动响应计算结果偏离真实值.

  • 4 结束语

  • 相位角是简谐振动的三要素之一.分别考虑自由振动和受迫振动,给出了任意初始条件下系统响应的解析解.理论求解过程中,如果不注意反三角函数的值域,将可能导致与实际情况完全不符的振动响应.日常科研中应受到重视.

  • (1)无阻尼线性系统自由振动时,初相位与初始条件、固有频率均相关,且在区间(-π,π]内具有唯一性.

  • (2)线性阻尼系统受简谐激励时,稳态响应与初始条件无关,但相位角与激励频率、固有频率密切相关,且初相位在区间(-π,π]内具有唯一性.

  • 参考文献

    • [1] 胡海岩.论固有振型的节点规律[J].动力学与控制学报,2018,16(3):193-200.HU H Y.On node number of a natural mode-shape [J].Journal of Dynamics and Control,2018,16(3):193-200.(in Chinese)

    • [2] 胡海岩.杆在固有振动中的对偶关系[J].动力学与控制学报,2020,18(2):1-8.HU H Y.Duality relations of rods in natural vibrations [J].Journal of Dynamics and Control,2020,18(2):1-8.(in Chinese)

    • [3] 肖和业,盛美萍,赵芝梅.弹性边界条件下带有任意分布弹簧质量系统的梁自由振动的解析解[J].工程力学,2012,29(9):318-323.XIAO H Y,SHENG M P,ZHAO Z M.An analytic solution for a beam with arbitrarily distributed spring-mass systems under elastic boundary condition [J].Engineering Mechanics,2012,29(9):318-323.(in Chinese)

    • [4] 李海超,庞福振,张航,等.阶梯厚度圆柱壳自由振动特性分析[J].振动工程学报,2020,33(6):1226-1233.LI H C,PANG F Z,ZHANG H,et al.Free vibration analysis of stepped cylindrical shells [J].Journal of Vibration Engineering,2020,33(6):1226-1233.(in Chinese)

    • [5] 黄慧春,张艳雷,陈立群.超临界下受迫输液管2:1内共振的响应特性[J].噪声与振动控制,2014,34(2):8-11.HUANG H C,ZHANG Y L,CHEN L Q.Resonance analysis of a forced fluid-conveying pipe with 2:1 internal resonances under supercritical fluid velocity [J].Noise and Vibration Control,2014,34(2):8-11.(in Chinese)

    • [6] 康厚军,丛云跃,郭铁丁.《结构动力学》中多频激励多自由度系统稳态解的新方法[J].动力学与控制学报,2021,19(2):91-98.KANG H J,CONG Y Y,GUO T D.A new method for steady-state response of multi-DOF system with multi-frequency harmonic excitations in structural dynamics [J].Journal of Dynamics and Control,2021,19(2):91-98.(in Chinese)

    • [7] 李英杰,赵广,吴学深,等.航空花键-转子系统自激振动研究综述[J].航空学报,2022,43(8):625532.LI Y J,ZHAO G,WU X S,et al.Review of research on self-excited vibration of aviation spline-rotor system [J].Acta Aeronautica et Astronautica Sinica,2022,43(8):625532.(in Chinese)

    • [8] 李飞胤,马少杰,张合.颗粒自激式冲击-振动耦合力学试验方法及试验研究[J].振动与冲击,2023,42(3):227-234.LI F Y,MA S J,ZHANG H.Particle self-excited impact-vibration coupled mechanical test method and test study [J].Journal of Vibration and Shock,2023,42(3):227-234.(in Chinese)

    • [9] 张云飞,杨鄂川,李映辉.变截面粘弹性旋转梁非线性参数振动研究[J].动力学与控制学报,2018,16(5):418-423.ZHANG Y F,YANG E C,LI Y H.Studies on nonlinear parametric vibration of a rotating viscoelastic beam with variable cross-sections [J].Journal of Dynamics and Control,2018,16(5):418-423.(in Chinese)

    • [10] 唐冶,王涛,丁千.主动控制压电旋转悬臂梁的参数振动稳定性分析[J].力学学报,2019,51(6):1872-1881.TANG Y,WANG T,DING Q.Stability analysis on parametric vibration of piezoelectric rotating cantilever beam with active control [J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(6):1872-1881.(in Chinese)

    • [11] GIURGIUTIU V.structural health monitoring with piezoelectric wafer active sensor[M].2nd ed.Oxford,UK:Academic Press,2014.

