en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

胡开明,E-mail:hukaimimg@sjtu.edu.cn

中图分类号:TN306

文献标识码:A

文章编号:1672-6553-2024-22(2)-023-030

DOI:10.6052/1672-6553-2023-064

参考文献 1
张文栋,熊继军.微光机电系统(MOEMS)[M].北京:机械工业出版社,2006.
参考文献 2
马天义,余跃,许敬,等.MOEMS 2D扫描镜的研究进展[J].传感器与微系统,2016,35(6):1-3+8.MA T Y,YU Y,XU J,et al.Research progress of MOEMS 2D scanning mirror [J].Transducer and Microsystem Technologies,2016,35(6):1-3+8.(in Chinese)
参考文献 3
Wolter A,Hsu S T,Schenk H,et al.Applications and requirements for MEMS scanner mirrors[C]//MOEMS and Miniaturized Systems V.Bellingham,USA:SPIE,2005.
参考文献 4
HOLMSTRÖ M S T S,BARAN U,UREY H.MEMS laser scanners:a review [J].Journal of Microelectromechanical Systems,2014,23(2):259-275.
参考文献 5
LARA-CASTRO M,HERRERA-AMAYA A,ESCAROLA-ROSAS M A,et al.Design and modeling of polysilicon electrothermal actuators for a MEMS mirror with low power consumption [J].Micromachines,2017,8(7):203.
参考文献 6
SALEH A A M,SIMMONS J M.All-optical networking-evolution,benefits,challenges,and future vision [J].Proceedings of the IEEE,2012,100(5):1105-1117.
参考文献 7
TSAI C H,TSAI J C.MEMS optical switches and interconnects [J].Displays,2015,37:33-40.
参考文献 8
WANG H R,YANG H,CHEN Z F,et al.Development of dual-frequency PMUT arrays based on thin ceramic PZT for endoscopic photoacoustic imaging [J].Journal of Microelectromechanical Systems,2021,30(5):770-782.
参考文献 9
JUNG W,MCCORMICK D T,ZHANG J,et al.Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror [J].Applied Physics Letters,2006,88(16):163901.
参考文献 10
SCHENK H,WAGNER M,GRAHMANN J,et al.Advances in MOEMS technologies for high-quality imaging systems [C]//Optical Microlithography XXXI.Bellingham,USA:SPIE,2018.
参考文献 11
YALCINKAYA A D,UREY H,BROWN D,et al.Two-axis electromagnetic microscanner for high resolution displays [J].Journal of Microelectromechanical Systems,2006,15(4):786-794.
参考文献 12
WANG D K,XIE H K,THOMAS L,et al.A miniature LiDAR with a detached MEMS scanner for micro-robotics [J].IEEE Sensors Journal,2021,21(19):21941-21946.
参考文献 13
王强.静电梳齿驱动MEMS扫描镜研究[D].成都:中国科学院光电技术研究所,2021.WANG Q.Study on MEMS scanner based on electrostatic comb drive actuator [D].Chengdu:Institute of Optics and Electronics,Chinese Academy of Sciences,2021.(in Chinese)
参考文献 14
ROYO S,BALLESTA-GARCIA M.An overview of lidar imaging systems for autonomous vehicles [J].Applied Sciences,2019,9(19):4093.
参考文献 15
POCZTER S L,JANKOVIC L M.The google car:driving toward A better future?[J].Journal of Business Case Studies(JBCS),2013,10(1):7.
参考文献 16
吕江涛.自动驾驶技术超越特斯拉 “华为第一车” 暴拉A股[J].中国经济周刊,2021(8):76-77.
参考文献 17
ROSS P E.Volvo’s Self-Driving Program Will Have Redundancy For Everything[EB/OL].(2016-05-11)[2023-06-06].https://spectrum.ieee.org/volvos-selfdriving-program-will-have-redundancy-for-everything.
参考文献 18
朱敏慧.Innovusion鲍君威:蔚来ET7激光雷达量产,2022年为中国激光雷达上车元年[J].汽车与配件,2022(1):34-35.
参考文献 19
陆英.一种用于激光雷达的微振镜设计[J].激光与红外,2022,52(6):900-904.LU Y.A design of micro scanning mirror based on laser radar system [J].Laser & Infrared,2022,52(6):900-904.(in Chinese)
参考文献 20
LI Y,IBANEZ-GUZMAN J.Lidar for autonomous driving:the principles,challenges,and trends for automotive lidar and perception systems [J].IEEE Signal Processing Magazine,2020,37(4):50-61.
参考文献 21
RASSHOFER R H,GRESSER K.Automotive radar and lidar systems for next generation driver assistance functions [J].Advances in Radio Science,2005,3(10):205-209.
参考文献 22
HUANG Y H,SAI SARATHI VASAN A,DORAISWAMI R,et al.MEMS reliability review [J].IEEE Transactions on Device and Materials Reliability,2012,12(2):482-493.
参考文献 23
SOMÀ A.A survey of Mechanical failure and design for Reliability of MEMS [J].IOP Conference Series:Materials Science and Engineering,2020,724(1):012051.
参考文献 24
李斌,贾颖,韩鑫,等.车载液晶显示器环境试验技术分析[J].环境技术,2008,26(3):7-10.LI B,JIA Y,HAN X,et al.The analysis of environmental testing technical on vehicle LCD [J].Environmental Technology,2008,26(3):7-10.(in Chinese)
参考文献 25
王汉青.车载电子设备复杂电磁环境效应分析[D].长春:吉林大学,2019.WANG H Q.Analysis of complicated electromagnetic environmental effects of vehicular electronic devices [D].Changchun:Jilin University,2019.(in Chinese)
参考文献 26
DOUGLASS M.DMD reliability:a MEMS success story [C]//Reliability,Testing,and Characterization of MEMS/MOEMS II.Bellingham,USA:SPIE,2003.
参考文献 27
PAL S,XIE H K.Repeatability study of an electrothermally actuated micromirror [C]//2009 IEEE International Reliability Physics Symposium.New York,USA:IEEE,2009:549-556.
参考文献 28
MAHARSHI V,AGARWAL A.Reliability analysis of thermally actuated MEMS micromirror[C]//LENKA T R,MISRA D,FU L.Micro and Nanoelectronics Devices,Circuits and Systems.Singapore:Springer,2023:427-436.
参考文献 29
ARYAL N,EMADI A.A method to enhance stroke level of a MEMS micromirror with repulsive electrostatic force [J].Micromachines,2020,11(4):401.
参考文献 30
JIA K M,PAL S,XIE H K.An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs [J].Journal of Microelectromechanical Systems,2009,18(5):1004-1015.
参考文献 31
WANG H R,ZHANG X Y,ZHANG D H,et al.Characterization and reliability study of a MEMS mirror based on electrothermal bimorph actuation [C]//2017 International Conference on Optical MEMS and Nanophotonics(OMN).New York,USA:IEEE,2017.
参考文献 32
KOH K H,LEE C K.A low power 2-D raster scanning MEMS mirror driven by hybrid electrothermal and electromagnetic actuation mechanisms [C]//2012 International Conference on Optical MEMS and Nanophotonics.New York,USA:IEEE,2012:236-237.
参考文献 33
FANG X Y,HU K M,YAN G,et al.Shock destructive reliability analysis of electromagnetic MEMS micromirror for automotive LiDAR [J].Journal of Microelectromechanical Systems,2022,31(1):134-142.
参考文献 34
LIU W J,TANG Y M,WANG B P.Reliability evaluation of micromirror of double S-shaped unimorph piezoelectric actuator with probabilistic approach [C]//The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.New York,USA:IEEE,2013:813-816.
参考文献 35
LIAO K M.Closed-loop adaptive control for electrostatically driven torsional micromirrors [J].Nanolithography,MEMS,and MOEMS,2005,4(4):041503.
参考文献 36
TAN Y H,DONG R L,LI Z Z,et al.Online optimization control with predictive gradient descent for MEMS micro-mirrors [J].IEEE Transactions on Industrial Electronics,2022,69(7):7307-7317.
参考文献 37
ATAMAN,LANI S,NOELL W,et al.A dual-axis pointing mirror with moving-magnet actuation [J].Journal of Micromechanics and Microengineering,2013,23(2):025002.
参考文献 38
徐士浩.面向激光雷达的双轴MEMS微镜结构设计与制备工艺研究[D].西安:陕西科技大学,2022.XU S H.Research on structure design and fabrication of biaxial MEMS mirror for lidar application [D].Xi’an:Shaanxi University of Science & Technology,2022.(in Chinese)
参考文献 39
SCHENK H,DURR P,HAASE T,et al.Large deflection micromechanical scanning mirrors for linear scans and pattern generation [J].IEEE Journal of Selected Topics in Quantum Electronics,2000,6(5):715-722.
参考文献 40
SEO Y H,HWANG K,KIM H,et al.Scanning MEMS mirror for high definition and high frame rate lissajous patterns [J].Micromachines,2019,10(1):67.
参考文献 41
ZHANG X Y,ZHANG R,KOPPAL S,et al.MEMS mirrors submerged in liquid for wide-angle scanning [C]//18th International Conference on Solid-State Sensors,Actuators and Microsystems.New York,USA:IEEE,2015:847-850.
参考文献 42
YE L C,ZHANG G F,YOU Z.5 V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application [J].Sensors,2017,17(3):521.
参考文献 43
TASNEEM Z,WANG D K,XIE H K,et al.Directionally controlled time-of-flight ranging for mobile sensing platforms [C]//Robotics:Science and Systems XIV.Cambridge,MA,USA:MIT Press,2018.
参考文献 44
THONGRUENG J,TSUCHIYA T,NAGATA K.Lifetime and degradation mechanism of multilayer ceramic actuator [J].Japanese Journal of Applied Physics,1998,37(9):5306.
参考文献 45
HE Z M,LOH H T,ONG E H.Reliability evaluation of piezoelectric micro-actuators with application in hard disk drives [J].IEEE Transactions on Magnetics,2008,44(11):3722-3725.
参考文献 46
BARAN U,BROWN D,HOLMSTROM S,et al.Resonant PZT MEMS scanner for high-resolution displays [J].Journal of Microelectromechanical Systems,2012,21(6):1303-1310.
参考文献 47
MEINEL K,MELZER M,STOECKEL C,et al.2D scanning micromirror with large scan angle and monolithically integrated angle sensors based on piezoelectric thin film aluminum nitride [J].Sensors,2020,20(22):6599.
参考文献 48
KOH K H,LEE C K.A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage [J].Journal of Microelectromechanical Systems,2012,21(5):1124-1135.
参考文献 49
KIM S J,CHO Y H,NAM H J,et al.Piezoelectrically pushed rotational micromirrors for wide-angle optical switch applications [C]//The Sixteenth Annual International Conference on Micro Electro Mechanical Systems,2003.New York,USA:IEEE,2003:263-266.
参考文献 50
CHI C,YAO J,TSAI J,et al.Compact 1×8 MEMS Optical Switches Using Planar Lightwave Circuits[C]//Optical Fiber Communication Conference.Washington,USA:Optical Society of America,2004.
参考文献 51
CONANT R A,NEE J T,LAU K Y,et al.Dynamic deformation of scanning mirrors [C]//2000 IEEE/LEOS International Conference on Optical MEMS.New York,USA:IEEE,2002:49-50.
参考文献 52
刘加凯,齐杏林,王波.温度应力对MEMS器件分层失效的影响规律[J].电子元件与材料,2013,32(3):84-87.LIU J K,QI X L,WANG B.Influence law of thermal stress on the delamination of MEMS components [J].Electronic Components and Materials,2013,32(3):84-87.(in Chinese)
参考文献 53
TU C C,FANCHIANG K,LIU C H.Rotary electrostatic micromirror switches using wafer-scale processing and assembly [J].Microsystem Technologies,2006,12(12):1099-1108.
参考文献 54
JI C H,YEE Y,CHOI J,et al.Electromagnetic 2 × 2 MEMS optical switch [J].IEEE Journal of Selected Topics in Quantum Electronics,2004,10(3):545-550.
参考文献 55
WANG Z F,CAO W,SHAN X C,et al.Development of 1×4 MEMS-based optical switch [J].Sensors and Actuators A:Physical,2004,114(1):80-87.
参考文献 56
BERNSTEIN J J,TAYLOR W P,BRAZZLE J D,et al.Electromagnetically actuated mirror arrays for use in 3-D optical switching applications [J].Journal of Microelectromechanical Systems,2004,13(3):526-535.
参考文献 57
SANDNER T,WILDENHAIN M,GERWIG C,et al.Large aperture MEMS scanner module for 3D distance measurement [C]//MOEMS and Miniaturized Systems IX.Bellingham,USA:SPIE,2010.
参考文献 58
CHEN K S,AYON A,SPEARING S M.Controlling and testing the fracture strength of silicon on the mesoscale [J].Journal of the American Ceramic Society,2000,83(6):1476-1484.
参考文献 59
MUHLSTEIN C L,BROWN S B,RITCHIE R O.High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air [J].Sensors and Actuators A:Physical,2001,94(3):177-188.
参考文献 60
潘亦苏,陈大鹏.压电陶瓷非线性断裂的有限元分析[J].西南交通大学学报,2000,35(5):451-456.PAN Y S,CHEN D P.Finite element analysis of nonlinear fracture for piezoelectric ceramics [J].Journal of Southwest Jiaotong University,2000,35(5):451-456.(in Chinese)
参考文献 61
毕美田,史运泽,陈晋,等.多层压电陶瓷驱动器纳米银粘接工艺应力分布的有限元分析[C]//2006年全国功能材料学术年会专辑.重庆:《功能材料》编辑部,2006:370-371+374.(in Chinese)BI M T,SHI Y Z,CHEN J,et al.FEM analysis of residual stress of nano Ag bonding for multilayer piezoelectric ceramic actuators[C]//Chongqing:China Academic Journal of Functional Materials,2006.(in Chinese)
参考文献 62
FURUTA A,UCHINO K.Destruction mechanism of multilayer ceramic actuators:case of antiferroelectrics [J].Ferroelectrics,1994,160(1):277-285.
参考文献 63
WOO S,GOO N.Analysis of the bending fracture process for piezoelectric composite actuators using dominant frequency bands by acoustic emission [J].Composites Science and Technology,2007,67(7/8):1499-1508.
参考文献 64
TUCK K,JUNGEN A,GEISBERGER A,et al.A study of creep in polysilicon MEMS devices [J].Journal of Engineering Materials and Technology,2005,127(1):90-96.
参考文献 65
MERLIJN VAN SPENGEN W.MEMS reliability from a failure mechanisms perspective [J].Microelectronics Reliability,2003,43(7):1049-1060.
参考文献 66
SILVESTRINI M,BARBATO M,COSTANTINI S,et al.Long-term stresses on linear micromirrors for pico projector application [J].Microelectronics Reliability,2017,76/77:626-630.
参考文献 67
CHUNG S H,LEE S K,JI C H,et al.Vacuum packaged electromagnetic 2D scanning micromirror [J].Sensors and Actuators A:Physical,2019,290:147-155.
参考文献 68
OU C H,LIN Y C,KEIKOIN Y,et al.Two-dimensional MEMS Fe-based metallic glass micromirror driven by an electromagnetic actuator [J].Japanese Journal of Applied Physics,2019,58:SDDL01.
参考文献 69
YOO H W,SCHITTER G.Complex valued state space model for weakly nonlinear duffing oscillator with noncollocated external disturbance [J].IFAC-PapersOnLine,2020,53(2):8546-8552.
参考文献 70
王海宁,王水弟,蔡坚,等.先进的MEMS封装技术[J].半导体技术,2003(6):7-10.WANG H N,WANG S D,CAI J,et al.Advanced packaging technology for MEMS [J].Semiconductor Technology,2003,28(6):7-10.(in Chinese)
参考文献 71
张昱,潘武.MEMS封装技术[J].纳米技术与精密工程,2005,3(3):194-198.ZHANG Y,PAN W.[J].Packaging technology for MEMS,2005,3(3):194-198.(in Chinese)
参考文献 72
LI G,TSENG A A.Low stress packaging of a micromachined accelerometer [J].IEEE Transactions on Electronics Packaging Manufacturing,2001,24(1):18-25.
参考文献 73
吴忠烨,杨尚书,吴国强.MEMS器件低应力封装技术[J].微纳电子与智能制造,2020,2(4):43-51.WU Z Y,YANG S S,WU G Q.Low-stress packaging technology for MEMS devices [J].Micro/Nano Electronics and Intelligent Manufacturing,2020,2(4):43-51.(in Chinese)
参考文献 74
钱磊,胡杰,单亚蒙,等.基于MEMS微镜角度反馈的新型封装应力隔离结构[J].光子学报,2022,51(5):187-196.QIAN L,HU J,SHAN Y M,et al.Novel packaging stress isolation structure for MEMS micromirror with piezoresistive angle sensor [J].Acta Photonica Sinica,2022,51(5):0551311.(in Chinese)
参考文献 75
SUHIR E.Predicted thermal stresses in a bimaterial assembly adhesively bonded at the ends [J].Journal of Applied Physics,2001,89(1):120-129.
参考文献 76
HAH D,HUANG S T Y,TSAI J C,et al.Low-voltage,large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators [J].Journal of Microelectromechanical Systems,2004,13(2):279-289.
参考文献 77
ZHOU L,ZHANG X Y,XIE H K.An electrothermal Cu/W bimorph tip-tilt-piston MEMS mirror with high reliability [J].Micromachines,2019,10(5):323.
参考文献 78
师蔚,贡俊,黄苏融.永磁电动机永磁体防退磁技术研究综述[J].微特电机,2012,40(4):71-74+76.SHI W,GONG J,HUANG S R.An overview of anti-demagnetization technology of permanent magnet in permanent magnet motor [J].Small & Special Electrical Machines,2012,40(4):71-74+76.(in Chinese)
参考文献 79
胡文艳.钕铁硼永磁材料的性能及研究进展[J].现代电子技术,2012,35(2):151-152+155.HU W Y.Property and research progress of NbFeB permanent magnets [J].Modern Electronics Technique,2012,35(2):151-152+155.(in Chinese)
参考文献 80
KUMAR S,PAVELYEV V,TRIPATHI N,et al.Review-recent advances in the development of carbon nanotubes based flexible sensors [J].Journal of the Electrochemical Society,2020,167(4):047506.
参考文献 81
HE S,BEN MRAD R,CHONG J.Repulsive-force out-of-plane large stroke translation micro electrostatic actuator [J].Journal of Micromechanics and Microengineering,2011,21(7):075002.
参考文献 82
陈辉.MEMS扭转微镜的滑模控制研究[D].广州:华南理工大学,2014.CHEN H.Sliding mode control of torsinal MEMS micromirror [D].Guangzhou:South China University of Technology,2014.(in Chinese)
参考文献 83
FARGAS-MARQUES A,CASALS-TERRE J,SHKEL A M.Resonant pull-in condition in parallel-plate electrostatic actuators [J].Journal of Microelectromechanical Systems,2007,16(5):1044-1053.
参考文献 84
SEEGER J I,BOSER B E.Charge control of parallel-plate,electrostatic actuators and the tip-in instability [J].Journal of Microelectromechanical Systems,2003,12(5):656-671.
参考文献 85
TIAN D,AIN Q T,ANJUM N,et al.Fractal N/MEMS:from pull-in instability to pull-in stability [J].Fractals,2021,29(2):2150030.
参考文献 86
DEGANI O,SOCHER E,LIPSON A,et al.Pull-in study of an electrostatic torsion microactuator [J].Journal of Microelectromechanical Systems,1998,7(4):373-379.
参考文献 87
HOSSEINI M,ZHU G C,PETER Y A.A new formulation of fringing capacitance and its application to the control of parallel-plate electrostatic micro actuators [J].Analog Integrated Circuits and Signal Processing,2007,53(2):119-128.
参考文献 88
ZHANG W M,YAN H,PENG Z K,et al.Electrostatic pull-in instability in MEMS/NEMS:a review [J].Sensors and Actuators A:Physical,2014,214:187-218.
参考文献 89
BENI Y T,KOOCHI A,KAZEMI A S,et al.Modeling the influence of surface effect and molecular force on pull-in voltage of rotational nano-micro mirror using 2-DOF model [J].Canadian Journal of Physics,2012,90(10):963-974.
参考文献 90
DUAN J S,RACH R.A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy,fringing field and Casimir effects [J].International Journal of Solids and Structures,2013,50(22/23):3511-3518.
参考文献 91
ZHAO Y,TAY F E H,CHAU F S,et al.Stabilization of dual-axis micromirrors beyond the pull-in point by integral sliding mode control [J].Journal of Micromechanics and Microengineering,2006,16(7):1242-1250.
参考文献 92
KUMAR A,KUMAR P,BAJPAI A,et al.Design and development of a double-bridge micromirror with bending and twisting cantilevers for multiobject spectroscopy [J].IEEE Transactions on Electron Devices,2020,67(10):4392-4398.
参考文献 93
PU C,PARK S,CHU P B,et al.Electrostatic actuation of three-dimensional MEMS mirrors using sidewall electrodes [J].IEEE Journal of Selected Topics in Quantum Electronics,2004,10(3):472-477.
参考文献 94
HUNG E S,SENTURIA S D.Leveraged bending for full-gap positioning with electrostatic actuation [C]//1998 Solid-State,Actuators,and Microsystems Workshop Technical Digest.San Diego,USA:Transducer Research Foundation,Inc.,1998:83-86.
参考文献 95
LIU M J,CHEN Y L,CHENG W,et al.Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force [J].Capillarity,2022,5(3):51-64.
参考文献 96
罗伟,杨国珂,叶坤涛.串联电容对MEMS扭转微镜吸合角的影响[J].仪表技术与传感器,2014(4):98-101+105.LUO W,YANG G K,YE K T.Influent of series capacitor on pull-in angle of MEMS torsional micromirror [J].Instrument Technique and Sensor,2014(4):98-101+105.(in Chinese)
参考文献 97
AFRANG S,MOBKI H,HASSANZADEH M,et al.Design and simulation of a MEMS analog micro-mirror with improved rotation angle [J].Microsystem Technologies,2019,25(3):1099-1109.
参考文献 98
SANGAMESWARAN S,DE COSTER J,LINTEN D,et al.Investigating ESD sensitivity in electrostatic SiGe MEMS [J].Journal of Micromechanics and Microengineering,2010,20(5):055005.
参考文献 99
SANGAMESWARAN S,DE COSTER J,LINTEN D,et al.ESD reliability issues in microelectromechanical systems(MEMS):a case study on micromirrors [C]//Electrical Overstress/Electrostatic Discharge Symposium.New York,USA:IEEE,2008:249-257.
参考文献 100
WIBBELER J,PFEIFER G,HIETSCHOLD M.Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems(MEMS)[J].Sensors and Actuators A:Physical,1998,71(1/2):74-80.
参考文献 101
GREASON W D.Analysis of the effect of ESD on the operation of MEMs [J].IEEE Transactions on Industry Applications.2008,45(6):2185-2191..
参考文献 102
