en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

赵翔,E-mail:zhaoxiang_swpu@126.com

中图分类号:O313

文献标识码:A

文章编号:1672-6553-2024-22(2)-077-008

DOI:10.6052/1672-6553-2023-034

参考文献 1
WU X W,ZHU L F,WU Z M,et al.Vibrational power flow analysis of Timoshenko microbeams with a crack [J].Composite Structures,2022,289:115483.
参考文献 2
ALIBAKHSHI A,DASTJERDI S,FANTUZZI N,et al.Nonlinear free and forced vibrations of a fiber-reinforced dielectric elastomer-based microbeam [J].International Journal of Non Linear Mechanics,2022,144:104092.
参考文献 3
KHABAZ M K,ALI EFTEKHARI S,TOGHRAIE D.Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects [J].Applied Mathematics and Computation,2022,419:126867.
参考文献 4
LI H C,KE L L.Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid [J].Thin-Walled Structures,2021,161:107432.
参考文献 5
ABDELRAHMAN A A,ESEN I,ELTAHER M A.Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment [J].Applied Mathematics and Computation,2021,407:126307.
参考文献 6
SHENG G G,WANG X.Nonlinear forced vibration of size-dependent functionally graded microbeams with damping effects [J].Applied Mathematical Modelling,2019,71:421-437.
参考文献 7
毛晓晔,邵志华,舒送,等.中间支撑刚度对双跨梁屈曲稳定性的影响[J].振动与冲击,2022,41(11):1-9+17.MAO X Y,SHAO Z H,SHU S,et al.Effect of intermediate support stiffness on buckling stability of a double-span beam [J].Journal of Vibration and Shock,2022,41(11):1-9+17.(in Chinese)
参考文献 8
MAO X Y,SUN J Q,DING H,et al.An approximate method for one-dimensional structures with strong nonlinear and nonhomogenous boundary conditions [J].Journal of Sound and Vibration,2020,469:115128.
参考文献 9
MAO X Y,DING H,CHEN L Q.Vibration of flexible structures under nonlinear boundary conditions [J].Journal of Applied Mechanics,2017,84(11):111006.
参考文献 10
ABU-HILAL M.Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].Journal of Sound and Vibration,2003,267(2):191-207.
参考文献 11
LI X Y,ZHAO X,LI Y H.Green’s functions of the forced vibration of Timoshenko beams with damping effect [J].Journal of Sound and Vibration,2014,333(6):1781-1795.
参考文献 12
HAN H S,CAO D Q,LIU L.Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J].Applied Mathematical Modelling,2017,45:621-635.
参考文献 13
ZHAO X,CHEN B,LI Y H,et al.Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions [J].Journal of Sound Vibration,2020,464:115001.
参考文献 14
ALBASSAM B A.Vibration control of a flexible beam structure utilizing dynamic Green’s function [J].Journal of King Saud University-Engineering Sciences,2021,33(3):186-200.
参考文献 15
CHEN T,SU G,SHEN Y S,et al.Unified Green’s functions of forced vibration of axially loaded Timoshenko beam:transition parameter [J].International Journal of Mechanical Sciences,2016,113:211-220.
参考文献 16
GHANNADIASL A,KHODAPANAH AJIRLOU S.Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J].Applied Acoustics,2019,148:484-494.
参考文献 17
LUESCHEN G G G,BERGMAN L A,MCFARLAND D M.Green’s functions for uniform Timoshenko beams [J].Journal of Sound and Vibration,1996,194(1):93-102.
参考文献 18
ZHANG N H,WU C X,YANG Y,et al.Adjustable frequency shift of laminated DNA microbeam under complex detection conditions by different packaging patterns [J].Composite Structures,2022,292:115652.
参考文献 19
GODA I,ASSIDI M,BELOUETTAR S,et al.A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization [J].Journal of the Mechanical Behavior of Biomedical Materials,2012,16:87-108.
参考文献 20
张佳俊,张舒,徐鉴.下肢康复外骨骼人机耦合动力学建模与控制[J].动力学与控制学报,2021,19(4):55-63.ZHANG J J,ZHANG S,XU J.Human-machine coupled dynamic modelling and control of lower limb exoskeleton for rehabilitation [J].Journal of Dynamics and Control,2021,19(4):55-63.(in Chinese)
参考文献 21
赵勇,吴俊梅,杨梅晨,等.耦合胰腺β细胞的同步性分析[J].动力学与控制学报,2020,18(1):17-23.ZHAO Y,WU J M,YANG M C,et al.Synchronous analysis of electrically coupled pancreatic β cells [J].Journal of Dynamics and Control,2020,18(1):17-23.(in Chinese)
目录contents