    • [12] ZHOU S D,HEYLEN W,LIU L.Structural Dynamics [M].Beijing:Beijing Institute of Technology Press,2016.

    • [13] 陈立群,戈新生,徐凯宇,等.理论力学[M].北京:清华大学出版社,2006.

    • [14] 刘习军,张素侠.工程振动测试技术[M].北京:机械工业出版社,2016.LIU X J,ZHANG S X.Engineering vibration testing technology [M].Beijing:China Machine Press,2016.(in Chinese)

    • [15] 殷祥超.振动理论与测试技术[M].3版.徐州:中国矿业大学出版社,2017.

    • [16] 胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2005.

    • [17] 闻邦椿,刘树英,陈照波,等.机械振动理论及应用[M].北京:高等教育出版社,2009.WEN B C,LIU S Y,CHEN Z B,et al.Theory of mechanical vibration and its applications [M].Beijing:Higher Education Press,2009.(in Chinese)

    • [18] 李俊峰,张雄.理论力学[M].2版.北京:清华大学出版社,2010.

    • [19] 闻邦椿,刘树英,张纯宇.机械振动学[M].2版.北京:冶金工业出版社,2011.

    • [20] 师汉民,黄其柏.机械振动系统——分析·建模·测试·对策[M].3版.武汉:华中科技大学出版社,2013.SHI H M,HUANG Q B.Vibration systems:analyzing,modeling,testing,controling [M].3rd ed.Wuhan:Huazhong University of Science and Technology Press,2013.(in Chinese)

    • [21] 胡准庆.机械振动基础[M].北京:北京交通大学出版社,2013.HU Z Q.Foundation of mechanical vibration [M].Beijing:Beijing Jiaotong University Press,2013.(in Chinese)

    • [22] 黄迎春.船艇振动与噪声[M].哈尔滨:哈尔滨工程大学出版社,2015.

    • [23] 陈虹微.机械振动机理及控制技术[M].北京:中国纺织出版社,2019.

    • [24] 李有堂.机械振动理论与应用[M].2版.北京:科学出版社,2020.

    • [25] 刘延柱,陈立群,陈文良.振动力学[M].3版.北京:高等教育出版社,2019.LIU Y Z,CHEN L Q,CHEN W L.Mechanics of vibrations [M].3rd ed.Beijing:Higher Education Press,2019.(in Chinese)

    • [26] 刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.LIU Y Z,CHEN L Q.Nonlinear vibrations [M].Beijing:Higher Education Press,2001.(in Chinese)

  • 参考文献

    • [1] 胡海岩.论固有振型的节点规律[J].动力学与控制学报,2018,16(3):193-200.HU H Y.On node number of a natural mode-shape [J].Journal of Dynamics and Control,2018,16(3):193-200.(in Chinese)

    • [2] 胡海岩.杆在固有振动中的对偶关系[J].动力学与控制学报,2020,18(2):1-8.HU H Y.Duality relations of rods in natural vibrations [J].Journal of Dynamics and Control,2020,18(2):1-8.(in Chinese)

    • [3] 肖和业,盛美萍,赵芝梅.弹性边界条件下带有任意分布弹簧质量系统的梁自由振动的解析解[J].工程力学,2012,29(9):318-323.XIAO H Y,SHENG M P,ZHAO Z M.An analytic solution for a beam with arbitrarily distributed spring-mass systems under elastic boundary condition [J].Engineering Mechanics,2012,29(9):318-323.(in Chinese)

    • [4] 李海超,庞福振,张航,等.阶梯厚度圆柱壳自由振动特性分析[J].振动工程学报,2020,33(6):1226-1233.LI H C,PANG F Z,ZHANG H,et al.Free vibration analysis of stepped cylindrical shells [J].Journal of Vibration Engineering,2020,33(6):1226-1233.(in Chinese)

    • [5] 黄慧春,张艳雷,陈立群.超临界下受迫输液管2:1内共振的响应特性[J].噪声与振动控制,2014,34(2):8-11.HUANG H C,ZHANG Y L,CHEN L Q.Resonance analysis of a forced fluid-conveying pipe with 2:1 internal resonances under supercritical fluid velocity [J].Noise and Vibration Control,2014,34(2):8-11.(in Chinese)

