en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张宇飞,E-mail:yufeizhang73@163.com

中图分类号:V21;O39

文献标识码:A

文章编号:1672-6553-2024-22(3)-048-008

DOI:10.6052/1672-6553-2023-025

参考文献 1
WANG Y Q,ZHAO H L.Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method [J].Archive of Applied Mechanics,2019,89(11):2335-2349.
参考文献 2
ZHANG Z,DING J,XIA X C,et al.Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes [J].Materials & Design,2015,88:359-365.
参考文献 3
GARCIA-MACIAS E,RODRIGUEZ-TEMBLEQUE L,SAEZ A.Bending and free vibration analysis of functionally graded graphene vs.carbon nanotube reinforced composite plates [J].Composite Structures,2018,186:123-138.
参考文献 4
RAFIEE M A,RAFIEE J,WANG Z,et al.Enhanced mechanical properties of nanocomposites at low graphene content [J].ACS Nano,2009,3(12):3884-3890.
参考文献 5
KITIPORNCHAI S,CHEN D,YANG J.Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets [J].Materials & Design,2017,116:656-665.
参考文献 6
YE C,WANG Y Q.Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells:internal resonances [J].Nonlinear Dynamics,2021,104(3):2051-2069.
参考文献 7
YANG J,CHEN D,KITIPORNCHAI S.Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method [J].Composite Structures,2018,193:281-294.
参考文献 8
DONG Y H,HE L W,WANG L,et al.Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells:an analytical study [J].Aerospace Science and Technology,2018,82/83:466-478.
参考文献 9
DONG Y H,LI Y H,CHEN D,et al.Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion [J].Composites Part B:Engineering,2018,145:1-13.
参考文献 10
WANG Y Q,YE C,ZU J W.Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets [J].Aerospace Science and Technology,2019,85:359-370.
参考文献 11
YANG J,CHEN Y.Free vibration and buckling analyses of functionally graded beams with edge cracks [J].Composite Structures,2008,83(1):48-60.
参考文献 12
刘涛,周洋忻,胡伟鹏.轴向运动功能梯度梁横向振动问题的保结构分析[J].动力学与控制学报,2022,20(6):101-105.LIU T,ZHOU Y X,HU W P.Structure-preserving analysis on transverse vibration of functionally graded beam with an axial velocity [J].Journal of Dynamics and Control,2022,20(6):101-105.(in Chinese)
参考文献 13
周磊.含裂纹石墨烯增强功能梯度结构的动力学行为分析[D].镇江:江苏大学,2022.ZHOU L.Dynamic analysis of cracked functionally graded graphene nanoplatelet-reinforced structures [D].Zhenjiang:Jiangsu University,2022.(in Chinese)
参考文献 14
刘金建,蔡改改,谢锋,等.轴向运动功能梯度粘弹性梁横向振动的稳定性分析[J].动力学与控制学报,2016,14(6):533-541.LIU J J,CAI G G,XIE F,et al.Stability analysis on transverse vibration of axially moving functionally graded viscoelastic beams [J].Journal of Dynamics and Control,2016,14(6):533-541.(in Chinese)
参考文献 15
XU H,WANG Y Q,ZHANG Y F.Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method [J].Archive of Applied Mechanics,2021,91(12):4817-4834.
参考文献 16
DIMAROGONAS A D.Vibration of cracked structures:a state of the art review [J].Engineering Fracture Mechanics,1996,55(5):831-857.
参考文献 17
CHONDROS T G,DIMAROGONAS A D,YAO J.A continuous cracked beam vibration theory [J].Journal of Sound and Vibration,1998,215(1):17-34.
参考文献 18
BROEK D.Elementary engineering fracture mechanics [M].Dordrecht,Netherland:Martinus Nijhoff Publishers,1986.
参考文献 19
ERDOGAN F,WU B H.The surface crack problem for a plate with functionally graded properties [J].Journal of Applied Mechanics,1997,64(3):449.
参考文献 20
KITIPORNCHAI S,KE L L,YANG J,et al.Nonlinear vibration of edge cracked functionally graded Timoshenko beams [J].Journal of Sound and Vibration,2009,324(3/4/5):962-982.
参考文献 21
GORMAN D J.Free Vibration Analysis of Beams and Shafts [M].Research Supported by the National Research Council of Canada.New York:Wiley-Interscience,1975.
目录contents

    摘要

    分析了带裂纹功能梯度石墨烯增强金属泡沫梁的自由振动.采用Timoshenko梁理论进行建模,裂纹由无质量扭转弹簧模拟,利用Halpin-Tsai微观力学模型预测材料的有效性能.通过哈密顿原理,得到了带裂纹功能梯度石墨烯增强金属泡沫(FG-GPLRMF)梁的运动方程及其边界条件.采用微分变换法分析带裂纹FG-GPLRMF梁的自由振动.结果表明,带裂纹FG-GPLRMF梁的振动特性受到石墨烯几何尺寸、孔隙类型和石墨烯分布的影响显著.