    摘要

    在生物和医学领域,微机电系统(MEMS)中的微梁结构在植入人体的使用时,由于体内的细胞环境类似于水凝胶,在这种环境下工作,设备和仪器的精度和稳定性很大程度上受到细胞弹性的影响.为了分析此类地基梁的动力学问题,本文建立了非线性基础上的梁振动模型,研究了任意位置弹簧和非线性弹簧基础上的梁模态.通过Laplace变换和线性叠加原理,得到了一种约束Green函数,利用数值计算验证方案的有效性,并研究了各种重要物理参数的影响,发现弹簧位置向跨中移动时,模态对称性被打破,弹簧刚度增加,模态阶数改变.

    Abstract

    In the field of biology and medicine, for example, in the use of micro-electromechanical systems (MEMS) with microbeam structure in human implantation, the accuracy and stability of the equipment and instruments are greatly affected by the elastic foundation because the cellular environment in the body is similar to that of hydrogels. In order to analyze this problem, a beam dynamics model based on nonlinear beam is established in this paper, and the free vibration of a beam with a spring at any position and based on nonlinear spring is studied. By using of Laplace transform and linear superposition principle, a kind of constrained Green’s function is obtained. Numerical calculation is carried out to verify the proposed solution, and the influence of various important physical parameters is studied. It is found that when the position of the spring moves towards the midspan, the modal symmetric is broken. The spring stiffness increases as the modal order changes.

  • 引言

  • 近年来,随着微型芯片、人工智能、新型生物材料的发展,人机交互技术(man-machine interaction)进展迅速,该技术将微机电系统(MEMS)植入人体,从而实现人体与MEMS的互联.在MEMS植入人体的使用过程中,人体中的细胞可近似视作为水凝胶,这种环境中微梁结构的MEMS可近似看作为非线性弹簧基础上的基础梁,研究其动态特性,对MEMS的精度和稳定性有着非同寻常的意义.

  • 针对微梁的动力学特性,广大学者展开了大量的研究.Wu等[1]建立了基于修正耦合应力理论和Timoshenko梁理论的分析模型,研究了含裂纹微梁的振动功率流,讨论了裂纹深度和裂纹位置对输入功率流和传输功率流的影响,发现裂纹的存在显著地改变了功率流的传输特性.Alibakhshi等[2]应用Euler-Benoulli梁理论研究了纤维增强介电弹性基微梁的非线性自由振动和强迫振动.采用打靶法与弧长延拓法相结合的方法对系统的共振响应进行了研究,发现纤维增强对介电弹性体的性能有显著影响,此外,基于这种纤维结构的特性,得出了该结果可以应用于动脉壁和软组织等生物结构的研究的结论.Khabaz[3]为了评估长度尺度参数和动力响应对压电夹层智能复合微梁横向振动和稳定性的影响,通过高阶应变梯度和表面效应理论,研究了含压电层的新型夹层复合材料微梁的动力学问题,发现了膨胀梯度相关的材料长度对振动频率的影响最为显著.Li和Ke[4]在考虑了AFG微束的矩形和圆形截面形状条件下,分析了轴向功能梯度微梁在流体中的尺寸相关振动和动力稳定性.通过数值算例给出了固有频率、临界屈曲载荷和临界激励频率对流体深度、尺寸参数、流体密度和截面形状的响应.Abdelrahman等[5]首次提出了一种能够分析多孔Timoshenko微梁在热环境和运动质量作用下动态行为的有限元程序,并分析了穿孔参数、热载荷剖面、移动质量特性以及移动速度对穿孔微梁动态性能的影响.Sheng和Wang[6]基于von Kármán非线性理论、修正耦合应力理论和Euler-Bernoulli梁理论,研究了功能梯度微梁的非线性动力学.通过数值模拟,讨论了长度尺度参数、体积分数指数和内部阻尼常数对非线性振动的影响,发现通过改变长度尺度参数、体积分数指数和内部阻尼常数,可以得到周期振荡和混沌振荡.毛晓晔等[7]通过建立中间弹性支撑的双跨梁模型,研究了弹性支撑对受轴向压力的双跨梁屈曲稳定性的影响,得到临界轴力随中间支撑刚度的变化规律.Mao等[8]为了分析结构的强非线性问题,通过引入广义坐标给出了强非线性和非齐次边界条件的结构的解析解.Mao[9]基于模态修正技术克服了非线性边界条件下一般摄动法难以获得模态振型的难题,分析了一般支承条件下柔性结构的非线性响应.