许成龙,李朋伟,张文栋,等.电容式RF MEMS开关介质层电荷积累消除方法[J].微纳电子技术,2013,50(9):559-565+580.XU C L,LI P W,ZHANG W D,et al.Dielectric charging-eliminating technology for capacitive RF MEMS switches [J].Micronanoelectronic Technology,2013,50(9):559-565+580.(in Chinese)
参考文献 103
TOUATI S,LORPHELIN N,KANCIURZEWSKI A,et al.Low actuation voltage totally free flexible RF MEMS switch with antistiction system [C]//2008 Symposium on Design,Test,Integration and Packaging of MEMS/MOEMS.New York,USA:IEEE,2008:66-70.
参考文献 104
PENG Z,YUAN X B,HWANG J C M,et al.Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms [J].IEEE Transactions on Microwave Theory and Techniques,2007,55(12):2911-2918.
参考文献 105
WONG W S H,LAI C H.Longer MEMS switch lifetime using novel dual-pulse actuation voltage [J].IEEE Transactions on Device and Materials Reliability,2009,9(4):569-575.
参考文献 106
LI G,CHEN X Y.Modified Fowler-Nordheim tunnelling for modelling charge injection into Si3N4 in an Al/Si3N4/Si structure [J].Applied Physics A,2012,109(3):539-545.
参考文献 107
郭兴军,李朋伟,张文栋,等.基于电容式MEMS器件的静电斥力驱动研究[J].仪器仪表学报,2014,35(8):1738-1743.GUO X J,LI P W,ZHANG W D,et al.Investigation on electrostatic repulsion for driving capacitive MEMS devices [J].Chinese Journal of Scientific Instrument,2014,35(8):1738-1743.(in Chinese)
参考文献 108
周凌峰.电热式双S结构MEMS微镜的热学特性研究[D].北京:北京理工大学,2016.ZHOU L F.Investigation of the thermal behavior of an electrothermal folded dual S-shaped micromirror [D].Beijing:Beijing Institute of Technology,2016.(in Chinese)
参考文献 109
PAL S,XIE H K.Fabrication of robust electrothermal MEMS devices using aluminum-tungsten bimorphs and polyimide thermal isolation [J].Journal of Micromechanics and Microengineering,2012,22(11):115036.
参考文献 110
CHUANG T H,LIN H J,WANG H C,et al.Mechanism of electromigration in Ag-alloy bonding wires with different Pd and Au content [J].Journal of Electronic Materials,2015,44(2):623-629.
参考文献 111
杨刚,岳振星,李龙土.压电陶瓷场致疲劳特性与机理研究进展[J].无机材料学报,2007,22(1):1-6.YANG G,YUE Z X,LI L T.Research progress on the characteristics and mechanism of applied field-induced fatigue in piezoelectric ceramics [J].Journal of Inorganic Materials,2007,22(1):1-6.(in Chinese)
参考文献 112
NAKAMURA S,NANIWA I,SATO K,et al.Lifetime prediction method for piggyback PZT actuator [J].IEEE Transactions on Magnetics,2001,37(2):940-943.
参考文献 113
王泓杰,王晨,沈星.典型智能材料结构疲劳可靠性问题研究进展[J].航空科学技术,2022,33(3):52-64.WANG H J,WANG C,SHEN X.Research progress on fatigue reliability in typical smart material structure [J].Aeronautical Science & Technology,2022,33(3):52-64.(in Chinese)
参考文献 114
王伟强.压电陶瓷的场致疲劳与非线性研究[D].北京:清华大学,2006.WANG W Q.Study on field-induced fatigue and nonlinearity of piezoelectric ceramics [D].Beijing:Tsinghua University,2006.(in Chinese)
参考文献 115
罗帅,王家秋,张彬.压电陶瓷驱动器疲劳特性对变形镜校正能力的影响[J].中国激光,2018,45(9):0905002.LUO S,WANG J Q,ZHANG B.Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror [J].Chinese Journal of Lasers,2018,45(9):0905002.(in Chinese)
参考文献 116
GAO X Y,XIN X D,WU J G,et al.A multilayered-cylindrical piezoelectric shear actuator operating in shear(d15)mode [J].Applied Physics Letters,2018,112(15):152902.
参考文献 117
冉兵,赵帝植,文良华.压电倾斜镜中堆叠式压电陶瓷驱动器动态应力计算分析[J].激光与光电子学进展,2022,59(5):0523001.RAN B,ZHAO D Z,WEN L H.Research on dynamic stress of piezoelectric fast steering mirror stacked PZT actuator [J].Laser & Optoelectronics Progress,2022,59(5):0523001.(in Chinese)
参考文献 118
SANGAMESWARAN S,DE COSTER J,GROESENEKEN G,et al.Reliability test methodology for MEMS and MOEMS under electrical overstress and electrostatic discharge stress [J].Nanolithography,MEMS,and MOEMS,2012,11(2):021204.
参考文献 119
YOO H W,RIEGLER R,BRUNNER D,et al.Experimental evaluation of vibration influence on a resonant MEMS scanning system for automotive lidars [J].IEEE Transactions on Industrial Electronics,2022,69(3):3099-3108.
参考文献 120
FANG X Y,LI X Y,HU K M,et al.Destructive reliability analysis of electromagnetic MEMS micromirror under vibration environment [J].IEEE Journal of Selected Topics in Quantum Electronics,2022,28(5):2800108.
参考文献 121
杜林云.应用于激光雷达的MEMS扫描镜研究[D].合肥:合肥工业大学,2021.DU L Y.Research on MEMS scanning mirror applied in lidar [D].Hefei:Hefei University of Technology,2021.(in Chinese)
参考文献 122
SIVAKUMAR G,RANGANATHAN R,GALE R,et al.Reliability study of a MEMS array under varying temperature and humidity conditions [C]//Reliability,Packaging,Testing,and Characterization of MEMS/MOEMS and Nanodevices IX.Bellingham,USA:SPIE,2010.
参考文献 123
DOUGLASS M R.Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device(DMD)[C]//1998 IEEE International Reliability Physics Symposium Proceedings.New York,USA:IEEE,1998:9-16.
参考文献 124
QIAN L,YU H J,HU J,et al.Temperature compensation for MOEMS micromirror with piezoresistive angle sensor [C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS).New York,USA:IEEE,2021.
参考文献 125
GRAHMANN J,SCHROEDTER R,KIETHE O,et al.Vibration analysis of micro mirrors for LIDAR using on-chip piezo-resistive sensor [C]//MOEMS and Miniaturized Systems XIX.Bellingham,USA:SPIE,2020.
参考文献 126
HUA Y,WANG S Y,LI B C,et al.Dynamic modeling and anti-disturbing control of an electromagnetic MEMS torsional micromirror considering external vibrations in vehicular LiDAR [J].Micromachines,2021,12(1):69.
参考文献 127
李岩,舒望.车载扬声器的环境可靠性测试技术探讨[J].电子质量,2013(1):24-28.LI Y,SHU W.Evaluation of automobile speaker reliability test technique [J].Electronics Quality,2013(1):24-28.(in Chinese)
参考文献 128
张建宏.复杂力学环境中MEMS安全系统失效机理与分析方法研究[D].北京:北京理工大学,2014.ZHANG J H.Research of failure mechanism and analysis method for MEMS Safety&Arming device in complex mechanical environment [D].Beijing:Beijing Institute of Technology,2014.(in Chinese)
参考文献 129
MILANOVIC V,KASTURI A,YANG J.Novel fluidic packaging of gimbal-less MEMS mirrors for increased optical resolution and overall performance [C]//Micro/Nanotechnology Sensors,Systems,and Applications VIII.Bellingham,USA:SPIE,2016.
参考文献 130
SANG W Y.Vibration isolation and shock protection for MEMS[D].Ann Arbo,USA:University of Michigan,2009.
参考文献 131
BONI N,CARMINATI R,MENDICINO G,et al.Quasi-static PZT actuated MEMS mirror with 4×3mm2 reflective area and high robustness [C]//MOEMS and Miniaturized Systems XX.Bellingham,USA:SPIE,2021.
参考文献 132
程源,刘培培,赵林平,等.汽车“三高” 环境适应性试验开发和验证[J].公路与汽运,2016(3):11-13.
参考文献 133
吕良.MEMS汽车传感器设计关键技术的研究[D].北京:北京邮电大学,2011.LV L.A study on critical technologies of the design of the automotive sensors based on MEMS [D].Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)
参考文献 134
盛斌.可靠性试验中三大加速模型的研究与应用[J].电子技术与软件工程,2014(14):147-149.
参考文献 135
宋运康,赵坤帅,闫鑫,等.湿度对微型加速度计粘连失效的影响[J].传感技术学报,2014,27(3):316-319.SONG Y K,ZHAO K S,YAN X,et al.The adhesion failure in the MEMS accelerator influenced by relative humudity [J].Chinese Journal of Sensors and Actuators,2014,27(3):316-319.(in Chinese)
参考文献 136
张文明,孟光.MEMS可靠性与失效分析[J].机械强度,2005,27(6):855-859.ZHANG W M,MENG G.Reliability of MEMS and its failure analysis [J].Journal of Mechanical Strength,2005,27(6):855-859.(in Chinese)
参考文献 137
顾盼,刘景全,陈迪,等.采用RIE沉积法研制微纳工艺中的防粘连层[J].传感技术学报,2006,19(5):1395-1397+1400.GU P,LIU J Q,CHEN D,et al.The research of anti-adhesive film by RIE deposition in MEMS/NEMS [J].Chinese Journal of Sensors and Actuators,2006,19(5):1395-1397+1400.(in Chinese)
参考文献 138
DE GROOT W A,WEBSTER J R,FELNHOFER D,et al.Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices [J].IEEE Transactions on Device and Materials Reliability,2009,9(2):190-202.
参考文献 139
彭明迪.一种二维MEMS扫描微镜结构动力学及制备工艺研究[D].南京:南京理工大学,2019.PENG M D.Research on structural dynamics and fabrication process on a 2D MEMS mirror [D].Nanjing:Nanjing University of Science & Technology,2019.(in Chinese)
参考文献 140
CHEN H,PALLAPA M,SUN W J,et al.Nonlinear control of an electromagnetic polymer MEMS hard-magnetic micromirror and its imaging application [J].Journal of Micromechanics and Microengineering,2014,24(4):045004.
参考文献 141
乔大勇,杨璇,夏长锋,等.梳齿分布结构对静电驱动二维微扫描镜机械转角的影响[J].传感技术学报,2014,27(2):172-177.QIAO D Y,YANG X,XIA C F,et al.Influence of comb distribution on the twisting amplitude of two-dimensional microscanner actuated electrostatically [J].Chinese Journal of Sensors and Actuators,2014,27(2):172-177.(in Chinese)
参考文献 142
PENG M D,ZHU X H,JIANG B,et al.Response analysis of a 2D MEMS electromagnetically driven micro-mirror [C]//2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems(ICICM).New York,USA:IEEE,2018:5-9.
参考文献 143
HARTZELL A L,DA SILVA M G,SHEA H R.MEMS reliability [M].Boston,USA:Springer,2011.
参考文献 144
ISIKMAN S O,UREY H.Dynamic modeling of soft magnetic film actuated scanners [J].IEEE Transactions on Magnetics,2009,45(7):2912-2919.
参考文献 145
JUDY J W,MULLER R S.Magnetically actuated,addressable microstructures [J].Journal of Microelectromechanical Systems,1997,6(3):249-256.
参考文献 146
杜林云,许高斌,花翔,等.用于激光雷达的双层梳齿驱动MEMS扫描镜[J].电子测量与仪器学报,2021,35(5):8-15.DU L Y,XU G B,HUA X,et al.MEMS scanning mirror driven by double comb teeth for lidar [J].Journal of Electronic Measurement and Instrumentation,2021,35(5):8-15.(in Chinese)
参考文献 147
CHU W H,MEHREGANY M,MULLEN R L.Analysis of tip deflection and force of a bimetallic cantilever microactuator [J].Journal of Micromechanics and Microengineering,1993,3(1):4-7.
参考文献 148
LEONDES C T.MEMS/NEMS:handbook techniques and applications [M].New York,USA:Springer,2006
参考文献 149
白诚.静电扭转MEMS微镜的建模与控制研究[D].西安:西安电子科技大学,2017.BAI C.A survey on modelling and control of electrostatically actuated torsional MEMS micromirror [D].Xi’an:Xidian University,2017.(in Chinese)
参考文献 150
HOSAKA H,ITAO K,KURODA S.Damping characteristics of beam-shaped micro-oscillators [J].Sensors and Actuators A:Physical,1995,49(1/2):87-95.
参考文献 151
LANGLOIS W E.Isothermal squeeze films [J].Quarterly of Applied Mathematics,1962,20(2):131-150.
参考文献 152
HAO Z L,CLARK R,HAMMER J,et al.Modeling air-damping effect in a bulk micromachined 2D tilt mirror [J].Sensors and Actuators A:Physical,2002,102(1/2):42-48.
参考文献 153
TANG H W,YI Y B,MATIN M A.Simulation of thermoelastic damping of MEMS mirror using a finite element analysis [C]//International Society for Optics and Photonics.Bellingham,USA:SPIE,2007.
参考文献 154
UREY H,KAN C H,DAVIS W O.Vibration mode frequency formulae for micromechanical scanners [J].Journal of Micromechanics and Microengineering,2005,15(9):1713-1721.
参考文献 155
李孝涛,陶俊勇,张云安.微倾斜悬臂梁力学特性研究与仿真分析[C]//2010年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第二次全体委员大会论文集.[出版者不详],2010:178-181.
参考文献 156
何洋,霍鹏飞,苑伟政等.微结构的大转角非线性动态行为的宏建模方法[C]//中国机械工程学会.中国微米、纳米技术第七届学术会年会论文集(一).武汉:中国机械工程杂志社,2005:326-329.HE Y,HUO P F,YUAN W Z,et al.Macro-modeling of micro structure with nonlinear large angle rotation behavior[C]//Wuhan:Chinese Mechanical Engineering Society,2005:326-329.(in Chinese)
参考文献 157
许筱玲,唐洁影.表面加工微多晶悬梁在振动载荷下的响应分析[J].微纳电子技术,2005,42(9):420-424.XU X L,TANG J Y.Analysis of response of the surface micromachined cantilever under vibration [J].Micronanoelectronic Technology,2005,42(9):420-424.(in Chinese)
参考文献 158
赵建平,陈花玲,陈天宁.扭转微镜的动力学模型及其动态特性分析[J].振动工程学报,2004,17(4):449-452.ZHAO J P,CHEN H L,CHEN T N.Dynamic characteristics modeling and analysis of a torsional micromirror [J].Journal of Vibration Engineering,2004,17(4):449-452.(in Chinese)
参考文献 159
周源,吕卫民,孙媛.基于逆Gaussian过程的MEMS加速度计寿命融合预测方法[J].中国惯性技术学报,2017,25(6):834-841.ZHOU Y,LV W M,SUN Y.Fusion prediction method for the life of MEMS accelerometer based on inverse Gaussian process [J].Journal of Chinese Inertial Technology,2017,25(6):834-841.(in Chinese)
参考文献 160
王永泉,陈花玲,赵建平,等.基于Weibull分布的MEMS器件冲击可靠性建模[J].机械强度,2013,35(1):15-21.WANG Y Q,CHEN H L,ZHAO J P,et al.Modeling for the shock reliability of MEMS devices based on Weibull distribution [J].Journal of Mechanical Strength,2013,35(1):15-21.(in Chinese)
参考文献 161
TEIXEIRA A P,SOARES C G.Reliability assessment of plate elements with random properties[C]//Marine Technology and Engineering.Boca Raton,USA:Taylor & Francis,2011:1361-75.
参考文献 162
PATHAK R,JOSHI S,MISHRA D K.Distributive computing for reliability analysis of MEMS devices using MATLAB [C]//Proceedings of the International Conference on Advances in Computing,Communication and Control.New York,USA:ACM,2009:246-250.
参考文献 163
张姣,李永红,刘国忠,等.MEMS惯导的加速寿命试验分析[J].仪表技术,2010(1):53-55+57.ZHANG J,LI Y H,LIU G Z,et al.Analysis of accelerated life testing [J].Instrumentation Technology,2010(1):53-55+57.(in Chinese)
参考文献 164
林震,姜同敏,程永生,等.阿伦尼斯模型研究[J].电子产品可靠性与环境试验,2005,23(6):12-14.LIN Z,JIANG T M,CHENG Y S,et al.Study on Arrhenius relationship [J].Electronic Product Reliability and Environmental Testing,2005,23(6):12-14.(in Chinese)
参考文献 165
MANSON S S,DOLAN T J.Thermal stress and low cycle fatigue [J].Journal of Applied Mechanics,1966,33(4):957.
参考文献 166
COFFIN JR L F.A study of the effects of cyclic thermal stresses on a ductile metal [J].Journal of Fluids Engineering,1954,76(6):931-949.
参考文献 167
卢炽华,张艳杰,卢思思,等.基于Hallberg-Peck模型的玻璃纤维增强PC的性能与寿命[J].塑料工业,2022,50(7):106-109+156.LU C H,ZHANG Y J,LU S S,et al.Properties and lifetime of glass fiber reinforced polycarbonate based on Hallberg-Peck model [J].China Plastics Industry,2022,50(7):106-109+156.(in Chinese)
参考文献 168
薛阳,张蓬鹤,王雅涛,等.智能电能表可靠性评价方法研究与探讨[J].电测与仪表,2016,53(13):90-94+99.XUE Y,ZHANG P H,WANG Y T,et al.Study and exploration on reliability assessment method for smart meters [J].Electrical Measurement & Instrumentation,2016,53(13):90-94+99.(in Chinese)
参考文献 169
WANG X.Wiener processes with random effects for degradation data [J].Journal of Multivariate Analysis,2010,101(2):340-351.
参考文献 170
盖炳良,滕克难,张晓瑜,等.基于性能检测信息的加速度计可靠性评估[J].航空兵器,2019,26(5):95-102.GAI B L,TENG K N,ZHANG X Y,et al.Reliability assessment of accelerometer based on performance test information [J].Aero Weaponry,2019,26(5):95-102.(in Chinese)
参考文献 171
YAN H,LIU K B,ZHANG X,et al.Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions [J].IEEE Transactions on Reliability,2016,65(3):1416-1426.
参考文献 172
SONG C Y,LIU K B,ZHANG X.Integration of data-level fusion model and kernel methods for degradation modeling and prognostic analysis [J].IEEE Transactions on Reliability,2018,67(2):640-650.
参考文献 173
CHEHADE A,SONG C Y,LIU K B,et al.A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes [J].Journal of Quality Technology,2018,50(2):150-165.
参考文献 174
赵广社,吴思思,荣海军.多源统计数据驱动的航空发动机剩余寿命预测方法[J].西安交通大学学报,2017,51(11):150-155+172.ZHAO G S,WU S S,RONG H J.A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine [J].Journal of Xi’an Jiaotong University,2017,51(11):150-155+172.(in Chinese)
参考文献 175
任子强,司小胜,胡昌华,等.融合多传感器数据的发动机剩余寿命预测方法[J].航空学报,2019,40(12):134-145.REN Z Q,SI X S,HU C H,et al.Remaining useful life prediction method for engine combining multi-sensors data [J].Acta Aeronautica et Astronautica Sinica,2019,40(12):134-145.(in Chinese)
参考文献 176
CHU C H,SHIH W P,CHUNG S Y,et al.A low actuation voltage electrostatic actuator for RF MEMS switch applications [J].Journal of Micromechanics and Microengineering,2007,17(8):1649-1656.
参考文献 177
BAI C,HUANG J.Modeling and active control of circular electrostatic torsional micromirror [J].Advanced Materials Research,2012,629:649-654.
参考文献 178
刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.LIU J K.MATLAB simulation for sliding mode control [M].Beijing:Tsinghua University Press,2005.(in Chinese)
参考文献 179
胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
参考文献 180
DAQAQ M F,REDDY C K,NAYFEH A H.Input-shaping control of nonlinear MEMS [J].Nonlinear Dynamics,2008,54(1):167-179.
参考文献 181
SHI M H,ZHANG H,CHEN Q.The input shaping control of eletro-thermal MEMS micromirror [C]//2014 IEEE International Conference on Mechatronics and Automation.New York,USA:IEEE,2014:583-587.
参考文献 182
CHEN K S,OU K S.Command-shaping techniques for electrostatic MEMS actuation:analysis and simulation [J].Journal of Microelectromechanical Systems,2007,16(3):537-549.
参考文献 183
LIAO K M,WANG Y C,YEH C H,et al.Closed-loop adaptive control for torsional micromirrors [C]//MOEMS and Miniaturized Systems IV.Bellingham,USA:SPIE,2004.
参考文献 184
MA Y,ISLAM S,PAN Y J.Electrostatic torsional micromirror with enhanced tilting angle using active control methods [J].IEEE/ASME Transactions on Mechatronics,2011,16(6):994-1001.
参考文献 185
SANE H S,YAZDI N,MASTRANGELO C H.Application of sliding mode control to electrostatically actuated two-axis gimbaled micromirrors [C]//Proceedings of the 2003 American Control Conference.New York,USA:IEEE,2003:3726-3731.
参考文献 186
SANE H S,YAZDI N,MASTRANGELO C H.Modified sliding mode control and its application to electrostatically controlled dual-axis micromirrors [C]//Proceedings of the 2004 American Control Conference.New York,USA:IEEE,2004:1934-1939.
参考文献 187
TAN J Z,SUN W J,YEOW J T W.Experimental validation of Nussbaum gain adaptive control for a polymer composite based electromagnetic micromirror [C]//2017 36th Chinese Control Conference(CCC).New York,USA:IEEE,2017:1058-1062.
参考文献 188
MAKSYMOVA I,GREINER P,STEGER C,et al.Adaptive MEMS mirror control for reliable automotive driving assistance applications [C]//2020 23rd Euromicro Conference on Digital System Design(DSD).New York,USA:IEEE,2020:469-475.
参考文献 189
EUN Y,JEONG B,KIM J.Switching time reduction for electrostatic torsional micromirrors using input shaping [J].Japanese Journal of Applied Physics,2010,49(5):054102.
参考文献 190
BAI C,HUANG J.Multistep-shaping control based on the static and dynamic behavior of nonlinear optical torsional micromirror [J].Optical Engineering,2014,53(5):057109.
参考文献 191
SHAN W W,CHEN X.A novel combined proportional-derivative control for electrostatic MEMS mirror actuation [J].IEICE Transactions on Electronics,2011,E94-C(9):1486-1489.
参考文献 192
WANG X C,XIE Y K,LIANG H H,et al.Analysis of distortion based on 2D MEMS micromirror scanning projection system [J].Micromachines,2021,12(7):818.
参考文献 193
SIDLER T.Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner [J].Optical Engineering,2003,42(4):1048.
参考文献 194
刘涵.基于Ring-Down方法的MEMS二维扫描微镜驱动与控制研究[D].南京:南京理工大学,2019.〗LIU H.Research on driving and control of MEMS 2-D scanning micromirror based on Ring-Down method [D].Nanjing University of Science & Technology,2020.(in Chinese)
参考文献 195
李冠霖.电磁驱动微镜的H控制及其应用[D].广州:华南理工大学,2016.LI G L.H control and application of electromagnetically actuated micromirror [D].Guangzhou:South China University of Technology,2016.(in Chinese)
参考文献 196
章皓.电热式MEMS微镜驱动控制技术研究[D].苏州:苏州大学,2014.ZHANG H.The research of driving control technology based on electrothermal MEMS micromirror [D].Suzhou:Soochow University,2014.(in Chinese)
目录contents