    Abstract

    The free vibration of a cracked functionally graded graphene reinforced metal foam beams is analyzed in this paper. Modeling was carried out with Timoshenko beam theory, cracks were simulated by mass-free elastic torsion springs, and material effectiveness was predicted with Halpin-Tsai micro-mechanical model. The motion equation and boundary conditions of a cracked functionally graded graphene reinforced metal foam (FG-GPLRMF) beams are obtained by Hamilton's principle. Free vibration of FG-GPLRMF beams is analyzed by differential transformation method. The results show that the vibration characteristics of FG-GPLRMF beams are influenced by the geometrical size of graphene, the pore type and the distribution of graphene platelet.

  • 引言

  • 金属泡沫材料由于内部孔隙的存在,具有轻质、隔热、减震的特性,通过定制内部孔隙的密度和尺度,可以获得所需的材料力学性能,因此,金属泡沫材料在能量吸收、轻质结构和热控制[1]等方面得到了广泛的应用.然而,多孔材料的内部孔隙降低了结构的强度和刚度,这限制了其在某些工程领域的应用.相关研究[2]表明,多孔材料可以填充低体积分数的碳材料,如石墨烯薄片(GPL)和碳纳米管,以弥补其强度和刚度的降低,特别是GPL增强复合材料[34]具有轻质、良好的导电和导热性能,因此,关于GPL增强复合材料结构的研究受到了广泛的关注.

  • Kitipornchai等[5]研究了GPL增强多孔梁的自由振动特性.Ye和Wang[6]研究了FG-GPLRMF薄壁圆柱壳的非线性强迫振动特性.Yang等[7]基于切比雪夫-里兹方法分析了GPL增强多孔纳米复合板的屈曲和自由振动.Dong等[89]研究了GPL增强多孔纳米复合圆柱壳的屈曲和线性振动行为.Wang等[10]分析了GPLRMF圆柱壳的非线性自由振动特性.Yang和Chen[11]分析了裂纹对不同边界条件下功能梯度材料Euler-Bernoulli梁振动和屈曲的影响.刘涛等[12]分析了轴向运动功能梯度梁的横向振动频率特性.周磊[13]以含裂纹石墨烯增强功能梯度层合梁为研究对象,进行了动力稳定性行为分析.刘金建等[14]基于欧拉梁理论,研究了轴向运动功能梯度粘弹性梁横向振动的稳定性问题.

  • 虽然一些学者已经对石墨烯增强多孔结构开展了研究,但关于带裂纹石墨烯增强金属泡沫梁振动问题的研究尚未开展.本论文基于Timoshenko梁理论,研究带裂纹功能梯度石墨烯增强金属泡沫梁(FG-GPLRMF)的自由振动问题,包括控制方程推导和微分变换法的应用,研究了裂纹深度、裂纹位置、GPL几何尺寸、孔隙类型、GPL分布和长细比对带裂纹FG-GPLRMF梁自由振动特性的影响.

  • 1 材料特性与旋转弹簧模型

  • 1.1 材料特性

  • 图1(a)是长度为L、厚度为h的两端固定的Timoshenko梁模型,在距左端L1处包含一个深度为a的边缘裂纹.

  • 沿梁高度方向考虑了三种孔隙分布类型[10],即孔隙-a、孔隙-b和孔隙-c.孔隙-a和孔隙-b在梁高方向上呈对称分布.孔隙-a和孔隙-b的差异在于前者的中平面孔隙最大,后者的中平面孔隙最小.孔隙-c的孔隙大小均匀分布.