  • 就梁动态特性的研究方法和手段而言,人们提出了各种方法.例如,主流方法是基于无穷级数展开的模态叠加法.然而,模态叠加法本质上是一种近似的方法,在模态叠加的过程中,不可避免地会用到截断法.然而,截断处理不仅影响计算的精度,而且截断本身就是一个繁琐的过程.与之形成的鲜明对比的是以Green函数为代表的解析手段并不存在这个问题,并且具有迭代方便,收敛性好,计算量小的优点,因此被广泛应用于各个研究领域.Abu-Hilal[10]提出了一种通过动态Green函数确定Euler-Bernoulli梁在承受分布和集中荷载时的动态响应的方法,并给出了不同边界条件下的Green函数.Li等[11]在Abu-Hilal的基础上,获得了带阻尼的Timoshenko梁强迫振动的动态Green函数解,通过比较了Euler-Bernoulli、Rayleigh和Timoshenko等梁模型,得到了剪切变形和转动惯量等因素对梁动态特性的影响.Han等人[12]研究了弯曲-扭转耦合的Timoshenko梁的动力学响应,讨论了外部载荷频率和偏心率对弯曲-扭转的Green函数的影响,并将Green函数用于计算结构的固有频率.Zhao等[13]用Green函数法研究了Timoshenko双梁系统在轴向压缩载荷下的强迫振动,讨论了高长比、外部频率、剪切效应、转动惯量以及轴向拉力等重要因素对Green函数的影响.Albassam[14]用动态Green函数法研究了柔性梁的振动,得到了反馈控制力可以消除期望点稳态振动的结论.Chen[15]研究了具有不同边界条件的轴向运动Timoshenko梁的稳态动力学,讨论了结构在过渡参数、高长比以及轴力作用下的动态响应.Ghannadiasl[16]求解了多跨开裂Euler-Bernoulli梁强迫振动的动态Green函数,评估了裂缝数量和位置对梁的动态响应的影响.

  • 总而言之,以前的Green函数方法主要是研究各种动力学理论和工程实际问题,很少涉及生物和医疗领域.本文在有弹簧和无弹簧的强迫振动基本方程的基础上,通过变量分离法和Laplace变换求解相应强迫振动方程的Green函数,然后通过叠加原理得到任意弹簧和非线性弹簧基础的梁的约束Green函数.通过数值计算验证这一方案的有效性,研究了弹簧对挠度和模态的影响,得到了弹簧和基础不仅改变了梁的挠度,而且还影响了系统模态的结论.此外,如果将该解决方案的进一步深化研究,除了可以用于研究人体内MEMS的自供电问题,还可用于探讨生物水凝胶中微纳尺度多源能量采集系统的多场耦合复杂动力学问题.

  • 1 任意弹簧约束下的约束Green函数

  • 19世纪30年代英国科学家George Green提出了Green函数的概念,自此Green函数作为一种物理学和数学手段被应用于力学、传热学、地震工程学等诸多领域,并取得了大量的理论和工程研究成果.Green函数又被称为点源影响函数,是数学物理中的一个重要概念.通过叠加原理求解任意点源场的数学物理方程的方法被称为Green函数法,与模态叠加法相比,具有迭代方便,计算精度高,运算量小和运算速度快的优点.

  • 图1 简谐载荷下有任意弹簧的梁

  • Fig.1 Simple harmonic loads applied to beam with arbitrary springs

  • 图1为梁在任意弹簧作用下的强迫振动示意图,其中,L为梁长,P0eiΩt是外部激励,x1x0分别代表外部激励施加位置和弹簧所在位置.令图1弹簧刚度k=0,可得无弹簧梁强迫振动模型;令图1的P0eiΩt=0,可得任意弹簧自由振动模型.基于线性叠加原理,用任意弹簧梁的强迫振动Green函数减去无弹簧梁的强迫振动Green函数可得任意弹簧梁的约束Green函数.

  • 1.1 弹簧梁的控制方程

  • 由于本文研究的对象为高长比较小的梁,因此选取Euler-Bernoullil梁模型,图1所示的带有任意弹簧的梁的强迫振动方程为

  • EIw''''+ρAw¨+Kwδx-x0=p(x,t)
    (1)
  • 其中,EI为抗弯刚度,w为横向位移,ρA为单位长度质量,K表示弹簧刚度,δx-x0)表示任意弹簧位置,pxt)为外激励.此外,在(1)中使用了常规的微分符号,“·”表示对时间的导数,“′”表示对空间坐标x的导数.