    • [6] 康厚军,丛云跃,郭铁丁.《结构动力学》中多频激励多自由度系统稳态解的新方法[J].动力学与控制学报,2021,19(2):91-98.KANG H J,CONG Y Y,GUO T D.A new method for steady-state response of multi-DOF system with multi-frequency harmonic excitations in structural dynamics [J].Journal of Dynamics and Control,2021,19(2):91-98.(in Chinese)

    • [7] 李英杰,赵广,吴学深,等.航空花键-转子系统自激振动研究综述[J].航空学报,2022,43(8):625532.LI Y J,ZHAO G,WU X S,et al.Review of research on self-excited vibration of aviation spline-rotor system [J].Acta Aeronautica et Astronautica Sinica,2022,43(8):625532.(in Chinese)

    • [8] 李飞胤,马少杰,张合.颗粒自激式冲击-振动耦合力学试验方法及试验研究[J].振动与冲击,2023,42(3):227-234.LI F Y,MA S J,ZHANG H.Particle self-excited impact-vibration coupled mechanical test method and test study [J].Journal of Vibration and Shock,2023,42(3):227-234.(in Chinese)

    • [9] 张云飞,杨鄂川,李映辉.变截面粘弹性旋转梁非线性参数振动研究[J].动力学与控制学报,2018,16(5):418-423.ZHANG Y F,YANG E C,LI Y H.Studies on nonlinear parametric vibration of a rotating viscoelastic beam with variable cross-sections [J].Journal of Dynamics and Control,2018,16(5):418-423.(in Chinese)

    • [10] 唐冶,王涛,丁千.主动控制压电旋转悬臂梁的参数振动稳定性分析[J].力学学报,2019,51(6):1872-1881.TANG Y,WANG T,DING Q.Stability analysis on parametric vibration of piezoelectric rotating cantilever beam with active control [J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(6):1872-1881.(in Chinese)

    • [11] GIURGIUTIU V.structural health monitoring with piezoelectric wafer active sensor[M].2nd ed.Oxford,UK:Academic Press,2014.

    • [12] ZHOU S D,HEYLEN W,LIU L.Structural Dynamics [M].Beijing:Beijing Institute of Technology Press,2016.

    • [13] 陈立群,戈新生,徐凯宇,等.理论力学[M].北京:清华大学出版社,2006.

    • [14] 刘习军,张素侠.工程振动测试技术[M].北京:机械工业出版社,2016.LIU X J,ZHANG S X.Engineering vibration testing technology [M].Beijing:China Machine Press,2016.(in Chinese)

    • [15] 殷祥超.振动理论与测试技术[M].3版.徐州:中国矿业大学出版社,2017.

    • [16] 胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2005.

    • [17] 闻邦椿,刘树英,陈照波,等.机械振动理论及应用[M].北京:高等教育出版社,2009.WEN B C,LIU S Y,CHEN Z B,et al.Theory of mechanical vibration and its applications [M].Beijing:Higher Education Press,2009.(in Chinese)

    • [18] 李俊峰,张雄.理论力学[M].2版.北京:清华大学出版社,2010.

    • [19] 闻邦椿,刘树英,张纯宇.机械振动学[M].2版.北京:冶金工业出版社,2011.

    • [20] 师汉民,黄其柏.机械振动系统——分析·建模·测试·对策[M].3版.武汉:华中科技大学出版社,2013.SHI H M,HUANG Q B.Vibration systems:analyzing,modeling,testing,controling [M].3rd ed.Wuhan:Huazhong University of Science and Technology Press,2013.(in Chinese)

    • [21] 胡准庆.机械振动基础[M].北京:北京交通大学出版社,2013.HU Z Q.Foundation of mechanical vibration [M].Beijing:Beijing Jiaotong University Press,2013.(in Chinese)

    • [22] 黄迎春.船艇振动与噪声[M].哈尔滨:哈尔滨工程大学出版社,2015.

    • [23] 陈虹微.机械振动机理及控制技术[M].北京:中国纺织出版社,2019.

    • [24] 李有堂.机械振动理论与应用[M].2版.北京:科学出版社,2020.

    • [25] 刘延柱,陈立群,陈文良.振动力学[M].3版.北京:高等教育出版社,2019.LIU Y Z,CHEN L Q,CHEN W L.Mechanics of vibrations [M].3rd ed.Beijing:Higher Education Press,2019.(in Chinese)

    • [26] 刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.LIU Y Z,CHEN L Q.Nonlinear vibrations [M].Beijing:Higher Education Press,2001.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码