  • 图1 裂纹梁结构

  • Fig.1 Configuration of cracked beam

  • 考虑了三种不同GPL分布方式[10],对于GPL-Ⅰ和GPL-Ⅱ,GPL相对梁中平面对称分布.对于GPL-I,最大的体积分数发生在梁的上表面和下表面;对于GPL-Ⅱ,最大体积分数发生在中面.对于GPL-Ⅲ,GPL均匀分布.

  • FG-GPLRMF梁的杨氏模量EGMz)和质量密度ρGMz)分别为[715]

  • EGM(z)=Eg1-P1cos(zπ/h) -aEg1-P2[1-cos(zπ/h)] -bEgP3 -c
    (1)
  • ρGM(z)=ρg1-Pm1cos(zπ/h) -aρg1-Pm2[1-cos(zπ/h)] -bρgPm3 -c
    (2)
  • 其中Egρg表示无孔GPL增强金属的杨氏模量和质量密度;P1P2P3表示孔隙系数;Pm1Pm2Pm3表示质量密度系数.

  • 1.2 旋转弹簧模型

  • 假定裂纹垂直于梁表面,且始终保持开放状态.Timoshenko梁的边缘裂纹造成了弯曲斜率的不连续以及开裂截面的横向位移.已有研究[1617]表明,与弯曲斜率中的不连续性(I型断裂)相比,横向位移中的不连续性(Ⅱ型断裂)对系统总应变能的贡献要小得多,因此本分析中忽略Ⅱ型断裂的影响.将裂纹截面建模为如图1b所示的无质量弹性弹簧,可将开裂梁视为在开裂截面上由转动弹簧连接的两个子梁,其弯曲刚度为:

  • KT=1/G
    (3)
  • 其中G是裂纹引起的柔度,并且[18]

  • 1-ν2K12E(a)=M22dGda
    (4)
  • 其中M为裂纹截面弯矩,K1为I型弯曲荷载作用下的应力强度因子,Ea)为裂纹尖端的杨氏模量,ν为泊松比.

  • 通过拉格朗日插值技术,可以从Erdogan和Wu[19]给出的数据中得到应力强度因子的大小,即

  • K1=6Mπhζh2F(ζ),ζ=ah(ζ0.7)
    (5)
  • 其中ζ≤0.7意味着仅考虑0至0.7的裂纹深度比.根据式(3)~式(5),可以确定裂纹部分的弯曲刚度.

  • 2 运动方程与微分变换法

  • 2.1 运动方程

  • 基于Timoshenko梁理论,梁任意点沿x轴和z轴的位移,用U~xztV~xzt表示,分别为

  • U~(x,z,t)=U(x,t)+zΘ(x,t)V~(x,z,t)=V(x,t)
    (6)
  • 其中Uxt)和Vxt)是中平面(z=0)上的位移分量,Θ是梁截面的转动角位移,t是时间.von Kármán型非线性应变-位移关系由下式给出[20]

  • εx=Ux+zΘx,γxz=Vx+Θ
    (7)
  • 正应力和剪切应力分别为

  • σxx=Q11(z)Ux+zΘxσxz=Q55(z)Vx+Θ
    (8)
  • 这里

  • Q11(z)=EGM(z)1-ν2,Q55(z)=EGM(z)2(1+ν)
    (9)
  • 裂纹FG-GPLRMF梁的动能T和势能W[20]

  • T=120L1 -h/2h/2 ρGMU1t+zΘ1t2+V1t2dzdx+12L1L -h/2h/2 ρGMU2t+zΘ2t2+V2t2dzdx
    (10)
  • W=120L1 -h/2h/2 Q11U1x+zΘ1x2+Q55V1x+Θ12dzdx+12L1L -h/2h/2 Q11U2x+zΘ2x2+Q55V2x+Θ22dzdx+12KT(ΔΘ)2
    (11)
  • 其中ΔΘΘ2L1)-Θ1L1);UiΘiVi中的下标i等于1,2,表示被裂纹分割的左子梁和右子梁.最后一项表示旋转弹簧产生的势能.

  • 将式(10)、式(11)中含Q11Q55ρGMz)项定义为:

  • A11,B11,D11=-h/2h/2 Q11(z)1,z,z2dz,A55=-h/2h/2 κQ55(z)dzI1,I2,I3=-h/2h/2 ρGM(z)1,z,z2dz
    (12)
  • 其中κ=5/6是剪切修正系数.

  • 哈密顿原理由下式给出

  • δt1t2 (T-W)dt=0
    (13)
  • 其中t1t2分别表示初始时间和最终时间.