    摘要

    作为一种新型微光机电系统,MEMS微镜可完成微尺度下的光调控工作,在光电通信、医疗成像、民用投影、雷达探测等领域应用广泛.近年来,以微镜为核心部件的MEMS激光雷达因其体积小和功耗低等优势,有望成为更具竞争力的辅助驾驶传感器之一.然而,鉴于车载应用特殊性,MEMS微镜在温湿、电磁、振动和冲击等复杂多物理场耦合环境下的各类可靠性问题严重制约了MEMS激光雷达的工程应用.本文立足MEMS微镜可靠性研究领域,综述其在高频振动、温湿循环、电磁耦合等极端环境下的分层翘曲、结构断裂、静电吸合、短路烧毁等复杂失效形式及失效机制,总结了MEMS微镜常见动力学建模理论及控制方法,讨论并展望了MEMS激光雷达车规化面临的主要挑战和发展趋势.

    Abstract

    MEMS micromirror, a novel micro-optical-electro-mechanical system, can accomplish optical modulation at microscale and has been widely applied in the fields of photoelectric communication, medical imaging, civil projection, radar detection, etc. In recent years, MEMS LiDAR with micromirrors as core component is expected to become one of the more competitive autonomous sensors due to its advantages such as small size and low power consumption. However, given the specificity of in-vehicle applications, various reliability problems of MEMS micromirrors in complex multi-physical field coupled environments such as temperature and humidity, electromagnetic, vibration and shock have seriously restricted the engineering applications of MEMS LiDAR. Based on the reliability research of MEMS micromirrors, this paper reviews the complex failure forms and failure mechanisms such as delamination warpage, fracture, pull-in and short circuit burnout under extreme environments such as high frequency vibration, temperature & humidity cycling and electromagnetic coupling. We also summarize the common dynamics modelling theories and control methods of MEMS micromirrors and discuss the main challenges and development trends of MEMS LiDAR standardization.

  • 引言

  • MEMS(Micro-Electro-Mechanical Systems)微镜是一种典型的微光机电系统[1](Micro-Opto-Electro-Mechanical System,MOEMS),由反射镜体、扭转梁、驱动装置及支撑结构等部分组成,可实现微尺度下的扫描、探测和成像等功能[2],具有扫描频率高、质量轻、能耗低和可批量生产等特点[3-5],在光电通信[67]、医疗成像[89]、雷达探测[4]、民用投影[1011]等领域应用广泛.近年来随着自动驾驶概念的逐渐普及,MEMS微镜在车载激光雷达领域的应用也开始崭露头角,MEMS激光雷达具有体积小、功耗低、成本低[1213]的优势,有望成为更具竞争力的辅助驾驶传感器之一[14],目前已被谷歌[15]、华为[16]、沃尔沃[17]、蔚来[18]等汽车厂商纳入其研发计划,并引起了学术界的广泛关注[19-21].