  • 1.2 稳态动态问题的Green函数

  • 假设受到简谐荷载pxt)=Px)eiΩt作用,相应的位移可以表示为wxt)=Wx)eiΩt,将其代入公式(1),消除时间项后,可得如下稳态振动方程

  • EIW''''-ρAΩ2W+KWδx-x0=p(x,t)
    (2)
  • 两端同时除以EI

  • W''''-ρAΩ2EIW+KEIδx-x0W=1EIp(x,t)
    (3)
  • 简写为

  • W''''+a1W+a2δx-x0W=b1p(x,t)
    (4)
  • 从数学上来说,Green函数Gxx0x1)是以下方程的解

  • W''''+a1W+a2δx-x0W=b1δx-x1
    (5)
  • 为了得到相应的Green函数,对方程(5)进行Laplace变换为

  • s4W-s3W(0)-s2W'(0)-sW''(0)-W'''(0)+a1W+a2e-sx0W=b1e-sx1
    (6)
  • 经过计算,整理得

  • W^s,x0,x1=b1e-sx1+s3W(0)+s2W'(0)+sW''(0)+W''''(0)s4+a1+a2e-sx0
    (7)
  • 为了便于后续的计算,将指数函数通过级数展开,并保留二次项,即令e-sx0=1-x0s+1/2x02s2.然后,将其代入公式(7),那么我们可以推导出s4+a1+a2e-sx0=s4+1/2a2x02s2-a2x0s+a1+a2.为了得到W^sx0x1的Laplace逆变换,我们假设

  • s4+1/2a2x02s2-a2x0s+a1+a2=s-s1s-s2s-s3s-s4
    (8)
  • 那么公式(7)经过Laplace逆变换的各项结果见附录,则Green函数可写为

  • Gx,x0,x1=Hx-x1ϕ1x-x1+ϕ2(x)W(0)+ϕ3(x)W'(0)+ϕ4(x)W''(0)+ϕ5(x)W'''(0)
    (9)
  • 其中,φix)(i=1,2,···,5)被定义为

  • ϕ1(x)=i=44 Ai(x)b1,ϕ2(x)=i=44 Ai(x)si3,ϕ3(x)=i=44 Ai(x)si2,ϕ4(x)=i=44 Ai(x)si,ϕ5(x)=i=44 Ai(x).
    (10)
  • 1.3 常数的确定

  • 为了确定常数W(0),W′(0),W″(0)和W'''0,需要确定φix)(i=1,2,···,5)的各阶导数,经过一定处理,这些导数可表示为

  • ϕ1k(x)=i=44 sikAi(x)b1,ϕ2k(x)=i=44 Ai(x)si3ϕ3k(x)=i=44 sikAi(x)si2,ϕik(x)=i=44 sikAi(x)siϕik(x)=i=44 sikAi(x).
    (11)
  • 将Green函数(9)求各阶导,可组成如下系数矩阵

  • ϕ2(L)ϕ3(L)ϕ4(L)ϕ5(L)ϕ2'(L)ϕ3'(L)ϕ4'(L)ϕ5'(L)ϕ2''(L)ϕ3''(L)ϕ4''(L)ϕ5''(L)ϕ2'''(L)ϕ3'''(L)ϕ4''(L)ϕ5'''(L)W(0)W'(0)W''(0)W'''(0)=W(L)-ϕ1L-x1W'(L)-ϕ1'L-x1W''(L)-ϕ1''L-x1W'''(L)-ϕ1''L-x1
    (12)
  • 以简支边界条件为例,梁两端位移和弯矩为零,即W(0)=0和W″(0)=0,则系数矩阵(12)可简化为

  • ϕ3(L) ϕ5(L)ϕ3''(L) ϕ5''(L)W'(0)W''(0)=ϕ1L-x1ϕ1''L-x1
    (13)
  • 从公式(16),我们可以得到

  • W'(0)=ϕ5(L)ϕ1''L-x0-ϕ1L-x0ϕ5''(L)ϕ3(L)ϕ5''(L)-ϕ3''(L)ϕ5(L)W'''(0)=ϕ1L-x0ϕ3''(L)-ϕ1''L-x0ϕ3(L)ϕ3(L)ϕ5''(L)-ϕ3''(L)ϕ5(L)
    (14)
  • 因此,梁在任意弹簧作用下的强迫振动Green函数为

  • G1x,x0,x1=Hx-x1ϕ1-1x-x1+ϕ3-1(x)W1'(0)+ϕ5-1(x)W1'''(0)
    (15)
  • 基于文献[11],无弹簧的梁的强迫振动Green函数为