  • 引入如下无量纲变量

  • x-=xL, α1=L1L, (u, v) = (U, V) h,

  • I11,I22,I33=I1I10,I2I10h,I3I10h2,Θ=Θ,α2=Lh,a11,a55,b11,d11=A11A110,A55A110,B11A110h,D11A110h2
    (14)
  • 其中A110I10是无孔梁的A11I1的值.

  • 梁连续性条件

  • u1=u2,v1=v2,u1x=u2xv1x-Θ1=v2x-Θ2,KTΘ2-Θ1=D11Θ1x=D11Θ2x
    (15)
  • 梁的位移函数设为[21]

  • V(x-,t)=V-(x-)eiλt,U(x-,t)=U-(x-)eiγt,Θ(x-,t)=Θ-(x-)eiγt
    (16)
  • 这里λ是径向固有频率,γ是弦向固有频率.

  • 将式(10)~式(12),式(14)~式(16)代入式(13),即可得到简化后的运动方程:

  • I11α12γ2+λ2U-1+a112U-1x-2=0I11α12λ2V-1-12I11α12γ2V-1x--122a55+I11γ22V-1x-2-a55α1α2Θ-1x-=0a55α1α2V-1x--α12a55α22-I33γ2+λ2Θ-1-d112Θ-1x-2=0

  • I111-α12γ2+λ2U-2+a112U-2x-2=0I111-α12λ2V-2-12I111-α12γ2V-2x--122a55+I111-α12γ22V-2x-2-a551-α1α2Θ-2x-=0a55α21-α1V-2x--1-α12a55α22-I33γ2+λ2Θ-2-d112Θ-2x-2=0
    (17)
  • 2.2 微分变换法

  • 本文将变换函数用大写字母表示,将原函数用小写字母表示.在定义域D中定义一个解析函数gx),设x=x0表示D中的任意点.函数gx)的微分变换定义为[15]

  • g(x)=k=0m x-x0kG(k)
    (18)
  • 其中,m是截断数.

  • 将Xu[15]中的表1和表2公式代入方程(17)以及两端固定边界条件,可以得到变换函数和对应边界条件.

  • 相容方程:

  • U2(0)=k=0 U1(k)U2(1)=k=0 1-α1α1kU1(k)
    (19)
  • V2 (0) =k=0 V1 (k)

  • V2(1)=k=0 1-α1α1kV1(k)+k=0 d111-α1α1kTk1Θ1(k)
    (20)
  • Θ2(0)=k=0 d11kα1kc+1Θ1(k)Θ2(1)=k=0 1-α1α1kΘ1(k)
    (21)
  • 在变换函数、边界条件和相容方程中:Uik),Vik)和Θik)分别是u-iv-iθ-i的微分变换.

  • U1(0)= C1V1(0)= C2Θ1(0)= C3,代入变换函数方程和对应边界条件,可以计算Uik),Vik)和Θik)的值.

  • Uik),Vik)和Θik)代入对应边界条件方程,可以解出λ.

  • 3 结果和讨论

  • 下面对图1中所示的FG-GPLRMF梁进行研究,参数如表1所示.

  • FG-GPLRMF梁弯曲振动的固有频率收敛结果见表2,其中以P1 =0.5、WGPL =1.0%、GPL-I和孔隙-a为例.结果表明,在m=16时,固有频率趋于收敛,但考虑到精确性,在下面的计算中采用了m= 60.

  • 表1 FG-GPLRMF梁参数[20]

  • Table1 Parameters of FG-GPLRMF beams[20]

  • 表2 FG-GPLRMF梁弯曲振动固有频率(rad/s)的收敛性

  • Table2 Convergence of natural frequency of bending vibration (rad/s) of FG-GPLRMF beams

  • 在图2中,研究了孔隙系数P1对固有频率的作用,其中考虑了不同的GPL分布方式和孔隙分布.随着P1的增加,孔隙-b和孔隙-c梁的固有频率减小.然而,对于孔隙-a梁,其固有频率先减小后增加.造成这种现象的原因是,当梁的几何尺寸保持不变时,固有频率与弯曲刚度(EIy)呈正相关,与单位长度的质量(ρT)呈负相关.进一步计算表明,当P1大于0.4时,弯曲刚度的相对变化小于质量的相对变化.此外,这三种孔隙分布的固有频率中,GPL-Ⅰ分布的固有频率最高,而GPL-Ⅱ分布的固有频率最低.因此,GPL-Ⅰ分布是提高结构刚度最有效的分布方式.以上结果表明,孔隙系数和GPL分布对FG-GPLRMF的自由振动有显著影响.