  • 然而,由于车载环境的复杂性和特殊性,目前大多数可量产的MEMS激光雷达在复杂车载服役环境下的可靠性表现并不理想,使用寿命较短且常常出现精度下降甚至失效的情况,是制约其大规模商业化的主要因素.而MEMS微镜作为MEMS激光雷达的核心部件,其可靠性问题是最主要也是最复杂的制约因素:一方面,由于微镜本身结构复杂,反射镜体、扭转梁、驱动结构等不同部位的失效形式各不相同,环境因素与失效机制[2223]尚未明确,难以解析;另一方面,与其他领域MEMS微镜的使用环境不同,激光雷达的车载使用环境复杂多变,温度、湿度、振动、冲击等环境因素的耦合现象严重[2425],难以解耦.因此,现阶段MEMS微镜的可靠性问题已经成为车载MEMS激光雷达实现大规模落地应用的重要挑战之一.

  • 实际上,部分现有文献[326-28]已经对MEMS微镜的可靠性问题进行了综述,指出了DMD数字微镜(Digital Micromirror Devices,DMD)、MEMS扫描镜等MOEMS器件可能出现的具体失效形式,对MEMS微镜的可靠性研究进程起到了积极的推动作用.然而,由于使用场景的限制,目前绝大多数文献未能对多场耦合的复杂车载环境下的MEMS微镜可靠性进行综述,研究对象也多局限于某种特定类型的微镜;另一方面,综述中针对不同失效形式的特定环境诱因及其控制方法的总结也存在不同程度的缺失.

  • 为此,文章对各种类型MEMS微镜的动力学建模理论、控制方法和长期可靠性问题等方面进行了较为全面的综述,具体包括以下内容:

  • (1)对4种主流驱动方式微镜的共性失效和特殊失效的形式和机制分别进行了总结和比较.

  • (2)分析多场耦合的复杂车载环境,并整理了MEMS微镜各类失效形式的特定环境诱因.

  • (3)从传统动力学和多源数据融合的角度分别总结了MEMS微镜的建模理论和寿命预测方法.

  • (4)对于MEMS微镜可能出现的残余振动、吸合效应、光束路径畸变等异常工作状态,整理了相对应的控制方法并进行比较.

  • 综上,对复杂车载环境的解耦分析和不同极端环境下MEMS微镜共异性失效形式的整理是本篇文章的主要创新之处.通过这篇综述,我们希望可以帮助到MEMS微镜可靠性领域的研究人员,建立起高温高湿、振动冲击等多场耦合的复杂车载环境下MEMS激光雷达的长期可靠性评估方法,推动MEMS激光雷达的车规化进程.

  • 1 常见失效形式与失效机制

  • 厘清MEMS微镜在车载环境中的失效形式与失效机制是微镜可靠性优化工程的关键步骤.MEMS微镜作为激光雷达的核心工作元件,工作时通过自身的扭转振动实现对环境的周期性扫描.按照驱动方式进行分类,可以把MEMS微镜分为电磁式[193738]、静电式[13293940]、电热式[27303141]、压电式[3442-47]、混合驱动[3248]等多种类型,其典型驱动结构和优缺点列于图2和图3.

  • 图1 MEMS微镜的分类、失效形式、建模及控制方法汇总[2229-36]

  • Fig.1 Classification, failure form, modeling and control methods of MEMS micromirror[22, 29-36]

  • 图2 MEMS微镜的分类及优缺点比较

  • Fig.2 The classification and advantages/disadvantages of MEMS micromirrors

  • 图3 四种MEMS微镜的典型驱动结构及实物图[27347677].(a)静电式微镜:静电梳齿驱动结构示意(左)和SEM图(右);(b)电磁式微镜:微镜芯片结构模型图(左)、封装成品(右);(c)电热式微镜:电热致动器(上)、微镜SEM图(下);(d)压电式微镜SEM 图(左)及其致动器原理示意图(右)

  • Fig.3 Typical driving structures and SEM images of four MEMS micromirrors[27, 34, 76, 77]. (a) Electrostatic micromirror: schematic (left) and SEM image (right) of the structure of electrostatic comb; (b) Electromagnetic micromirror: a diagram of the model of electromagnetic MEMS micromirror chip (left) , packaged micromirror (right) ; (c) Electrothermal micromirror: schematic of electrothermal actuator (above) , SEM image of an electrothermal micromirror (below) ; (d) Piezoelectric micromirror: SEM image (left) , schematic of its piezoelectric actuator (left)

  • MEMS微镜的驱动方式将直接影响其使用精度和可靠性,同时也决定了其可能出现多种多样的失效形式.一方面,MEMS微镜作为一种典型MEMS器件,断裂、翘曲、蠕变等失效形式和失效机制是相通的;另一方面,因为MEMS微镜的驱动方式多种多样,使得不同种类微镜存在氧化烧毁、静电吸合、粘附短路等特殊失效形式,需要具体分析,下面针对不同失效分别进行列举.

  • 1.1 共性失效形式与失效机制

  • (1)分层翘曲

  • MEMS微镜的反射镜面可能由于热膨胀系数不对称和残余应力而发生分层翘曲现象.首先,应用于镜体表面的微加工过程产生的残余应力可能会引起镜体表面发生变形[4950],进而导致翘曲.翘曲现象分为静态翘曲和动态翘曲[51],静态翘曲由表层镀金增反膜的蠕变和残余应力共同导致;动态翘曲则会出现在微镜的高频振动过程中,镜面由于刚度不足导致自身产生弯曲形变,但该过程可逆,当镜面停止旋转后恢复平整[3].

  • 除了残余应力的作用,微镜镜面材料的热膨胀系数差异也可能会导致翘曲现象.为提高激光反射率,硅基镜面上一般会电镀一层金增反薄膜,这使反射镜整体成为一个硅-金属复合膜结构.以沉积Au为例,Au的热膨胀系数为1.4e-5/K,而单晶硅的热膨胀系数为2.6e-6/K,二者相差较大,因此在温度应力下的热应变有较大差异,长时间工作可能会造成镜面的微观翘曲现象.另一方面,硅基镜片和薄膜界面处存在的拉、压应力还可能会使器件出现分层失效[52].微观翘曲和分层失效会共同导致镜面反射率下降、微镜扫描范围减小等问题.目前,针对MEMS微镜镜面的翘曲分层现象,一般通过调整镜厚度比[37]、提高镜体刚度[53]、采用低应力残留的表面微加工工艺[54-56]等方法加以调节.

  • (2)断裂失效

  • 断裂现象是导致MEMS器件失效的重要原因之一.以MEMS微镜为例,反射镜体、微镜驱动器、封装壳体、支撑微镜的扭转梁等各个结构都可能会发生断裂,甚至造成器件的永久性失效.另一方面,断裂失效的失效原因也多种多样:交变负载、冲击应力、蠕变问题等都可能导致器件的断裂.本小节主要针对扭转支撑梁、反射镜体和致动器这三个断裂现象的高发部位进行总结.

  • ① 扭转支撑梁

  • 扭转支撑梁连接镜体与致动器,起到支撑镜体并带动镜面进行高频谐振扭转的作用[57],是MEMS微镜中最易发生断裂失效的结构之一.目前微镜的主流驱动方式有单轴和双轴驱动两种,单轴驱动的微镜只能实现轴向旋转,双轴微镜可实现快轴和慢轴两个方向上的旋转,二者驱动原理基本相同.以双轴驱动的微镜为例,快轴支撑梁一般直接与镜面相连,而慢轴支撑梁则需要连接致动器和快轴与镜面组成的整体,支撑的总重量和受到的扭转应力更大,所以更易发生断裂,其主要断裂形式有脆性断裂[58]和疲劳开裂[59]两种.其失效位置一般集中在和单晶硅基底的连接倒角处,在对其进行建模和仿真时应保证该区域受到的峰值应力小于材料的断裂极限.

  • ② 反射镜体

  • MEMS微镜的反射镜体主要功能是将激光器发射的脉冲激光按照预定角度反射出去,从而实现激光扫描功能.反射镜体由硅基镜片和表面沉积金属膜构成,且工作时一般处在高频的交变载荷下[33],镜片加工时产生的初始微裂纹可能会在长期工作过程中不断扩展并最终导致宏观断裂.另一方面,由于镜体和金属膜的热膨胀系数差异,在温度升高过程中二者的界面间会产生较大的拉压应力[52],进而导致金属薄膜的断裂现象.与此同时,高温环境下的蠕变问题[22]也是导致其断裂的重要因素.

  • ③ 微镜致动器

  • MEMS微镜致动器是驱动微镜产生周期性偏转的动力来源,工作过程中会承受高频循环负载.传统的驱动器包括静电式驱动器、电磁式驱动器、压电式驱动器和电热式驱动器,为提高微镜的环境适应性,近年来也出现了一些混合驱动方法[48].尽管驱动方式各不相同,断裂现象却是驱动器共通的重要失效形式之一,在电磁式、压电式和电热式微镜中比较常见.

  • 电磁式微镜的驱动器断裂问题主要变现为平衡框架的断裂,平衡框架是电磁式微镜实现双轴驱动的核心部件,由硅基片和金属线圈两部分组成,硅片基底上镀有多匝的环形金属导线,形成驱动线圈(图3b)[33].在微镜工作时,驱动线圈受到恒定磁场作用,并通入两种不同频率的电流产生洛伦兹力,分别用来驱动快慢轴的周期性受迫振动.在这种交变往复载荷的影响下,硅片的初始微裂纹可能会在长期工作过程中不断扩展并最终导致宏观断裂,造成线圈断路,直接造成微镜彻底失效.

  • 电热式微镜的驱动器断裂问题主要由高温下的腐蚀现象引起,因其驱动力主要来自于铝和硅两种热膨胀系数相差较大的材料,而铝金属在高温高湿下很可能发生腐蚀现象[27],这可能会促进裂纹的拓展并最终发生断裂失效.

  • 压电式微镜的驱动器断裂问题主要由压电材料的弯曲拉伸或者剪切应力集中导致,尤其是堆叠式的PZT致动器,其断裂问题更加严重.裂纹由过高电场[60]和残余应力[61]等因素导致,主要出现在致动器的内部边缘处[62]或脆性PZT层[63],并沿多个方向传播.

  • (3)蠕变现象

  • MEMS微镜镜面的镀金增反膜可能会在高温和疲劳弯曲工况下发生蠕变现象.蠕变是指固体材料在外加机械应力作用下非弹性的时间依赖性变形[22],其速率会随着温度和应力的增加而增加[64],并会导致断裂或其他缺陷[65].蠕变现象多见于低熔点金属薄膜的弯曲工况下,对于MEMS微镜而言则发生在镜片表面的镀金增反膜上,可能会引起反射镜面的永久性曲率变化,导致光学转角精度变差和扫描图像失真等问题,是一种在微镜不工作时也会存在的永久性变形.

  • 已有一些研究表明,蠕变导致的MEMS微镜静态形变现象是由于镜面本身刚度过小所造成的,镜体承受长期应力时会造成刚度的可逆和不可逆共两种退化机制[66],通常可通过增加支撑结构或支撑环等方法[6768]以提高镜体刚度.但是这种方法通常会因工艺精度问题而导致反射镜的质心和旋转轴不重合的现象,进而产生耦合振动等问题[69],相关内容将在第二章的振动可靠性中具体论述.

  • (4)封装失效

  • MEMS封装外壳可能会在服役条件下因长期热应力而发生翘曲、断裂等封装失效问题.一方面,封装的形式直接影响到器件的可靠性,使用寿命和性能.另一方面,由于MEMS结构的特殊性,封装时既要保护电路系统,同时要使传感器和执行器部件与外界充分接触,不影响系统与外界之间的光、电、磁信号传输[70].由此导致的封装成本居高不下是MEMS产品难以产业化的重要原因之一[71].

  • MEMS芯片级封装一般包括芯片粘贴、引线键合、封盖和气密焊接等关键基础工艺,其中芯片粘接工艺是芯片级封装中最主要的应力来源[72],衬底材料、粘结材料和封装基板间的热膨胀系数失配会直接造成芯片的翘曲甚至断裂,进而引起失效或引发长期的可靠性问题.目前研究主要从封装材料、封装工艺以及封装结构等方面进行优化[73].而在MEMS微镜系统中,封装材料热膨胀系数失配导致的热致应力是影响MEMS角度传感器精度的一个关键因素.钱磊等人[74]为探究封装热应力对MEMS微镜性能的影响,结合SUHIR E层合梁理论模型[75]来计算微镜封装边界处的热致应力和轴向形变,并在此基础上分析了形变对角度传感器灵敏度的影响,最后提出一种应用于MEMS微镜系统的应力隔离结构,用以降低MEMS微镜的封装热应力对角度传感器的影响.

  • 1.2 特殊失效形式与失效机制

  • (1)电磁式微镜

  • 电磁式微镜利用洛伦兹力实现驱动,一般会在镜体周围设置工作线圈并通入交流电,在恒定磁场作用下通过电磁力使镜面发生周期性扭转运动.电磁驱动方式属于非接触式的双向驱动,可以在低电压下产生较大的驱动力、位移或转角.但是也存在一些缺点,比如需要外加永磁体或提供交变电场的线圈使得体积较大,不适合对体积有严格限制的适用场景,而且产生的磁场可能会对其它电子元器件产生影响.

  • 电磁式微镜与其他类型微镜结构的不同之处在于产生交变电流的平衡线圈和产生恒定磁场的永磁体等,也决定了其特有的失效形式与失效机制,下面一一进行说明.

  • ① 线圈熔断与短路

  • 平衡框架的电镀导线在高温环境下工作可能会发生线圈氧化熔断和粘附短路现象.平衡框架硅基片上镀金属导线(图3b),工作时通入交变电流且一直处于受迫振动状态,产生的大量焦耳热会加速金属线圈氧化并使电阻异常升高.电阻一旦经氧化升阻又会产生更多热量,如此恶性循环可能导致微镜的驱动力和偏转角度下降并且功耗上升.另一方面,长时间工作在高温环境下还可能会导致金属线圈熔断,造成微镜系统的彻底失效.

  • 除了氧化导致的熔断,金属线圈的另一种失效方式是线圈之间的粘附短路问题[22].在高温高湿的微尺度环境下,回环缠绕的金属线圈之间可能会因微观力而发生粘附,从而导致短路烧毁线圈.

  • ② 永磁体退磁

  • 电磁式微镜的永磁体可能会在温湿度、振动冲击、辐射等多场耦合环境下发生退磁现象.永磁体为电磁式MEMS微镜提供恒定磁场,恒定的磁场是微镜转角准确性和长期稳定性的前提,决定了微镜的转角控制精度和功耗.环境温湿度、振动强度、化学反应、外界磁场、辐射和时间等因素都会导致永磁体退磁,具体包括可逆退磁和不可逆退磁两种情况:温度低于退磁曲线拐点时产生的退磁、低频振动产生的退磁,属于可逆退磁;温度高于退磁曲线拐点时产生的退磁[78],外磁场、化学反应和高频振动等[79]造成的永磁体退磁,属于不可逆退磁.

  • 以电磁式MEMS微镜中常用的钕铁硼永磁体为例,其居里温度低(312℃),对温度极敏感,在受热时的剩磁和内禀矫顽力下降很快,磁性温度系数很大[80],目前主要通过合金化的方式来改善热稳定性.而在车载环境中,主要考虑的环境因素为温湿度和振动导致的不可逆退磁.温度环境方面,中国境内北方地区的气候条件差,冬夏温差大,尤其是西北地区,昼夜温差极大,一天内的高低温频繁转换,极易导致永磁体的不可逆退磁;湿度环境方面,受到水汽和氧气等复杂气体的共同作用,永磁体表面发生氧化腐蚀,破坏内部磁畴结构,发生不可逆退磁,这种情况下可利用气密性良好的封装来避免湿气的影响;力学环境方面,行驶中的汽车持续性受到冲击振动载荷的作用,极其颠簸路面造成的冲击振动载荷可能会导致永磁体的不可逆退磁.

  • (2)静电式微镜

  • 静电式微镜是一种电压驱动型器件,传统静电驱动的原理是将带电导体间产生的静电吸引力作用到MEMS微镜上,在静电力矩的作用下使其进行周期性扭转运动.针对静电吸引力驱动MEMS微镜驱动转角较小、行程较短的问题,近年来也报道了一些新型的静电斥力驱动型微镜,可实现较大的扫描角度.He等人[81]报道了一种静电斥力驱动的扫描镜,该扫描镜由四个梳齿驱动器和一个圆形多晶硅镜面组成,四个梳齿驱动器可同时实现双轴向的二维扫描和活塞运动的功能,机械扫描角度为±1.5°,有效提高了微镜的行程.

  • 总的来说,静电驱动的结构相对简单,具有能效高、功耗低、响应速度快、便于大规模集成等诸多优势,是最典型也是应用最广泛的驱动方式之一[82].但是这种驱动方法所需电压较高,系统在运动过程中会出现静电吸合和电荷充放电现象,有时甚至会导致微镜的彻底失效,下面一一进行说明.