  • G2x,x1=Hx-x1ϕ1-2x-x1+ϕ3-2(x)W2'(0)+ϕ5-2(x)W2'''(0)
    (16)
  • 其中,x1依然是外激励位置,并且

  • ϕ1-2(x)=i=44 Ai(x)b1siϕ3-2(x)=i=44 Ai(x)si2,ϕ5-2(x)=i=44 Ai(x)
    (17)
  • 根据线性叠加原理,任意弹簧的约束Green函数为

  • G3x,x0=G1x,x0,x1-G2x,x1=ϕ3-1(x)W'(0)+ϕ5-1(x)W'''(0)-ϕ3-2(x)W'(0)-ϕ5-2(x)W'''(0)
    (18)
  • 2 带有非线性弹簧刚度基础的梁的Green 函数

  • 因为公式(18)是梁在任意弹簧作用下的约束Green函数,那么将弹簧刚度为常值K的在区间积分可得等刚度弹簧基础作用下的约束Green函数[0,L]为

  • W(x)=0L K(ξ)G3(x,ξ)dξ
    (19)
  • 图2 非线性弹簧基础的梁

  • Fig.2 Beam with nonlinear spring foundation

  • 此外,如果弹簧刚度K是一个非线性函数,如图2所示.那么公式(19)是非线性刚度基础梁的约束Green函数,通过设置K可以计算不同刚度的基础梁的动力学特性.

  • 3 数值结果和讨论

  • 考虑一个高度h和长度L的简支Euler-Bernoulli梁,它由一个弹簧支撑,如图1所示.为了便于说明,我们引入以下无量纲参数:

  • ξ=xL,Ω1=ΩΩ0,L'=x0L,g1ξ,ξ0,ξ1=G1x,x0,x1wmaxs,g2ξ,ξ1=G2x,x1wmaxs,g3ξ,ξ0=G3x,x0wmaxs.
    (20)
  • 其中,Ω0=π2EI/ρA/L2是Euler-Bernoulli梁的一阶固有频率,wmaxs=L3/48EI是跨中x1=L/2的静态挠度.L′是弹簧的位置.在本节中,所有的数值计算都是基于参数E=1.8×1011Pa和Ω=91.7161rad/s.

  • 3.1 解的有效性验证

  • 为了验证本解的有效性,将解析解与Lueschen等人[17]和Zhao等人[11]的解进行了比较.如图3所示,本文的解与文献中的解一致,有力地验证了本解的有效性.特别需要指出的是,数据计算中涉及的参数,如杨氏模量、泊松比和梁的几何形状都直接取自参考文献[11].

  • 图3 有无弹簧的强迫振动Green函数

  • Fig.3 Green function of forced vibration with or without spring

  • 3.2 任意弹簧的影响

  • 图4展示了有无弹簧梁的强迫振动Green函数和约束Green函数.其中,有弹簧的强迫振动Green函数g1ξ,1/3,1/2)被称为纠缠Green函数,它由不带弹簧的强迫振动Green函数g2ξ,1/2)和约束Green函数g3ξ,1/3)组成.值得注意的是,约束的Green函数g3ξ,1/3)是模态,并不代表真实的位移.从图中可以看出,不含弹簧的强迫振动的Green函数g2ξ,1/2)在梁的L/2处受到集中点载荷的作用,图像关于ξ=L/2对称.然而,有弹簧的强迫振动的Green函数g1ξ,1/3,1/2)的对称性被弹簧所打破,这是符合物理事实的.此外,另一个重要的结论是一旦带和不带弹簧的强迫振动Green函数g1ξ,1/3,1/2)和g2ξ,1/2)被确定,那么约束Green函数g3ξ,1/3)也是唯一确定的,这可以作为求解模态的另一种方法.

  • 图5展示了弹簧在不同位置的约束Green函数.从图中可以看出,弹簧的位置在L′=1/5对约束Green函数的模态影响较小,图像大致是关于跨中对称的.然而,当弹簧位置在L′=1/3时,g3ξL′)有一个明显的转变,整体向右端偏移,这表明具有一定刚度的弹簧起到了支撑作用,并导致约束Green函数g3ξL′)的模态发生一些变化,说明跨中附近的弹簧对模态的影响大于支座附近的弹簧.由此,从图像的对称性随着弹簧位置的变化而变化的现象可以看出,弹簧位置位移对模态的变化起着重要的作用.