  • 图2 孔隙系数P1对梁的固有频率的影响(WGPL=0.01;L/h=16;a/h=0.2;L1/L=0.5)

  • Fig.2 Natural frequencies of FG-GPLRMF beams for different porosity coefficient (WGPL=0.01; L/h=16; a/h=0.2; L1/L=0.5)

  • 图3给出了GPL重量分数WGPL对不同GPL分布方式和孔隙分布的FG-GPLRMF固有频率的影响.对于不同的GPL分布方式,固有频率随WGPL的增加而增加,其原因就在于增加石墨烯含量可增强梁刚度.通过将极少量的GPL分散到基质中,即可提高多孔梁的有效刚度.与其他分布模式相比,孔隙-a和GPL-Ⅰ分布方式的梁具有最大的固有频率.

  • 图3 GPL重量分数对FG-GPLRMF梁的固有频率的影响(L/h=16;a/h=0.2;L1/L=0.5;P1=0.50)

  • Fig.3 Effect of GPL weight fraction on natural frequencies of FG-GPLRMF beams (L/h=16; a/h=0.2; L1/L=0.5; P1=0.50)

  • 图4给出了不同GPL尺寸对FG-GPLRMF梁固有频率的影响.图4(a)为FG-GPLRMF梁的固有频率随GPL长厚比lGPL/tGPL的变化情况.随着lGPL/tGPL的增加,固有频率增加.结果表明,当lGPLwGPL保持固定时,单个GPL越薄,其刚度强化效果越好.图4(b)为固有频率随GPL长宽比lGPL/wGPL的变化规律.随着lGPL/wGPL的增加,固有频率减小.这表明,石墨烯的表面积越大,刚度增强效果越好.同时,由图4可以看出,当lGPL/tGPL≥102或lGPL/wGPL≥10时,强化效应随这些比值的变化不大.

  • 图4 GPL尺寸对FG-GPLRMF梁固有频率的影响(孔隙-aP1=0.5;WGPL=1%;L/h=16;a/h=0.2;L1/L=0.5)

  • Fig.4 Effect of geometrical size of GPL on natural frequency of FG-GPLRMF beams (Porosity-a; P1=0.5; WGPL=1%; L/h=16; a/h=0.2; L1/L=0.5; )

  • 图5研究了裂纹位置对FG-GPLRMF梁的固有频率的影响.结果表明,固有频率对位于梁中心的裂纹最为敏感.当裂纹靠近梁端时,裂纹的影响较小,裂纹位置由梁中心向梁端变化时,固有频率逐渐增加.

  • 图6研究了裂纹深度对FG-GPLRMF梁固有频率的影响.结果表明,随着裂纹深度增加,梁的固有频率降低,对于不同GPL分布方式,固有频率降低的速度大致相同,不同孔隙下裂纹梁固有频率都逐渐变小,这说明裂纹位置对频率的影响远超其他因素.

  • 图5 裂纹位置对FG-GPLRMF梁固有频率的影响(孔隙-a;WGPL=0.01;L/h=6;h=0.1;P1=0.5;L1/L=0.5)

  • Fig.5 Effect of crack location on natural frequency of FG-GPLRMF beam (Porosity-a; WGPL=0.01; L/h=6; h=0.1; P1=0.5; L1/L=0.5)

  • 图6 裂纹深度对梁固有频率的影响(WGPL=0.01;L/h=6;P1=0.5;L1/L=0.5;h=0.1m)

  • Fig.6 Effect of crack depth on natural frequency of beam (WGPL=0.01; L/h=6; P1=0.5; L1/L=0.5; h=0.1m)

  • 4 结论

  • 本文研究了带裂纹FG-GPLRMF梁的自由振动特性.利用哈密顿原理,得到了带裂纹FG-GPLRMF梁的运动方程,采用微分变换法分析了梁的固有频率.研究了裂纹深度、裂纹位置、GPL几何尺寸、孔隙类型、GPL分布和长细比对裂纹FG-GPLRMF梁自由振动特性的影响.主要结论如下:

  • 对于孔隙-b和孔隙-c梁,弯曲振动的固有频率随孔隙系数P1的增加而减小,对于孔隙-a梁,其固有频率先减小后增大.GPL-Ⅰ分布是提高结构刚度的最有效的分散方法.GPL的增强效应受到GPL分布和孔隙分布的影响.