  • ① 静电力导致吸合

  • 静电驱动结构可能会因过大的电压或过大的偏转角度而导致吸合问题.静电式微镜的驱动结构有平行板和梳齿两种.平行板结构由两个相距很近的平行金属板组成,上电极可移动,下电极固定,是一种代表性的静电式微镜早期结构,具有结构简单和工艺容易实现等优点,已进行了广泛研究[83-87].梳齿结构由固定在衬底上的固定梳齿和弹性结构支撑的可动梳齿组成,这种驱动结构产生的扭矩较大,进而可以使用刚度更大的支撑梁来提高微镜的谐振频率,增加了扫描速度和带宽.

  • 不管是平行板还是梳齿,驱动结构中的定部件和动部件均紧密排布,当镜体越过某临界角度或电压超过某临界值时,可能会因极板间过大的吸引力导致贴合而无法恢复,这就是静电吸合效应(Pull-in Instability).目前认为导致吸合的吸引力主要包括静电吸引力[88]和范德华力、毛细力、卡西米尔力等微观力[8990].吸合现象作为静电式微镜的固有问题,是制约其扫描范围的重要因素[8891],可能会引起粘附和旋转角度无法控制的问题,甚至会导致微镜的彻底失效.

  • 目前静电吸引力导致的吸合问题主要通过电压控制、串联电容和改进结构等方式[92-96]进行防治.Degani等人[86]推导了电压和临界吸合角的代数关系,在此基础上进行的理论吸合角的计算值与实际值的误差在1%以内.Liu等人[95]设计了一种带有压电片的复合扭转梁来驱动微镜,当微镜转角过大时通过对压电片施加反向电压来避免微镜发生吸合现象,其中压电片起到了预测倾角和控制电压两个作用.同时分析了表面力,特别是毛细力对压电微镜系统机械稳定性的影响.

  • ② 微观力导致吸合

  • 除了静电吸引力,当微镜偏转角度过大时,范德华力、毛细力、卡西米尔力等微观作用力陡增,也可能导致吸合.针对微观作用力导致的吸合现象,可通过在表面沉积氟或碳氢化合物涂层以形成疏水层的方法来防止过大的毛细力.但由于实际使用过程中可能出现的高温环境,这类涂层的可靠性问题一直未得到解决[65].除此之外,因为微观力可以降低反射镜的临界吸合电压,其影响程度主要取决于微镜尺寸大小和弯曲/扭转刚度比[89],因此提高微镜的结构刚度[97]也可以起到一定的防吸合作用.

  • ③ 电荷充放电

  • 静电MEMS器件的充放电现象是其失效的重要原因,同时也是含介电层MEMS器件的固有问题,值得仔细研究[9899].电荷充放电现象在静电式MEMS微镜器件中可能会导致角度零偏、粘附现象、驱动电压偏移和传感器漂移[100101]等问题.对此,学术界提出了包括提高镜体刚度、改善介质层、降低驱动电压和优化驱动波形在内的多种解决方案[99102-106],均可以一定程度上避免充放电现象带来的各种问题.但是由于静电引力驱动的固有局限性,以上研究无法从根本上消除电荷充放电现象.另一方面,电热驱动和压电驱动在功耗和工艺兼容问题上都存在一定短板[102].所以,为了杜绝这类问题,近年来出现了一些对新驱动机制的研究.

  • 为了彻底解决介质充电导致的粘附问题,郭兴军等人[107]提出了一种新型的基于静电斥力的MEMS驱动机制.通过在固定极板上施加电压,驱动结构周围形成的不均匀电场会使可动极板垂直方向上受到合力,进而向上弯曲运动.利用静电斥力驱动替代传统的静电引力驱动,理论上可以消除介质中的电荷积累.但是由于方案不够成熟,仅在仿真环境下进行了测试,需要更加深入的研究.

  • (3)电热式微镜

  • 电热式微镜利用材料的热膨胀效应产生驱动力.使用时首先对热膨胀系数不对称结构进行加热循环以发生偏转,随后进入冷却循环复位微镜,如此往复实现周期性振动.电热式驱动方式能提供较大的位移和作用力,从而驱动大反射镜面的扫描镜实现大角度扫描.但是由于加热循环与冷却循环的时间限制与非对称性,并且散热功率有上限,所以实际应用时的响应速度较慢[30108].考虑到水的高比热容特性能提高微镜响应速度,近年来一些工作于其他介质的电热微镜也得到了研究[41].

  • 由于电热式微镜的独特驱动方式,其失效问题受温度影响严重,故高温环境下的失效是电热式微镜的主要失效方式.主要包括发生在电热双晶片驱动器氧化失效、热致动器熔断、蠕变和腐蚀等现象,可能会导致微镜初始位置的零偏和扫描范围降低甚至彻底失效等问题[2731].

  • ① 氧化和腐蚀

  • 电热双晶片致动器可能会在高温高湿环境下发生氧化和腐蚀.电热式微镜的驱动结构一般由热膨胀系数相差较大的两种材料组成,目前大多数使用硅和铝的组合.铝表面在高温高湿环境下易发生氧化生锈,严重时会导致双晶片产生绝缘层,进而导致微镜的彻底失效[28].另一方面,高温和水汽影响下腐蚀产生的微裂纹也可能会进一步拓展,最终造成驱动器的宏观断裂.

  • ② 低熔点金属蠕变

  • 电热式微镜的转角范围与两种材料的热膨胀系数差呈正相关关系,而Al和SiO2的热膨胀系数相差达23.2×10-6/K,是电热双晶片的常用材料.但由于Al金属的熔点较低,不仅会产生蠕变,限制微镜正常工作的温度范围,进而导致微镜转角精度下降等问题.目前学界正在寻找Al的高熔点替代金属,金属钨的热膨胀系数也较大,与SiO2的热膨胀系数差异和Al相当[109],并且熔点更高,所以目前认为使用SiO2和W的组合更有优势[77].

  • ③ 熔断和烧毁(Burnout)

  • 电热式微镜可能会在过高电流等电载荷作用下发生烧毁.Wang等人[31]对一种电热双晶片驱动MEMS微镜的可靠性问题进行了实验,当微镜工作电流大于许用值时,连接镜体与基板的细钨丝会产生氧化和熔断现象.因为致动器和基板之间的狭窄连接处温度最高,所以最先被烧毁,并将其归因为电迁移现象[110].Pal等人[27]总结了电热式微镜的常见失效因素,包括高电压和高温等.微镜在过高电压下工作易产生电阻漂移,电阻的变化可能导致电流过高进而发生熔断.在高温条件下则会加剧熔断现象的产生.他们认为,嵌入式加热器中局部焊点的存在是设备故障的根本原因,因此可以通过提高热致动器宽度、沉积额外金属层等方法进行预防.

  • (4)压电式微镜

  • 压电式微镜基于压电逆效应进行驱动,工作时在压电驱动器上加载一定的电压,压电材料会在特定方向上发生变形,从而带动MEMS反射镜体产生周期性扭转振动.压电驱动式微镜具有结构简单、响应速度快、小型化的优势.但是受到材料本身的限制,MEMS工艺和压电陶瓷工艺不兼容,压电薄膜的制备过程十分困难.

  • 压电驱动器通常在交变电场、温湿度场、应力场等多场耦合的环境下工作[111],其性能和寿命对操作环境和外部机械和电气负载很敏感[45].由此引起的压电材料疲劳、压电致动器的性能退化和断裂等[44112113]问题是压电微镜不同于其他类型微镜的主要失效原因.

  • 图4 MEMS微镜的失效形式汇总[27313355118].(a)电热式微镜的热致动器烧毁现象;(b)MEMS静电式微镜阵列在正常工作状态(左上)和40V电压下吸合现象(右上)的表面光学轮廓测量、 MEMS微镜受静电放电应力后的典型故障场景(下);(c)一种电磁式MEMS微镜芯片的支撑梁断裂现象;(d)MEMS微镜表面翘曲的AFM图像(上)、表面粗糙度分析(下)

  • Fig.4 Summary of failure forms of MEMS micromirrors[27, 31, 33, 55, 118] (a) Burning out of embedded heater in electrothermal micromirror; (b) Surface optical profile measurement of MEMS electrostatic micromirror array in normal working condition (upper left) and pull-in instability at 40V (upper right) , typical failure scenarios after electrostatic discharge stress (ESD) stress in micromirrors (below) ; (c) Fracture of support beam of an electromagnetic MEMS micromirror chip; (d) AFM image of surface warping of MEMS micromirror (above) , roughness analysis (below)

  • ① 压电疲劳

  • 压电致动器在微镜的工作过程中会承受高频交变载荷,长时间使用可能会降低致动器的性能并导致疲劳失效[44].主要表现为材料极化强度、矫顽场强及压电系数等电学参数的变化[114],这也是影响压电式微镜性能的重要因素之一.Thongrueng等人[44]研究了温度、湿度和负载对多层压电陶瓷致动器的寿命影响机制,发现寿命的对数与电场的对数呈线性关系,并且振动问题是引起压电致动器疲劳退化的主要原因.变形镜(DM)是对光波波面相位进行校正的一种波前校正器,可视为压电式微镜的阵列.罗帅等人[115]以变形镜为研究对象,基于影响函数分析了压电陶瓷驱动器的疲劳特性对其校正能力的影响,研究表明,压电陶瓷驱动器的疲劳会导致变形镜校正能力下降.

  • ② 致动器形变

  • 压电式微镜一般工作在强电场环境中,压电材料的逆压电效应会使压电驱动器承受额外的拉伸应力或剪切应力,导致其发生弯曲变形现象,是致动器性能退化甚至断裂现象的主要原因之一.Gao等[116]研制了一款基于d15模式的多层圆柱压电剪切驱动器,测试所得最大剪切驱动力为22N.冉兵等人[117]研究了堆叠式压电陶瓷驱动器动态弯曲拉伸和剪切应力的产生机理和分布情况,分析了堆叠式压电陶瓷驱动器在压电快速倾斜镜(PFSM)系统中的动态应力和横向振动变形,并对其结构和工作参数进行了优化设计,对降低堆叠式PZT驱动器应力集中现象、提高压电致动器可靠性有借鉴意义.

  • 表1 MEMS微镜的共性失效形式及影响因素

  • Table1 General failure types and influencing factors of MEMS micromirrors

  • 表2 不同类型微镜的特有失效形式及影响因素

  • Table2 The unique failure forms and influencing factors of different types of micromirrors

  • 2 复杂车载环境下微镜可靠性研究

  • 车载环境是一个耦合了振动、冲击、磁场和温湿度的复杂整体[3119124].在这样一个多场耦合的环境中,MEMS微镜很可能面临脆性断裂、分层失效、疲劳失效和粘附失效等多种失效形式,导致镜面反射率降低、转角漂移以及无法驱动等问题,大大影响MEMS微镜运行的长期可靠性.对此,本章将车载环境解耦为振动环境、冲击环境和温湿度环境,并对各个环境下MEMS微镜特定的失效形式、失效机制和现有的预防措施分别进行分析.

  • 2.1 振动可靠性

  • 在正常的车载环境下,振动现象的发生无可避免.正常驾驶时汽车的振动加速度一般在1g~4g之间,而在一些极其颠簸的道路上振动加速度可达7g左右.所以,对振动环境下MEMS微镜的可靠性评估是非常必要的.然而,由于目前行业内缺少专门针对车载激光雷达的振动可靠性评估标准,所以只能将目光转向其他车载零件的测试标准上.目前较为适用的测试标准有LV124、AEC-Q100、MIL-STD-883、JESD22-B103B等,不同测试标准的测试场景也有较大出入.由于标准未能统一,不同标准的正弦振动载荷范围在20g~70g之间,具体使用时应根据被测设备的共振频率进行选择[125].

  • Fang等人[120]将电磁式微镜的封装外壳、磁体、铁芯和AlN陶瓷片视为一个整体,此时MEMS微镜的可靠性可以用微镜芯片的可靠性代替.在此基础上根据JESD22-B103B测试标准,使用扫频激励对微镜的振动可靠性进行测试.实验结果表明:微镜在33g左右的振动水平下产生断裂失效,且裂纹位于慢轴根部.Hua等人[126]建立了外部振动下电磁MEMS微镜的动态模型,同时考虑了振动和扭转的耦合现象,实验证明了模型的准确性.

  • 除了外部环境的振动影响,MEMS微镜自身也会因各种额外加固结构而造成反射镜的质心和旋转轴不重合的问题,进而产生耦合振动现象[69].Yoo等人[119]针对这种耦合振动进行了建模和实验评估(图5d),提出一种基于能量的振动分析方法来解释振动耦合的机理,使用相位锁定环(PLL)以降低振动对转动精度的影响.实验表明:对于y轴上的2g单频振动,PLL可以将微镜振幅和频率的误差从1.64%、0.26%降至0.91%、0.15%.

  • 2.2 冲击可靠性

  • 车载环境的冲击水平从几个重力加速度到数百个重力加速度不等,冲击力幅跨度大且变化不规律,在某些极其颠簸的路面行驶时产生的碰撞加速度可达300g[127128],是引起微镜系统失效的重要原因之一.在如此高的冲击载荷作用下,MEMS微镜的主要失效形式为粘附失效和脆性断裂.与振动测试相同,目前行业内也缺少专门针对微镜的冲击可靠性评估标准,故以AEC-Q100标准为例,要求车载集成电路设备需要在xyz三个方向上承受5次峰值加速度为1500g,脉宽为0.5ms的半正弦冲击测试.这和JESD22-B104C中的条件B要求一致.

  • 测试器件的极限抗冲击性能并厘清设备的失效方式和运行精度如何受冲击影响是冲击测试的主要目的.Grahmann等人[125]根据LV124和MIL-STD-883E标准测试了一个准静态微镜,在2500g的冲击下没有发现故障.Fang等人[33]研究了电磁MEMS微镜在z轴方向的冲击破坏可靠性.在图6b所示的跌落试验中,z向的冲击加速度范围为100g~800g,微镜在冲击水平约700g时出现断裂(图5a).同时建立了冲击破坏可靠性的动力学模型,采用有限元分析法对冲击载荷下的应力分布进行研究,找到了裂缝所在的最大应力位置.

  • 图5 MEMS微镜在外部振动冲击等环境下的响应测试分析[33119122].(a)冲击加速度容限预测的数值结果:不同挠度梁的固定端应力(左)、不同冲击程度下慢轴的峰值应力(右);(b)持续冲击脉冲时间对微镜的影响:加速度幅值为500g时的动力响应时间序列(左)、动力响应与持续时间的关系(右);(c)20%,50%,80% RH下的等效粘附能:20°C(上)、 60°C、(中)和90°C(下);(d)开环微镜系统在振动载荷下的瞬态响应、幅度变化的包络线和频率变化情况:频率1.0327kHz,幅值2g,y方向的振动(左)、频率2.0331kHz,幅值2g,z方向的振动(右)

  • Fig.5 Response analysis of MEMS micromirror in external vibration, shock and etc[33, 119, 122]. (a) The numerical results of predictions of shock acceleration tolerance: stress at the fixed ends of the beam with different deflections (left) , peak stress of the slow axis with different shock levels (right) ; (b) The results of the influence of duration of shock pulses: the time series of the dynamic response under the acceleration amplitude of 500g (left) , relationship between dynamic response and the dimensionless duration (right) ; (c) Stiction equivalent energy operation at 20%, 50%, 80% RH: for 20°C (above) , 60°C (middle) and 90°C (below) ; (d) Transient response of scanning trajectory, envelope for amplitude changes and frequency changes of the open loop mirror system: 2 g y vibration witha frequency of 1.0327kHz (left) , 2 g z vibration with a frequency of 2.0331kHz (right)

  • 图6 复杂车载环境下的MEMS微镜可靠性研究[2233119120129131139](a)MEMS微镜的液体封装以提高抗冲击性能;(b)电磁MEMS微镜的冲击可靠性实验:微镜芯片网格划分(左)、气动冲击试验设备(中)、固定在吊板上的测试样品(右);(c)一种抗冲击的压电式微镜结构设计;(d)电磁式微镜在加速度为500g冲击下的慢轴应力分布;(e)用于振动测试的谐振式MEMS微镜(左)、质心与旋转轴不匹配引起振动的耦合力矩模型(右);(f)硅基悬臂梁在冲击作用下的脆性断裂现象

  • Fig.6 Reliability research of MEMS micromirror in complex automobile environment[22, 33, 119, 120, 129, 131, 139]. (a) The liquid package of MEMS micromirror to improved impact resistance; (b) Impact reliability test of electromagnetic MEMS micromirror: the mesh of MEMS mirror chip model (left) , the pneumatic shock test equipment (middle) and test sample fixed on the drop table (right) ; (c) Impact-resistant piezoelectric micromirror structure design; (d) Stress distribution of slow axis in electromagnetic micromirror with an acceleration level of 500g impact; (e) ResonantMEMS micromirror for vibration test (left) , vibration coupling torque model (right) ; (f) Mechanical fracture of a silicon cantilever under impact

  • 除了冲击测试,学界也对提高MEMS微镜器件的抗冲击性能做了充分研究.降低MEMS结构受到的峰值应力是提高抗冲击性能的关键技术,目前的主要措施包括液体封装、优化尺寸、改良基底材料、加装止动限位结构等.Milanovic等人[129]针对静电式MEMS微镜驱动力小、抗冲击能力差等问题,将微镜完全浸入到液体介质(低粘度的烷烃和硅油)中,增加了微镜的旋转扭矩和扫描范围,极大地提高了抗冲击性能(图6a).而优化尺寸是为了提高微镜的固有频率,较高的固有频率意味着具有更大的刚度和更小的变形量,因此在连接倒角处的峰值应力也会相应地减小[130],进而起到提高抗冲击性能的作用.Boni等人[131]设计并制造了一种以压电陶瓷作为驱动器的准静态微镜,该微镜具有良好的性能,反射镜面尺寸为4×3mm2,反射微镜面与锚点之间通过一根扭转弹簧连接在一起(图6c),可以有效提高在面外方向的抗冲击能力.Ou等人[68]设计了一种电磁驱动的二维铁基MEMS金属玻璃(Metallic Glass,MG)微镜,增加驱动力的同时提高了抗冲击强度.