  • 图4 强迫振动的Green函数和约束Green函数

  • Fig.4 Green function of forced vibration and constraint Green function

  • 图5 不同位置弹簧的约束Green函数

  • Fig.5 Constraint Green functions of springs at different positions

  • 图6展示了不同弹簧刚度下的约束Green函数.可以看出,当弹簧刚度为EIg3ξ,2/3)一阶模态出现左端上凸的形状.在K=2EI,约束Green函数g3ξ,2/3)表现为左端上凸,右端下凹的二阶模态.当K=3EI,约束Green函数g3ξ,2/3)变为右端下凹一阶模态,并且模态不再随着弹簧刚度K增加而变化.这进一步表明,弹簧刚度不仅改变了模态的形状,而且也改变了模态的顺序.

  • 图6 不同弹簧刚度的约束Green函数

  • Fig.6 Constraint Green functions of different spring stiffness

  • 3.3 线性等刚度弹簧基础的影响

  • 图7展示了梁在等刚度弹簧基础上的强迫和约束Green函数以及无弹簧的强迫Green函数.从图中可以看出,无弹簧的强迫振动Green函数g2ξ,1/2)比等刚度弹簧基础的强迫振动Green函数W1ξ,1/2)大,这是由于W1ξ,1/2)受到等刚度弹簧的影响,振幅有所削减.此外,另一个值得注意的现象是当等刚度弹簧基础和无弹簧的强迫振动Green函数W1ξ,1/2)和g2ξ,1/2)对称时,线性等刚度基础作用下的约束Green函数W3ξ)有相同的结果,这也证明了约束Green的函数的纠缠性.

  • 图7 等刚度基础的Green函数

  • Fig.7 Green function of equal stiffness foundation

  • 3.4 非线性弹簧基础的影响

  • 图8展示了梁在多项式函数非线性基础上的约束Green函数.在图中,约束Green函数的二阶模态随着弹簧刚度的变化而发生改变.在K=ax+b,基础是线性刚度基础,约束Green函数W3ξ)作为标准二阶模态出现.当K=ax2+bx+c,基础是非线性的,并且约束Green函数W3ξ)的波峰和波谷向右端移动,在K=ax3+bx2+cx+d时这种现象变得更加明显,充分展示了非线性基础对模态的影响.此后,随着多项式函数阶数的增加,约束Green函数没有显著变化.

  • 图8 多项式函数非线性基础的约束Green函数

  • Fig.8 Constraint Green function on the nonlinear foundation of polynomial function

  • 图9 三角函数非线性刚度基础的约束Green函数

  • Fig.9 Constraint Green function on the nonlinear function of trigonometric functions

  • 图9显示了梁在三角函数非线性刚度基础上的约束Green函数.从图中可以看出,正弦刚度基础K=π/2Lsinπx/L的约束Green函数W3ξ)即将完成从三阶向二阶模态的过渡,然而,余弦刚度基础K=π/2Lsinπx/L约束Green函数已经呈现出二阶模态,这表明正弦刚度基础的约束Green函数W3ξ)明显滞后于余弦函数,而造成这种现象的主要原因是三角函数的相位差.通过上述分析,也从另一个角度说明正余弦刚度函数虽然具有相同的周期和振幅,但是对于模态的影响呈现出不同的特点.

  • 图10 高长比对正弦函数非线性地基约束Green函数的影响

  • Fig.10 Influence of height-length ratio on sine function nonlinear foundation constraint Green function

  • 图10展示了高长比对正弦函数非线性刚度基础约束Green函数的影响.从图中可以看出,模态的变化是由非线性基础上梁的高长比变化所引起的.当高长比β=1/3,约束Green函数W3ξ)表现为一阶模态.在β=1/5,W3ξ)是一个三阶模态.在β=1/8,W3ξ)从三阶模态转变为二阶模态.整个过程展示了高长比的变化引起约束Green函数的相应变化,也表明了在正弦非线性地基上梁的高长比对模态的影响.

  • 4 结论

  • 本文通过Laplace变换和叠加原理系统地研究了带有任意弹簧和非线性弹簧基础梁的约束Green函数.通过数值计算验证该解决方案的有效性,研究了一些重要的物理参数并得出以下结论:

  • (1)弹簧对梁的振幅减小有明显影响,有弹簧的梁的挠度明显小于无弹簧的挠度.

  • (2)弹簧的刚度和位置对约束Green函数的影响较大,能够引起模态阶数的转变和波谷的移动.

  • (3)多项式函数非线性基础对约束Green函数有显著影响,会引起波峰和波谷的向右端支座移动.

  • (4)正弦和余弦函数非线性基础的约束Green函数存在相位差,高长度比的变化会导致模态转化.