  • 弯曲振动的固有频率随WGPL值的增加而增加,孔隙-a和GPL-Ⅰ分布方式的FG-GPLRMF梁具有最大固有频率.裂纹位置对于梁固有频率的影响是呈现对称性的,距离梁中心位置越近,固有频率受到影响越大.随着裂纹深度的增加,FG-GPLRMF梁的固有频率降低.

  • 参考文献

    • [1] WANG Y Q,ZHAO H L.Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method [J].Archive of Applied Mechanics,2019,89(11):2335-2349.

    • [2] ZHANG Z,DING J,XIA X C,et al.Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes [J].Materials & Design,2015,88:359-365.

    • [3] GARCIA-MACIAS E,RODRIGUEZ-TEMBLEQUE L,SAEZ A.Bending and free vibration analysis of functionally graded graphene vs.carbon nanotube reinforced composite plates [J].Composite Structures,2018,186:123-138.

    • [4] RAFIEE M A,RAFIEE J,WANG Z,et al.Enhanced mechanical properties of nanocomposites at low graphene content [J].ACS Nano,2009,3(12):3884-3890.

    • [5] KITIPORNCHAI S,CHEN D,YANG J.Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets [J].Materials & Design,2017,116:656-665.

    • [6] YE C,WANG Y Q.Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells:internal resonances [J].Nonlinear Dynamics,2021,104(3):2051-2069.

    • [7] YANG J,CHEN D,KITIPORNCHAI S.Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method [J].Composite Structures,2018,193:281-294.

    • [8] DONG Y H,HE L W,WANG L,et al.Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells:an analytical study [J].Aerospace Science and Technology,2018,82/83:466-478.

    • [9] DONG Y H,LI Y H,CHEN D,et al.Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion [J].Composites Part B:Engineering,2018,145:1-13.

    • [10] WANG Y Q,YE C,ZU J W.Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets [J].Aerospace Science and Technology,2019,85:359-370.

    • [11] YANG J,CHEN Y.Free vibration and buckling analyses of functionally graded beams with edge cracks [J].Composite Structures,2008,83(1):48-60.

    • [12] 刘涛,周洋忻,胡伟鹏.轴向运动功能梯度梁横向振动问题的保结构分析[J].动力学与控制学报,2022,20(6):101-105.LIU T,ZHOU Y X,HU W P.Structure-preserving analysis on transverse vibration of functionally graded beam with an axial velocity [J].Journal of Dynamics and Control,2022,20(6):101-105.(in Chinese)

    • [13] 周磊.含裂纹石墨烯增强功能梯度结构的动力学行为分析[D].镇江:江苏大学,2022.ZHOU L.Dynamic analysis of cracked functionally graded graphene nanoplatelet-reinforced structures [D].Zhenjiang:Jiangsu University,2022.(in Chinese)

    • [14] 刘金建,蔡改改,谢锋,等.轴向运动功能梯度粘弹性梁横向振动的稳定性分析[J].动力学与控制学报,2016,14(6):533-541.LIU J J,CAI G G,XIE F,et al.Stability analysis on transverse vibration of axially moving functionally graded viscoelastic beams [J].Journal of Dynamics and Control,2016,14(6):533-541.(in Chinese)

    • [15] XU H,WANG Y Q,ZHANG Y F.Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method [J].Archive of Applied Mechanics,2021,91(12):4817-4834.

    • [16] DIMAROGONAS A D.Vibration of cracked structures:a state of the art review [J].Engineering Fracture Mechanics,1996,55(5):831-857.

    • [17] CHONDROS T G,DIMAROGONAS A D,YAO J.A continuous cracked beam vibration theory [J].Journal of Sound and Vibration,1998,215(1):17-34.

    • [18] BROEK D.Elementary engineering fracture mechanics [M].Dordrecht,Netherland:Martinus Nijhoff Publishers,1986.

    • [19] ERDOGAN F,WU B H.The surface crack problem for a plate with functionally graded properties [J].Journal of Applied Mechanics,1997,64(3):449.

    • [20] KITIPORNCHAI S,KE L L,YANG J,et al.Nonlinear vibration of edge cracked functionally graded Timoshenko beams [J].Journal of Sound and Vibration,2009,324(3/4/5):962-982.