  • 2.3 温湿度可靠性

  • 汽车在不同地域和气候环境下其相关性能会发生变化[132].与此同时,中国的地理位置因跨纬度较广,距海远近差距较大,加之地势高低不同,地形类型及山脉走向多样,形成了多种多样的地域和气候特点.夏季的两广地区气温可达40℃,此时的车厢温度可达85℃,而引擎舱中温度将达到125℃.在冬季,东三省地区温度可到-20℃,在电池和传动系统中温度最低可达-60℃[133].不仅如此,即使是在同一时刻和同一地点,汽车内不同区域的温湿度差异也是极大的[134].所以温湿度可靠性也是微镜可靠性研究的重要内容,本小节针对MEMS微镜温湿度可靠性的研究分为高温、高低温循环和高温高湿三种情况.

  • (1)高温环境

  • 高温环境会导致MEMS器件发生较大的热变形.如果器件中各个结构的热膨胀系数相差很大,引起的形变不一致,很可能会导致相邻结构发生接触,进而导致器件的粘附失效.如果两种热膨胀系数相差极大的材料作为一个整体出现(例如微反射镜镜面的硅-金属复合膜结构),则会产生界面拉压应力,甚至导致金反光膜出现裂纹、脱落等情况[52].另一方面,高温环境还会导致MEMS中的微梁或金属薄膜结构发生蠕变失效[64].

  • (2)高低温循环

  • 高低温循环代表着内部结构的频繁膨胀和收缩,尤其是对于尺寸小、内部结构紧凑的MEMS器件来说,层间界面处会反复产生时变的拉压应力可能会导致相邻结构的接触磨损[23].与此同时,高低温循环还会导致裂纹萌生,中途往往伴随结构分层[52].当温度循环应力反复作用在界面时,因疲劳而产生的裂纹会沿着界面进行疲劳裂纹扩展,最终导致界面分层甚至断裂.除此之外,材料内部原本就存在的本征缺陷也会得到加速放大.

  • (3)高温高湿环境

  • 除了断裂和蠕变,高温高湿环境还会引起毛细黏性力的高度积聚,进而使MEMS器件发生粘附失效[122135].温度、湿度越高,发生粘附失效的可能性越大.Sivakumar等人[122]进行了MEMS微反射镜在高温高湿环境下的可靠性研究.他们设计了微镜系统的加速老化程序以更快诱发微反射镜的失效,并通过计算表面粘附能的大小来实时反应装置的工作情况(图5c).实验结果表明:在90°C,80% RH的条件下,大约80%的微镜在4.4×109次循环(10小时)内失效;而在60℃,20% RH的条件下,微镜的粘滞率最低,在2.26×1012次循环(1500小时)之后的失效率小于2%.

  • 目前MEMS器件中常用的减少粘附效应的方法主要有:使用微机械结构支撑、改进释放方法[136]、微粒子沉积[137]、密封封装减少水汽侵入等.与此同时,Groot等人[138]的研究表明,通过改变MEMS器件的结构刚度、形貌特征和表面化学特性,也可以降低粘附效应的影响.

  • 3 MEMS微镜动力学建模理论

  • 建立适当的动力学模型对于MEMS微镜研究具有重要意义.一方面,微镜的结构动力学性能决定了激光雷达的扫描频率、视场范围以及工作方式,基于此构建的动力学模型可以描述微镜的模态信息、运动时域响应和幅频特性等特性,从而优化微镜结构参数和驱动方式,获取较高的响应速度和系统稳定性;另一方面,MEMS微镜在振动、冲击等极端环境下的可靠性理论研究,也常使用动力学分析和建模的手段进行.

  • 3.1 整体等效动力学模型

  • 由于MEMS微镜本身结构较复杂,现有的动力学分析手段绝大多都采用等效模型的方法(图1).针对扭转运动的微镜,一般将其等效为单自由度[33140141]或多自由度[42142]的弹簧阻尼系统进行求解.针对含有活塞行程的微镜,此时可以将其等效为一个质量在中心的双端固支梁系统[142143].下面对这几种等效动力学模型分别进行介绍.

  • (1)单轴驱动的1D MEMS微镜

  • 对于单轴转动的MEMS微镜,因为仅包含一个自由度的运动,所以一般将其等效为单自由度的弹簧阻尼系统(图6a).系统动力学方程如下:

  • Jθ¨+bθ˙+kθ=M
    (1)
  • 式中:θ为微镜的扭转角度;Jb k分别表示微镜的转动惯量、阻尼系数和刚度系数;M表示微镜的驱动力矩,对于电磁式微镜为电磁力矩[140],对于静电式微镜则为静电力矩[141].

  • 待确定动力学方程的各个参数后,通过求解式(1)就可以确定微镜工作的谐振频率和转角范围.对于驱动力矩,不同文献的求解方法有所差异,具体包括实验仿真和理论计算两种方式.其中电磁驱动力矩TNET和静电驱动力矩TC可以表示为[144-146]

  • TNET(θ)=VMHcos(θ)TC=12U2Cθ=12εrε0dU2Sθ
    (2)
  • 式中:VMH分别表示永磁体材料的体积、饱和磁化强度和磁场强度;d表示静电梳齿微镜中固定梳齿与可动梳齿间距;S为两梳齿间重叠面积;C为梳齿间电容;U为施加的驱动电压;εrε0分别为相对介电常数与真空介电常数.

  • 除此之外,还有一些研究将驱动力矩视为随时间变化的连续函数[141]M=Asinωdt,以获得转角θ在某时间段内的连续变化情况.结果如下:

  • θ(t)=θmaxsinωdt+φ
    (3)
  • 式中θmaxωdφ分别表示微镜的最大转角、驱动角频率和激励幅值.最大转角可由下式表示:

  • θmax=A/k-Iωd22+b2ωd2
    (4)
  • 从式(4)可以看出,最大转角随静电力矩和激励幅值的增大而增大,随着阻尼的增大而减小.

  • (2)多轴驱动的2D/3D MEMS微镜

  • 多轴驱动MEMS微镜的驱动更加灵活,可达到的偏角范围也更大,但随之而来的也有动力学建模困难等问题.目前的一般建模方法是将其等效为多自由度的串/并联弹簧阻尼系统,随后进行求解.

  • Ye等人[42]设计了一种三自由度的压电式微镜,采用杠杆结构解决了压电陶瓷片位移小的问题,并将微镜等效为一个三自由度的弹簧阻尼系统(图6a).Peng等人[142]通过拉格朗日能量法建立了微镜的动力学模型,并基于此研究了一种双轴电磁微镜的动力学响应问题,动力学方程如下:

  • ddtTθ˙1y-Tθ1y+Uθ1y=0ddtTθ˙2y-Tθ2y+Uθ2y=M2 (t)

  • ddtTθ˙2x-Tθ2x+Uθ2x=M1(t)
    (5)
  • 式中:TU分别表示系统的动能和势能;θ表示转动角度,下标1代表快轴,2代表慢轴,下标xy表示旋转的中心轴;M1t),M2t)表示外加的电磁驱动力矩.

  • 根据式(5)和系统能量的计算公式,可得如式(6)的MEMS微镜三自由度微分动力学方程组:

  • J1y J2y J1x+J2xθ¨1yθ¨2yθ¨2x+C1y C2y C2xθ˙1yθ˙2yθ˙2x+K1y-K1yK1yK1y+K2yK2xθ1yθ2yθ2x=0M2(t)M1(t)
    (6)
  • 图7 MEMS微镜的动力学建模和数据融合寿命预测方法[333442139146160](a)MEMS微镜单自由度(左)和多自由度(右)的等效SDOF系统;(b)外部振动下微镜活塞模态的等效固支梁模型;(c)双端固支梁的弯曲变形(左)及其受力简化图(右);(d)MEMS 微镜中多折梁的应用(上):直扭转梁(中左)和S型扭转梁(中右)和刚度测试实验方法(下);(e)MEMS器件的可靠性函数:不同尺寸微梁结构的可靠度随冲击加速度的变化曲线(左)、器件可靠度随冲击加速度变化的对比曲线(中)、某压电式MEMS微镜的可靠性随使用周期的衰减曲线(右);(f)设备健康管理和剩余寿命预测步骤

  • Fig.7 Dynamic modeling and data fusion life prediction methods of MEMS micromirror[33, 34, 42, 139, 146, 160]. (a) Equivalent SDOF systems with single degrees of freedom (left) and multiple degrees of freedom (right) of MEMS micromirror; (b) Equivalent solid support beam model of piston mode under external vibration; (c) Simplified diagram of bending deformation (left) and force of doubly clamped cantilever (right) ; (d) Application of folding beams in MEMS micromirrors (above) : straight torsion beams (center left) , S-shaped torsion beams (center right) , and stiffness test experimental (below) ; (e) The reliability function of MEMS: reliability against shock loads for different-size microbeams (left) , compared curves of the reliability under shock loads (middle) , reliability of a piezoelectric MEMS micromirror decays with the service cycles (right) ; (f) Prognostics of remaining useful life and health management.

  • (3)具有活塞运动的MEMS微镜

  • 微镜系统在谐振频率下正常工作,部分微镜在二阶共振频率下可能表现为活塞振动模态(图7b).这是一种极其危险的模态,可能会由某些外部振动诱发[33].所以针对具有活塞行程微镜的动力学建模也是必要的,但是目前针对此类的研究主要集中在仿真上,少数的动力学建模方法是把微镜等效为一个质量在中心的双端固支梁系统[143].如图7b所示,将慢轴支撑梁等效为弯曲截面系数很大的双端固支梁,其中质量m是平衡框架、快轴支撑梁和反射镜的质量总和,以此可确定引起活塞运动的振动频率和微镜的上下行程总和,从而进行包括慢轴应力评估在内的各种可靠性研究工作.

  • Fang等人[120]利用了活塞运动的对称性,仅考虑左半部分的固支梁系统(图7b),大大降低了计算量.同时将Galerkin-Lagrange与能量法相结合,推导出了微镜的非线性时间运动方程.

  • (4)其他求解微镜转角范围的方法

  • 除了常规的建立动力学方程并求解转角的方法,目前还有一些经验性的直接计算方法.这种方法虽然精度较差,但胜在计算简单,适用于某些精度要求较低的场景.另一方面,对于依靠材料自身膨胀进行驱动的电热式微镜来说,建立动力学方程是不必要的,所以本小节将针对这些方法进行总结.

  • ① 电热式微镜

  • 电热式微镜主要由热膨胀系数差异较大的材料组成的双晶片进行驱动.双晶片驱动器尖端的转角和位移决定了微镜的转角范围Δθ和位移d,具体取决于温升幅度ΔT和热敏材料的膨胀系数[147].一般的表达式如下[148]

  • Δθ=θ0+βblta+tbαa-αbΔT
    (7)
  • d=ρ0[1-cos(Δθ)]=ρ01-coslbρ0
    (8)
  • 式中:αaαbtatb分别代表两种材料的热膨胀系数和厚度;βbl为电热双晶片的曲率和长度;θ0表示微镜的初始倾角.

  • ② 静电式微镜

  • 针对静电梳齿驱动微镜,杜林云等人[146]建立了可动梳齿与固定梳齿间的电势能U、静电力矩TC、转角θ与电压之间的关系,具体见式(2)、式(9)和式(10).据此可知输入电压与扭转角度之间呈二次方关系,并且可以通过减小可动梳齿与固定梳齿之间的间距d来增大偏转角,并基于此进行了优化设计.

  • U=-12CV2=-12εrε0SV2d
    (9)
  • θ=2nεrε02KdV2Sθ
    (10)
  • 式中:d为固定梳齿与可动梳齿间距;S为两梳齿间重叠面积;C为梳齿间电容;V为施加的驱动电压;εrε0分别为相对介电常数与真空介电常数;K表示扭转梁的扭转刚度系数;n为梳齿数量.

  • Hah等人[76]通过等效电容的方法计算了静电式垂直梳齿微镜的转角情况,建模时将两两相邻的梳齿等效为单位电容Cunit,总电容Ct表示为:

  • Ct(θ)=2NfLover Cunit [h(y,θ)]dy
    (11)
  • h(y,θ)=H0-yθ
    (12)
  • 式中:Nf表示微镜的梳齿数量;hyθ)表示关于y和的镜高函数;H0表示初始镜高;y表示微镜转轴和单位梳齿间的距离;Lover表示重叠的梳齿长度;通过式(12)可以求得微镜的转角范围.

  • ③ 电磁式微镜

  • 对于电磁式微镜来说,转角范围θ一般由电磁力矩决定,其简单表达式如下[145]

  • θ=TNET/Kθ
    (13)
  • 式中:TNET为电磁驱动力矩,可由式(2)确定;Kθ表示微镜扭转梁的弯曲刚度.

  • 3.2 系统力学参数辨识

  • 除了上一小节提到的驱动力矩以外,在确定了形如式(1)、式(6)的动力学方程后,微镜系统的转动惯量、阻尼和刚度等参数均需要进行仿真实验或计算获得.本小节总结了用于获得MEMS微镜系统各类力学参数的仿真实验或计算方法.

  • (1)阻尼参数

  • 对系统阻尼特性的评估是机械产品设计过程中重要的一环.而对于微系统而言,阻尼的影响更大,以气体阻尼为代表的表面效应将对微镜的动态性能起决定性的影响作用.准确分析MEMS微镜器件的气体阻尼特性是微镜系统动态特性分析、建模与控制的重要基础[149].

  • MEMS器件中的阻尼可以分为滑膜阻尼和压膜阻尼,两种阻尼的产生条件和计算方法各不相同.Hosaka等人总结了几种阻尼力的数值计算模型[150],其中包括自由空间空气流动力引起的阻尼、压膜效应引起的阻尼、内部摩擦引起的阻尼和支撑损耗引起的阻尼等,为后续研究提供了基础思路.

  • 非线性雷诺方程是空气阻尼分析领域的基础方法[151].基于这种方法,Hao等人[152]提出了一种计算二维倾斜微镜空气阻尼效应的解析模型.该模型以大气压强作为系统的边界条件,利用微反射镜的格林函数计算得到解析解,揭示了微镜的不同结构参数对空气阻尼效果的影响.分析结果表明,阻尼与镜长和镜宽的四次方成正比,同时会随镜体占封装空间的比例增大而急剧增大.

  • 阻尼大小会影响质量因数,进而影响整个微镜系统的能耗.Tang等人[153]采用对MEMS反射镜的热弹性阻尼进行了仿真分析,同时设计四种不同几何形状的MEMS反射镜模型,并比较了各个模型有热弹性阻尼与无热弹性阻尼时的特征频率,最后讨论了各种几何参数对质量因子的影响.