  • 此外,目前的约束Green函数可以应用于研究更广泛的问题.例如,这些结果可以为DNA复合材料和微梁传感器的设计提供一些有价值的参考[18].此外,在生物力学[19]和仿生动力学[2021]中的应用也是可以期待的.

  • 附录:

  • 表1 拉普拉斯逆变换的各项结果

  • Table1 The inverse Laplace transform

  • 其中,Hg)是Heaviside函数,Aii=1,2,3,4)定义为

  • 参考文献

    • [1] WU X W,ZHU L F,WU Z M,et al.Vibrational power flow analysis of Timoshenko microbeams with a crack [J].Composite Structures,2022,289:115483.

    • [2] ALIBAKHSHI A,DASTJERDI S,FANTUZZI N,et al.Nonlinear free and forced vibrations of a fiber-reinforced dielectric elastomer-based microbeam [J].International Journal of Non Linear Mechanics,2022,144:104092.

    • [3] KHABAZ M K,ALI EFTEKHARI S,TOGHRAIE D.Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects [J].Applied Mathematics and Computation,2022,419:126867.

    • [4] LI H C,KE L L.Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid [J].Thin-Walled Structures,2021,161:107432.

    • [5] ABDELRAHMAN A A,ESEN I,ELTAHER M A.Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment [J].Applied Mathematics and Computation,2021,407:126307.

    • [6] SHENG G G,WANG X.Nonlinear forced vibration of size-dependent functionally graded microbeams with damping effects [J].Applied Mathematical Modelling,2019,71:421-437.

    • [7] 毛晓晔,邵志华,舒送,等.中间支撑刚度对双跨梁屈曲稳定性的影响[J].振动与冲击,2022,41(11):1-9+17.MAO X Y,SHAO Z H,SHU S,et al.Effect of intermediate support stiffness on buckling stability of a double-span beam [J].Journal of Vibration and Shock,2022,41(11):1-9+17.(in Chinese)

    • [8] MAO X Y,SUN J Q,DING H,et al.An approximate method for one-dimensional structures with strong nonlinear and nonhomogenous boundary conditions [J].Journal of Sound and Vibration,2020,469:115128.

    • [9] MAO X Y,DING H,CHEN L Q.Vibration of flexible structures under nonlinear boundary conditions [J].Journal of Applied Mechanics,2017,84(11):111006.

    • [10] ABU-HILAL M.Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].Journal of Sound and Vibration,2003,267(2):191-207.

    • [11] LI X Y,ZHAO X,LI Y H.Green’s functions of the forced vibration of Timoshenko beams with damping effect [J].Journal of Sound and Vibration,2014,333(6):1781-1795.

    • [12] HAN H S,CAO D Q,LIU L.Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J].Applied Mathematical Modelling,2017,45:621-635.

    • [13] ZHAO X,CHEN B,LI Y H,et al.Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions [J].Journal of Sound Vibration,2020,464:115001.

    • [14] ALBASSAM B A.Vibration control of a flexible beam structure utilizing dynamic Green’s function [J].Journal of King Saud University-Engineering Sciences,2021,33(3):186-200.

    • [15] CHEN T,SU G,SHEN Y S,et al.Unified Green’s functions of forced vibration of axially loaded Timoshenko beam:transition parameter [J].International Journal of Mechanical Sciences,2016,113:211-220.

    • [16] GHANNADIASL A,KHODAPANAH AJIRLOU S.Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J].Applied Acoustics,2019,148:484-494.

    • [17] LUESCHEN G G G,BERGMAN L A,MCFARLAND D M.Green’s functions for uniform Timoshenko beams [J].Journal of Sound and Vibration,1996,194(1):93-102.

    • [18] ZHANG N H,WU C X,YANG Y,et al.Adjustable frequency shift of laminated DNA microbeam under complex detection conditions by different packaging patterns [J].Composite Structures,2022,292:115652.

    • [19] GODA I,ASSIDI M,BELOUETTAR S,et al.A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization [J].Journal of the Mechanical Behavior of Biomedical Materials,2012,16:87-108.

    • [20] 张佳俊,张舒,徐鉴.下肢康复外骨骼人机耦合动力学建模与控制[J].动力学与控制学报,2021,19(4):55-63.ZHANG J J,ZHANG S,XU J.Human-machine coupled dynamic modelling and control of lower limb exoskeleton for rehabilitation [J].Journal of Dynamics and Control,2021,19(4):55-63.(in Chinese)

    • [21] 赵勇,吴俊梅,杨梅晨,等.耦合胰腺β细胞的同步性分析[J].动力学与控制学报,2020,18(1):17-23.ZHAO Y,WU J M,YANG M C,et al.Synchronous analysis of electrically coupled pancreatic β cells [J].Journal of Dynamics and Control,2020,18(1):17-23.(in Chinese)

  • 参考文献

    • [1] WU X W,ZHU L F,WU Z M,et al.Vibrational power flow analysis of Timoshenko microbeams with a crack [J].Composite Structures,2022,289:115483.