    • [21] GORMAN D J.Free Vibration Analysis of Beams and Shafts [M].Research Supported by the National Research Council of Canada.New York:Wiley-Interscience,1975.

  • 参考文献

    • [1] WANG Y Q,ZHAO H L.Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method [J].Archive of Applied Mechanics,2019,89(11):2335-2349.

    • [2] ZHANG Z,DING J,XIA X C,et al.Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes [J].Materials & Design,2015,88:359-365.

    • [3] GARCIA-MACIAS E,RODRIGUEZ-TEMBLEQUE L,SAEZ A.Bending and free vibration analysis of functionally graded graphene vs.carbon nanotube reinforced composite plates [J].Composite Structures,2018,186:123-138.

    • [4] RAFIEE M A,RAFIEE J,WANG Z,et al.Enhanced mechanical properties of nanocomposites at low graphene content [J].ACS Nano,2009,3(12):3884-3890.

    • [5] KITIPORNCHAI S,CHEN D,YANG J.Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets [J].Materials & Design,2017,116:656-665.

    • [6] YE C,WANG Y Q.Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells:internal resonances [J].Nonlinear Dynamics,2021,104(3):2051-2069.

    • [7] YANG J,CHEN D,KITIPORNCHAI S.Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method [J].Composite Structures,2018,193:281-294.

    • [8] DONG Y H,HE L W,WANG L,et al.Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells:an analytical study [J].Aerospace Science and Technology,2018,82/83:466-478.

    • [9] DONG Y H,LI Y H,CHEN D,et al.Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion [J].Composites Part B:Engineering,2018,145:1-13.

    • [10] WANG Y Q,YE C,ZU J W.Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets [J].Aerospace Science and Technology,2019,85:359-370.

    • [11] YANG J,CHEN Y.Free vibration and buckling analyses of functionally graded beams with edge cracks [J].Composite Structures,2008,83(1):48-60.

    • [12] 刘涛,周洋忻,胡伟鹏.轴向运动功能梯度梁横向振动问题的保结构分析[J].动力学与控制学报,2022,20(6):101-105.LIU T,ZHOU Y X,HU W P.Structure-preserving analysis on transverse vibration of functionally graded beam with an axial velocity [J].Journal of Dynamics and Control,2022,20(6):101-105.(in Chinese)

    • [13] 周磊.含裂纹石墨烯增强功能梯度结构的动力学行为分析[D].镇江:江苏大学,2022.ZHOU L.Dynamic analysis of cracked functionally graded graphene nanoplatelet-reinforced structures [D].Zhenjiang:Jiangsu University,2022.(in Chinese)

    • [14] 刘金建,蔡改改,谢锋,等.轴向运动功能梯度粘弹性梁横向振动的稳定性分析[J].动力学与控制学报,2016,14(6):533-541.LIU J J,CAI G G,XIE F,et al.Stability analysis on transverse vibration of axially moving functionally graded viscoelastic beams [J].Journal of Dynamics and Control,2016,14(6):533-541.(in Chinese)

    • [15] XU H,WANG Y Q,ZHANG Y F.Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method [J].Archive of Applied Mechanics,2021,91(12):4817-4834.

    • [16] DIMAROGONAS A D.Vibration of cracked structures:a state of the art review [J].Engineering Fracture Mechanics,1996,55(5):831-857.

    • [17] CHONDROS T G,DIMAROGONAS A D,YAO J.A continuous cracked beam vibration theory [J].Journal of Sound and Vibration,1998,215(1):17-34.

    • [18] BROEK D.Elementary engineering fracture mechanics [M].Dordrecht,Netherland:Martinus Nijhoff Publishers,1986.

    • [19] ERDOGAN F,WU B H.The surface crack problem for a plate with functionally graded properties [J].Journal of Applied Mechanics,1997,64(3):449.

    • [20] KITIPORNCHAI S,KE L L,YANG J,et al.Nonlinear vibration of edge cracked functionally graded Timoshenko beams [J].Journal of Sound and Vibration,2009,324(3/4/5):962-982.

    • [21] GORMAN D J.Free Vibration Analysis of Beams and Shafts [M].Research Supported by the National Research Council of Canada.New York:Wiley-Interscience,1975.

  • 微信公众号二维码

    手机版网站二维码