  • 相比传统的力学计算获得阻尼系数,仿真途径则更加简单快捷.乔大勇等人[141]使用CoventorWare对静电式微镜中的梳齿滑膜阻尼进行了仿真,得到微扫描镜转至θi时的瞬时阻尼系数Di并对n个时间点的瞬时阻尼进行数值积分后除以总时间,得到梳齿电极的平均阻尼系数如下:

  • Da=2fi=1n Di-1+Diti-ti-1
    (14)
  • (2)结构参数

  • 形状规则的直梁在微镜中并不多见,多数微镜的快慢轴会通过更改支撑梁的形状以起到降低扭转刚度、提高灵敏度的作用[139],如S型、Z型的多折梁(图7d).除此之外,还有电热式微镜中由两种材料叠加构成的双晶梁.如何得到它们的刚度、惯量等结构参数,是进行微镜动力学分析的重点.

  • 微镜系统的结构参数主要有转动惯量、弯曲刚度和扭转刚度三种.其中转动惯量的等效求解较为简单,一般将镜面和平衡框架等效为圆形或矩形薄板[139],再运用薄板正交轴定理,即可计算其绕快轴或慢轴旋转的转动惯量.Urey等人[154]对处于不同振动模式的双轴微镜进行研究,并给出了各个模态下的谐振频率计算公式、不同形状镜面的质量Mm和绕不同轴转动的惯性矩Jm的计算方法(表3),其中DLmtm分别表示转动微镜的长度、宽度和厚度;ρ表示微镜材料的密度大小.

  • 表3 不同形状镜面的质量和惯性矩计算方法

  • Table3 Mass and mass moment of inertia for different mirror shapes

  • 相比转动惯量,弯曲和扭转刚度的求解则较为复杂,一般会使用仿真实验的方法.例如在计算双折叠梁的弯曲(扭转)耦合刚度系数时,可将一段固定,另一末端施加恒力p,并将整个双折叠梁分解为多个直梁.利用梁的叠加定理计算出末端的总位移,则双折叠梁的弯曲扭转耦合刚度系数k就可由下式得出:

  • k=p/δz
    (15)
  • 式中:δz表示折叠梁在所求方向的总变形量.

  • 一般来说,双折叠梁分为S型折叠梁和直折叠梁两种.杜林云等人[146]对现有的直扭转梁进行了改进,并用仿真软件对改进后的扭转梁进行仿真分析,在敏感轴方向对两种扭转梁分别施加不同的载荷,观察二者位移的大小.结果发现S型扭转梁的扭转刚度远小于直扭转梁,在偏转相同的角度时,S型扭转梁所需要的驱动电压更低.

  • 此外,对于电热式微镜中由热膨胀系数差异较大的两种材料组成的双晶片,其等效刚度k可由3EI/l3表示,其中:

  • EI=wtb3taEbEa12taEa+tbEbK1K1=4+6tatb+4tatb2+EaEbtatb3+EbEatbta
    (16)
  • 式中:E表示材料的杨氏模量,其余符号的含义可见式(7)、式(8).

  • 4 MEMS微镜数据融合建模理论

  • 确定性是传统动力学建模方法的重要特征之一.在一个成熟的动力学模型中,各个结构的各种参数在任何时刻都是有解并且可求的,这使其成为了单一结构分析领域(如微梁的振动冲击可靠性)的主要研究方法[155-158].然而,在实际的应用场景下,一个完备MEMS产品(如MEMS微镜和MEMS加速度计)的失效机理和失效分析极其复杂,尚不能通过失效物理分析的手段建立其失效模型[159].另一方面,由于目前加工工艺的不稳定性,每个器件个体的材料特性和几何参数都有很强的随机性[160161].此时普通的力学建模方法就显得捉襟见肘,有时会出现难以求解的情况.

  • 在这种情况下,基于数据融合的寿命预测理论应运而生,这种建模理论基于MEMS设备运行的历史数据,通过建立寿命模型或概率统计模型等数学方法,最终拟合出设备待求参数的表达式.这种分析方法多针对于系统的某一确定参数,如剩余寿命和可靠度等.虽然无法像传统的力学分析一样得到系统的多种参数,但可以借助当前计算机的强大算力,较为快速地拟合出MEMS设备的剩余寿曲线[162].同时,随着设备运行的历史数据越来越多,该模型会越来越精确.

  • 目前该领域的研究已持续多年,也出现了一系列如加速寿命模型、概率统计模型等多种MEMS设备的寿命预测方法.遗憾的是,目前能将这种方法应用到MEMS微镜上的研究少之又少,除了针对该领域的研究起步时间较晚之外,车载环境的复杂性也是重要原因.所以本章将简要介绍加速寿命模型和数据驱动概率统计两种用于寿命预测的建模方法并进行比较.

  • 4.1 加速寿命模型

  • 建立加速寿命预测模型是MEMS可靠性领域出现较早、应用较广泛的一种研究方法.建立加速寿命预测模型的前提是进行加速寿命试验,而加速寿命试验是加速可靠性试验的一种,是指利用与物理失效规律相关的统计模型对在超出正常应力水平(如高温、高湿、温度循环和电压等)的加速环境下获得的可靠性信息进行转换,得到产品在额定应力水平下可靠性特征可复现的数值估计的一种试验方法[163].以应用于高温环境下的Arrhenius加速寿命模型[164]为例,该模型是使用温度应力试验时最典型、应用最广的加速模型,其一般形式如下:

  • Mt=A0e-ΔEkT
    (17)
  • 式中:M为产品某特征值的退化量;t为反应时间;M/t表示在温度T下的退化速率;A0为某一非负常数;ΔE为失效机理激活能,以eV为单位,同一类产品的同一种失效模式的ΔE为常数;玻尔兹曼常数k=8.618×10-5eV/K.

  • 基于Arrhenius模型,Nakamura等人[112]针对压电致动器建立了一种考虑驱动电压和温度的寿命预测方法,将压电致动器能达到的最大位移作为寿命的表征参数,在经过大量疲劳试验并进行拟合后总结出的寿命表达式如下:

  • Ln(L)=B+C×Ln(E)+Q/(k×T)Λ
    (18)
  • 式中:E表示驱动电压(V);Q表示活化能(J);k表示波兹曼常数;T表示开尔文温度;BC也是常数,其中QBC都是通过疲劳试验确定的.该研究对于应用压电致动器MEMS微镜的寿命预测和可靠性分析具有一定的指导意义.

  • 除了Arrhenius模型以外,还有很多应用于温湿度复合条件下的加速寿命模型,如Coffin-Manson[165166]模型、Hallberg-Peck[167168]模型等.

  • 总的来说,此类数值方法的应用门槛较低,计算也较为简单.但是前期需要大量的试验基础,并且多数模型仅能针对单一物理场,目前少见能够综合多种物理场(温湿电磁)的加速寿命模型.

  • 4.2 数据驱动的概率统计法

  • 鉴于MEMS设备的失效机理复杂,尚不能通过传统的物理力学分析的手段建立其退化失效模型.与此同时,由于MEMS器件的力学性能特别是强度特性在微尺度下表现出很大的不确定性[160],这种情况下就可以考虑采用退化参数数据拟合的手段建立产品的退化失效模型[169].目前在MEMS寿命预测领域,常用的概率分布模型有Weibull分布[160]、逆Guassian分布[159]和Gamma分布等.预测过程包括确定性能检测数据、模型选择、性能退化建模、参数估计和可靠性计算等步骤[170],采用的性能检测数据有一元数据和多元融合数据两种.

  • ① 一元性能检测数据驱动

  • 一元数据驱动表示仅使用一种参数作为该产品的寿命表征参数,如MEMS加速度计的零位电压[170]、压电执行器的最大电负荷[45]等.

  • He等人[45]将概率统计方法引入到压电微执行器的可靠性评估领域.压电式微执行器是许多机电设备的重要组成部分,其在运行过程中会承受高频率的循环负载,长期使用会降低性能,甚至导致疲劳失效等问题[44].他们提出了电负荷-干扰的一维模型来评估压电微执行器的可靠性,如下:

  • R=P(E>e)=eminemax ω(e)eEmax g(E/N)dEde
    (19)
  • 式中:R为系统可靠性表征函数;ωe)表示电负荷的概率密度函数;gE/N)表示在确定的寿命N前提下,系统所能承受的最大电负荷E的概率密度函数;emaxeminEmax分别表示电负荷的最大值和最小值、系统能承受的最大电负荷.

  • Liu等人[34]基于上述模型,对一种由双S型微执行器驱动的压电微镜的可靠性进行了评估.结果显示,25℃条件下,当循环次数在1010次以内时,微镜的故障率基本为零,当循环次数大于1010次后,其可靠性会迅速下降至接近零.由此可得该压电微镜的寿命约为1010次循环.

  • ② 多元融合性能检测数据驱动

  • 实际上,影响设备使用寿命的因素肯定不止一个,相较于一元数据驱动的寿命退化模型,应用多元数据融合显然是更好的选择.然而,目前这种方法多见于大型机械设备(如航空发动机)的寿命预测领域[171-174],极少应用于MEMS器件上[45].究其原因,主要是由于MEMS内部狭小的空间难以集成多种传感器阵列,使得目前的研究多集中在大型设备上.其中,表征不同传感器对寿命影响程度的融合系数是研究的重中之重.

  • 任子强等人[175]针对基于单一传感器数据的剩余寿命预测方法存在数据利用率低和预测精度不高的问题,提出了一种融合多传感器数据的发动机剩余寿命预测方法.利用真实寿命与预测寿命的预测均方误差最小化的方法以确定融合系数.然后采用线性维纳过程对融合得到的复合健康指标进行退化建模,通过极大似然估计方法确定模型参数,进而得到发动机的预测寿命.

  • 在文献[45]中,He等人又考虑了温度因素对微执行器使用寿命的影响.建立了由温度和电负荷共同影响的可靠性概率分布函数,并针对磁盘驱动器中的压电执行器进行案例研究.用两种模型分别评估了用于驱动器磁头定位的压电微执行器在3kHz下驱动5年的可靠性,分别为96.70%和96.32%,与实际故障率吻合度较高.

  • 5 MEMS微镜控制方法研究

  • MEMS微镜的驱动方式多种多样,主要有电磁式、静电式、压电式、电热式四种.电磁式微镜通过线圈内的交变电流与恒定磁场之间产生的洛伦兹力驱动镜体发生转动;静电式微镜通过带电导体间产生的静电吸引力驱动镜体发生转动;压电式微镜通过交变电流产生的逆压电效应驱动镜体发生转动;电热式微镜由电生热,作用于热膨胀系数不对称的结构上从而驱动镜体发生转动.四种微镜本质上都是电驱动的,所以针对微镜的控制主要是通过控制电信号的变化进而调节系统的稳态时间和定位精度[176].然而,MEMS微镜的运动是电、磁、热多场耦合的结果,复杂程度高,同时模型参数的不确定性[177]、未知的干扰输入条件[160],都使系统性能的保持成为一项严峻的挑战[178179].

  • 本章首先简要总结了MEMS微镜领域的常见控制方法,然后针对微镜常见的异常工作状态和极端工作环境,整理了相应的控制方法.

  • 5.1 常见控制方法

  • 目前MEMS微镜常用的控制方法有开环和闭环两种方式.开环控制包括输入整形控制[180181]和波形控制[177182]等,无需传感器数据反馈但动态性能和鲁棒性不足.闭环控制包括自适应自校正控制[35183]、非线性比例—微分控制[177184]和滑模控制[185186]等,闭环控制方法解决了开环控制存在的鲁棒性差等问题,但也存在复杂度高、反馈传感器难以集成等问题.

  • (1)闭环控制

  • 滑模控制是广泛应用于MEMS微镜的闭环控制方法之一.与传统控制理论和智能控制方法相比,滑模控制的优点是不需要精确的系统模型,控制规律设计简单且容易实现,通过设计滑动模态能够获得期望的动态品质,并对系统不确定性和外界扰动具有较强的鲁棒性.因此这种非线性控制方法受到国内外研究学者的广泛关注和深入研究.近年来有不少国内外学者将滑模控制策略引入MEMS微镜的控制系统中,扩大了微镜的扫描范围[91],提高了微镜的暂态响应和稳态性能.

  • 比例积分微分(PID)控制也是闭环控制方法的一种,具有响应时间短、超调量小、可实现倾角大等优势,适合工程应用.但是该方法非常依赖于精确的系统模型,制造缺陷导致的微镜参数变化和模型不确定性,通常会带来不可避免的静态误差[177].为此,学者一般通过改进控制方法和精确系统模型两种方式以消除静态误差.早期研究多集中在矩形微镜,而现有的一些文献讨论了圆形微镜的控制方法,但是多数仍基于矩形微镜的非线性方程[86],引起了一些精度较低的问题.针对这些问题,Bai等人[177]对圆形静电扭转微镜的静态和动态响应进行了建模,推导出一组非线性多项式代数方程,并求解了静态吸合角和电压间的关系.最后基于该方程设计了一种新型的非线性比例-微分控制方法,可消除静态误差,控制精度提高.

  • 自适应控制作为一种可实现微镜精确定位和轨迹跟踪的闭环控制方法,近年来也被广泛研究.相较于传统的PID方法,自适应自校正控制具有在线补偿参数变化和微镜模型不确定性的优势[35].Liao等人[35183]提出了一种自适应控制方案,通过消除制造过程中出现的缺陷和增加干扰抑制能力,实现微镜的精确定位轨迹跟踪.Tan等人[187]在控制方向未知的情况下,将Nussbaum增益引入到自适应控制器的设计中,提高了闭环系统处理控制方向变化的鲁棒性.Maksymova等人[188]提出了一种MEMS微镜的自适应控制方案,以降低车载环境下的干扰对传感精度的影响.该方案利用各种内部和外部监测器的数据实时调整MEMS反射镜的控制参数,使其在环境条件发生变化时的角度均方根抖动不超过15m°.然而,自适应控制法虽然有诸多优点,其在实时控制的每一步均需要大量、密集的运算以准确计算控制器增益,这一点造成了此类控制系统在瞬态性能上的不足[149].

  • (2)开环控制

  • 闭环控制在系统鲁棒性上有先天优势,然而,闭环控制所需要的额外传感器集成对于小尺寸的MEMS设备是极其困难的.此外,实现数字控制需要的超高抽样率也是制约闭环控制方法在工程中广泛应用的主要障碍[182].因此,无需额外的位置、位移传感器,也不需要附加处理电路的开环控制方法被广泛研究.其实这种控制技术在诸多领域由来已久并已被广泛应用,但对于各种MEMS器件尤其是MEMS微镜的研究还不够深入.输入整形控制作为开环控制的主要方法之一,可以消除微镜的残余振动现象,降低系统超调量.Shi等人[181]通过调节输入电压的波形来抑制电热式微镜因阶跃信号引起的残余振动,最终系统超调量明显减小,稳态的调整时间缩短了70.69%.实验结果验证了输入整形控制方法的可靠性.

  • 总之,不同的控制方法的主要优势和应用场合均存在一定差异,使用时需要根据实际场景进行选择,各种控制方法的比较及适用场景列于表4.

  • 表4 MEMS微镜的常见控制方法汇总

  • Table4 A summary of common control methods for MEMS micromirror

  • 5.2 异常状态和极端环境下的控制方法

  • 不同控制方法的选择取决于微镜的具体工作情况.本小节内容主要针对MEMS微镜的残余振动、静电吸合和扫描畸变等几种异常工作状态和外部振动等极端工作环境,总结了各种常用的针对性控制方法.

  • (1)残余振动

  • 现阶段针对微镜的阻尼理论尚不完善,加之为了提高驱动效率,使得微镜通常工作在欠阻尼状态.这种欠阻尼二阶系统的动态响应中往往伴有明显的残余振动[149].当微镜处于频繁的开关状态时,残余振动通常会延长系统调节至稳态的时间,并且造成有效带宽的降低[182],导致开关效率降低、扫描频率下降等一系列问题.如何抑制多余的残余振动从而获得迅速准确的状态切换和开关定位是这一领域一个重要的研究课题.

  • 残余振动现象的避免,一般可以通过减少静电微镜开关稳定时间和扩大工作带宽来实现,具体的控制方法也分为开环和闭环两种.闭环控制方面,Ma等人[184]提出了增益调度设计和非线性比例-微分两种控制方法,降低了微镜的开关稳定时间,增强了结构对随机扰动的鲁棒性,同时在单自由度微镜上进行了实验验证.除此之外还有滑模控制、自校正控制等多种方法被应用于残余振动研究领域.闭环控制的控制精度较高,系统鲁棒性较好,但与此同时,闭环控制所需要的位移/角度传感器和相应的处理电路难以集成至微纳米级的物理空间中,这导致了闭环控制的成本问题[189].