    • [2] ALIBAKHSHI A,DASTJERDI S,FANTUZZI N,et al.Nonlinear free and forced vibrations of a fiber-reinforced dielectric elastomer-based microbeam [J].International Journal of Non Linear Mechanics,2022,144:104092.

    • [3] KHABAZ M K,ALI EFTEKHARI S,TOGHRAIE D.Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects [J].Applied Mathematics and Computation,2022,419:126867.

    • [4] LI H C,KE L L.Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid [J].Thin-Walled Structures,2021,161:107432.

    • [5] ABDELRAHMAN A A,ESEN I,ELTAHER M A.Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment [J].Applied Mathematics and Computation,2021,407:126307.

    • [6] SHENG G G,WANG X.Nonlinear forced vibration of size-dependent functionally graded microbeams with damping effects [J].Applied Mathematical Modelling,2019,71:421-437.

    • [7] 毛晓晔,邵志华,舒送,等.中间支撑刚度对双跨梁屈曲稳定性的影响[J].振动与冲击,2022,41(11):1-9+17.MAO X Y,SHAO Z H,SHU S,et al.Effect of intermediate support stiffness on buckling stability of a double-span beam [J].Journal of Vibration and Shock,2022,41(11):1-9+17.(in Chinese)

    • [8] MAO X Y,SUN J Q,DING H,et al.An approximate method for one-dimensional structures with strong nonlinear and nonhomogenous boundary conditions [J].Journal of Sound and Vibration,2020,469:115128.

    • [9] MAO X Y,DING H,CHEN L Q.Vibration of flexible structures under nonlinear boundary conditions [J].Journal of Applied Mechanics,2017,84(11):111006.

    • [10] ABU-HILAL M.Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].Journal of Sound and Vibration,2003,267(2):191-207.

    • [11] LI X Y,ZHAO X,LI Y H.Green’s functions of the forced vibration of Timoshenko beams with damping effect [J].Journal of Sound and Vibration,2014,333(6):1781-1795.

    • [12] HAN H S,CAO D Q,LIU L.Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J].Applied Mathematical Modelling,2017,45:621-635.

    • [13] ZHAO X,CHEN B,LI Y H,et al.Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions [J].Journal of Sound Vibration,2020,464:115001.

    • [14] ALBASSAM B A.Vibration control of a flexible beam structure utilizing dynamic Green’s function [J].Journal of King Saud University-Engineering Sciences,2021,33(3):186-200.

    • [15] CHEN T,SU G,SHEN Y S,et al.Unified Green’s functions of forced vibration of axially loaded Timoshenko beam:transition parameter [J].International Journal of Mechanical Sciences,2016,113:211-220.

    • [16] GHANNADIASL A,KHODAPANAH AJIRLOU S.Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J].Applied Acoustics,2019,148:484-494.

    • [17] LUESCHEN G G G,BERGMAN L A,MCFARLAND D M.Green’s functions for uniform Timoshenko beams [J].Journal of Sound and Vibration,1996,194(1):93-102.

    • [18] ZHANG N H,WU C X,YANG Y,et al.Adjustable frequency shift of laminated DNA microbeam under complex detection conditions by different packaging patterns [J].Composite Structures,2022,292:115652.

    • [19] GODA I,ASSIDI M,BELOUETTAR S,et al.A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization [J].Journal of the Mechanical Behavior of Biomedical Materials,2012,16:87-108.

    • [20] 张佳俊,张舒,徐鉴.下肢康复外骨骼人机耦合动力学建模与控制[J].动力学与控制学报,2021,19(4):55-63.ZHANG J J,ZHANG S,XU J.Human-machine coupled dynamic modelling and control of lower limb exoskeleton for rehabilitation [J].Journal of Dynamics and Control,2021,19(4):55-63.(in Chinese)

    • [21] 赵勇,吴俊梅,杨梅晨,等.耦合胰腺β细胞的同步性分析[J].动力学与控制学报,2020,18(1):17-23.ZHAO Y,WU J M,YANG M C,et al.Synchronous analysis of electrically coupled pancreatic β cells [J].Journal of Dynamics and Control,2020,18(1):17-23.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码