  • 因此,输入整形控制作为一种低成本的开环控制方法,被学术界广泛研究.该方法是一种前反馈减振方法,无需额外的位置、位移传感器,也不需要附加状态反馈信号的处理电路.通过预先设定输入控制信号波形,实现欠阻尼系统寄生振动的抑制,同时降低其调节时间.Bai等人[190]提出了一种考虑了平行板式静电微镜的阻尼效应及其非线性特性的多级阶跃输入波形控制方法,仿真结果表明这种方法使系统的调节时间由4.3ms减小到0.97ms,反射镜响应超调率由33.2%减小到0.2%.Eun等人[189]提出一种输入整形控制方法,其阶跃输入通过脉冲整形滤波器之一的双脉冲卷积方法进行预整形,实验测得,该方法使系统的调节时间由25ms减小到8ms,反射镜响应超调率由58%减小到5.8%.

  • (2)静电吸合

  • 吸合现象是静电式微镜的固有失效形式,1.2章节中已明确说明,并总结了一些结构上的防治措施,本小节主要针对吸合效应的控制方法进行总结.

  • 极板间的过高吸引力是引起吸合的直接因素,过高的吸引力一般由高电压导致,而影响临界吸合电压的因素主要包括微镜的几何尺寸、工作温度、结构刚度[89]等.Aryal等人[29]计算了引起静电式微镜吸合效应的临界电压Vpull-in,并基于此进行了微镜的优化设计,具体表达式如下:

  • Vpull-in =8kd0327ε0εrA
    (20)
  • 式中:k表示微镜平板和扭转梁的刚度系数;ε0表示空气中的介电常数;εr表示介质的相对介电常数;V表示外接电压;d表示两平行板之间的间隙;A表示两极板之间的重叠面积.

  • 在MEMS微镜的可靠性控制领域,一般通过控制施加在极板上的电压的方法来控制吸合.具体方法有开环和闭环两种,其中输入整形方法[189]为代表的开环控制方法在已有文献中已获得了广泛研究.然而,相较于闭环控制,开环控制方法无法提供良好的动态性能和鲁棒性,并且倾斜角多数不可控[177].为了克服这些缺陷,Shan等人[191]提出了一种基于比例微分控制的闭环控制方法.首先,当反射镜倾角小时,施加一个略高于吸合电压的固定电压,当反射镜接近吸合位置时,采用比例微分方法调节固定电压.Zhao等人[91]使用了基于积分滑模控制的控制方法,具体包括积分控制器和滑模控制器,分别为实现零稳态误差和外部抗干扰而设计.研究表明,上述闭环控制方法均可以克服吸合问题并改善系统的动态性能和鲁棒性.然而,这种方法是建立在微镜扭转角度可以实时反馈的前提下的,实际使用场景下需要加装微角度传感器,同时需要考虑传感器的反馈数据误差问题.

  • (3)扫描失真

  • 由于MEMS微镜的镜面尺寸和偏角范围都极为有限,所以在进行投影时对扫描激光源的发散角、发射光斑和入射角都有较高的要求,有时会发生投影图案与预设波形间的失真现象.另外,微镜在工作过程中产生的镜面变形也可能会导致扫描失真问题,在高频振动的情况下尤为明显[3].一般的失真主要表现为枕状畸变和倾斜畸变两种[192],其示意图如图8d所示,直接的导致原因有聚焦提前/延后和聚焦位置偏移两种.

  • 图8 异常工作状态下的MEMS微镜控制方法[91125180191192](a)一种应用于微镜的复合型输入整形控制:输入(左)和输出(右);(b)MEMS微镜在不同入射角和偏转角下的偏斜畸变率(上)、反射光角度枕形畸变随MEMS偏角的变化(下);(c)开环控制(左)和闭环控制(右)对MEMS微镜转角误差的影响;(d)基于MEMS 微镜扫描的笛卡尔坐标系(左)、MEMS微镜的扫描枕形畸变(中)和倾斜畸变效应(右).

  • Fig.8 MEMS micromirror control method under abnormal working conditions[91, 125, 180, 191, 192]. (a) A composite command shaping method applied to MEMS micromirrors: input (left) and output (right) ; (b) Skew distortion rates at different incidence angles and different deflection angles (above) , the pillow distortion of reflected light angle varies with the MEMS deflection angle (below) ; (c) Influence of open-loop (left) and close-loop (right) control on rotation angle error of MEMS micromirror; (d) Cartesian coordinate system based on MEMS micromirror scanning (left) , pillow distortion (middle) and skew distortion (right) of MEMS micromirror.

  • Sidler等人[193]分析了一种双轴倾斜单镜扫描仪的扫描畸变,通过光路分析得到入射角是影响扫描光路畸变(Beam path distortion,BPD)的主要因素,并提出了用于补偿系统误差的修正系数,以补偿传播路径上的失真情况.实验结果表明,修正之后的光路投影至120mm外的平面上,x轴和y轴的位置误差低于0.044%和0.005%.基于Sidiler的研究,Wang等人[192]首先构建了微镜的偏转角、激光入射角和平面扫描距离之间的数学关系(图8 b),对不同工作条件下的反射角分布和点云分布进行仿真,最后对该畸变理论进行了实验验证.

  • (4)外部振动

  • 持续的振动应力是车载环境的典型特征[119],可能会引起MEMS微镜的偏角误差并降低定位精度[126],进而影响激光雷达的成像质量.尽管已经有研究表明,提高镜体刚度可以降低外界振动对转动精度的影响[6768],但同时也会带来自身耦合振动等问题[69].针对这些问题,我们在本小节总结了一些可应用于抵抗外部振动的闭环控制方法.

  • Grahmann等人[125]测试了MEMS微镜在不同方向外部振动下的响应情况,同时比较了开环控制和闭环控制对于同种外部振动的控制性能.研究表明,对于处于正常工作状态下的微镜,在相同外部振动载荷引起的偏转角明显低于非工作状态下微镜的偏转角.与此同时,闭环控制相较于开环控制能使微镜在Z向振动载荷下的线性偏差减少约25%,Y向振动载荷下减少约50%(图8c).Hua等人[126]对外部振动下MEMS微镜的滑模控制方法进行了研究,分别建立了一个无振动和一个考虑振动的动态耦合模型.其中无振动模式下的系统动力学方程及参数很好确定,同时将外部振动的影响以参数改变的形式考虑到系统中,并采用实验方法来确定动态耦合模型中的参数变化.最后将所提出的前馈滑模控制方法(FSMC)在鲁棒性和准确性方面与传统的PID控制进行了比较,结果表明FSMC控制方法在抗干扰能力和跟踪误差等方面具有一定优势.

  • 表5 MEMS微镜控制方法比较

  • Table5 Comparison of reported methods for control of MEMS micromirrors

  • 6 结论

  • 车载激光雷达作为新兴的MEMS微镜应用之一,是无人驾驶时代与MEMS技术相结合的产物.弥补了传统机械式激光雷达体积较大、价格昂贵的缺陷,在响应速度、功耗和操纵灵活性方面均具有无可比拟的优势.如果获得大规模应用,将对无人驾驶行业产生颠覆性的影响.

  • 实际上,MEMS微镜作为一种重要的MOEMS器件,不仅在车载激光雷达方面大有可为,在光纤通信、医疗成像、投影显示、军事探测等多个研究领域内也已经取得了相当丰硕的研究成果.然而,由于起步时间相对较晚,目前面向车载激光雷达应用的MEMS微镜可靠性研究还不够深入,具体存在以下问题:

  • (1)目前多数MEMS微镜的可靠性研究仅聚焦于单一环境因素,未能厘清温湿度循环、冲击振动等多场耦合复杂车载环境下的竞争失效机理.如何厘清复杂车载服役环境下MEMS微镜耦合竞争失效机理是实现长期稳定性和可靠性的关键问题.

  • (2)微尺度下的表面力作用、微加工工艺造成的材料参数不确定性以及复杂多变的车载环境,都可能使传统宏观建模出现不可接受的误差.需要发展数据融合驱动的智能长期可靠性评估方法.

  • (3)传统MEMS的四种驱动方式用于微镜驱动均有一定缺陷,探索新型驱动方式是必要的.目前有少量文献已开始着手研究静电斥力驱动或混合驱动的新型扫描微镜.

  • (4)现有研究多局限于成品的可靠性或寿命检测,没有将可靠性和失效分析贯穿于MEMS微镜产品开发的整体过程中,并且没有统一的测试标准.

  • (5)对于MEMS微镜的零点漂移、结构变形、薄膜翘曲以及残余振动等问题带来的图像失真、光束路径畸变等现象缺乏有效的控制手段.

  • 对此,本篇文章综述了MEMS微镜的共性失效和特殊失效形式和机制;整理了复杂车载环境下各类失效形式的特定环境诱因;从传统力学和数据融合两个角度总结了MEMS微镜的建模理论和寿命预测方法;对残余振动、吸合效应、光束路径畸变等非稳态下的控制方法进行了整理和比较,并在此基础上指出了未来的可能研究方向.与此同时,我们还希望研究者们能够充分借鉴医疗成像、投影显示、军事探测等其他MEMS微镜应用领域的优秀研究成果,并结合自身独特的车载使用环境和功能要求,最终实现车载MEMS激光雷达的车规化应用.

  • 本文受文章篇幅和知识面所限,对MEMS微镜可靠性领域的总结与展望概括得还不够深入且全面,对所述部分的若干参考文献多是提纲挈领,没有详细介绍.另外,由于作者自身的专业限制,对于诸多近年来新兴的可靠性研究方向也没有论及,例如基于深度学习的故障诊断和寿命预测等,而这些领域也聚集了大量研究成果,且方兴未艾.

  • 总而言之,MEMS微镜的可靠性研究是车载MEMS激光雷达能否成功工程应用的重要影响因素之一,有望实现集成度更高、功耗更低、功能性更强的激光雷达成像系统.通过这篇综述,我们希望可以帮助到MEMS微镜可靠性领域的研究人员,建立起高温高湿、振动冲击等多场耦合的复杂车载环境下MEMS激光雷达的长期可靠性评估方法,推动MEMS激光雷达的车规化进程.

  • 参考文献

    • [1] 张文栋,熊继军.微光机电系统(MOEMS)[M].北京:机械工业出版社,2006.

    • [2] 马天义,余跃,许敬,等.MOEMS 2D扫描镜的研究进展[J].传感器与微系统,2016,35(6):1-3+8.MA T Y,YU Y,XU J,et al.Research progress of MOEMS 2D scanning mirror [J].Transducer and Microsystem Technologies,2016,35(6):1-3+8.(in Chinese)

    • [3] Wolter A,Hsu S T,Schenk H,et al.Applications and requirements for MEMS scanner mirrors[C]//MOEMS and Miniaturized Systems V.Bellingham,USA:SPIE,2005.

    • [4] HOLMSTRÖ M S T S,BARAN U,UREY H.MEMS laser scanners:a review [J].Journal of Microelectromechanical Systems,2014,23(2):259-275.

    • [5] LARA-CASTRO M,HERRERA-AMAYA A,ESCAROLA-ROSAS M A,et al.Design and modeling of polysilicon electrothermal actuators for a MEMS mirror with low power consumption [J].Micromachines,2017,8(7):203.

    • [6] SALEH A A M,SIMMONS J M.All-optical networking-evolution,benefits,challenges,and future vision [J].Proceedings of the IEEE,2012,100(5):1105-1117.

    • [7] TSAI C H,TSAI J C.MEMS optical switches and interconnects [J].Displays,2015,37:33-40.

    • [8] WANG H R,YANG H,CHEN Z F,et al.Development of dual-frequency PMUT arrays based on thin ceramic PZT for endoscopic photoacoustic imaging [J].Journal of Microelectromechanical Systems,2021,30(5):770-782.

    • [9] JUNG W,MCCORMICK D T,ZHANG J,et al.Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror [J].Applied Physics Letters,2006,88(16):163901.

    • [10] SCHENK H,WAGNER M,GRAHMANN J,et al.Advances in MOEMS technologies for high-quality imaging systems [C]//Optical Microlithography XXXI.Bellingham,USA:SPIE,2018.

    • [11] YALCINKAYA A D,UREY H,BROWN D,et al.Two-axis electromagnetic microscanner for high resolution displays [J].Journal of Microelectromechanical Systems,2006,15(4):786-794.

    • [12] WANG D K,XIE H K,THOMAS L,et al.A miniature LiDAR with a detached MEMS scanner for micro-robotics [J].IEEE Sensors Journal,2021,21(19):21941-21946.

    • [13] 王强.静电梳齿驱动MEMS扫描镜研究[D].成都:中国科学院光电技术研究所,2021.WANG Q.Study on MEMS scanner based on electrostatic comb drive actuator [D].Chengdu:Institute of Optics and Electronics,Chinese Academy of Sciences,2021.(in Chinese)

    • [14] ROYO S,BALLESTA-GARCIA M.An overview of lidar imaging systems for autonomous vehicles [J].Applied Sciences,2019,9(19):4093.

    • [15] POCZTER S L,JANKOVIC L M.The google car:driving toward A better future?[J].Journal of Business Case Studies(JBCS),2013,10(1):7.

    • [16] 吕江涛.自动驾驶技术超越特斯拉 “华为第一车” 暴拉A股[J].中国经济周刊,2021(8):76-77.

    • [17] ROSS P E.Volvo’s Self-Driving Program Will Have Redundancy For Everything[EB/OL].(2016-05-11)[2023-06-06].https://spectrum.ieee.org/volvos-selfdriving-program-will-have-redundancy-for-everything.

    • [18] 朱敏慧.Innovusion鲍君威:蔚来ET7激光雷达量产,2022年为中国激光雷达上车元年[J].汽车与配件,2022(1):34-35.

    • [19] 陆英.一种用于激光雷达的微振镜设计[J].激光与红外,2022,52(6):900-904.LU Y.A design of micro scanning mirror based on laser radar system [J].Laser & Infrared,2022,52(6):900-904.(in Chinese)

    • [20] LI Y,IBANEZ-GUZMAN J.Lidar for autonomous driving:the principles,challenges,and trends for automotive lidar and perception systems [J].IEEE Signal Processing Magazine,2020,37(4):50-61.

    • [21] RASSHOFER R H,GRESSER K.Automotive radar and lidar systems for next generation driver assistance functions [J].Advances in Radio Science,2005,3(10):205-209.

    • [22] HUANG Y H,SAI SARATHI VASAN A,DORAISWAMI R,et al.MEMS reliability review [J].IEEE Transactions on Device and Materials Reliability,2012,12(2):482-493.

    • [23] SOMÀ A.A survey of Mechanical failure and design for Reliability of MEMS [J].IOP Conference Series:Materials Science and Engineering,2020,724(1):012051.

    • [24] 李斌,贾颖,韩鑫,等.车载液晶显示器环境试验技术分析[J].环境技术,2008,26(3):7-10.LI B,JIA Y,HAN X,et al.The analysis of environmental testing technical on vehicle LCD [J].Environmental Technology,2008,26(3):7-10.(in Chinese)

    • [25] 王汉青.车载电子设备复杂电磁环境效应分析[D].长春:吉林大学,2019.WANG H Q.Analysis of complicated electromagnetic environmental effects of vehicular electronic devices [D].Changchun:Jilin University,2019.(in Chinese)

    • [26] DOUGLASS M.DMD reliability:a MEMS success story [C]//Reliability,Testing,and Characterization of MEMS/MOEMS II.Bellingham,USA:SPIE,2003.

    • [27] PAL S,XIE H K.Repeatability study of an electrothermally actuated micromirror [C]//2009 IEEE International Reliability Physics Symposium.New York,USA:IEEE,2009:549-556.

    • [28] MAHARSHI V,AGARWAL A.Reliability analysis of thermally actuated MEMS micromirror[C]//LENKA T R,MISRA D,FU L.Micro and Nanoelectronics Devices,Circuits and Systems.Singapore:Springer,2023:427-436.

    • [29] ARYAL N,EMADI A.A method to enhance stroke level of a MEMS micromirror with repulsive electrostatic force [J].Micromachines,2020,11(4):401.

    • [30] JIA K M,PAL S,XIE H K.An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs [J].Journal of Microelectromechanical Systems,2009,18(5):1004-1015.

    • [31] WANG H R,ZHANG X Y,ZHANG D H,et al.Characterization and reliability study of a MEMS mirror based on electrothermal bimorph actuation [C]//2017 International Conference on Optical MEMS and Nanophotonics(OMN).New York,USA:IEEE,2017.

    • [32] KOH K H,LEE C K.A low power 2-D raster scanning MEMS mirror driven by hybrid electrothermal and electromagnetic actuation mechanisms [C]//2012 International Conference on Optical MEMS and Nanophotonics.New York,USA:IEEE,2012:236-237.

    • [33] FANG X Y,HU K M,YAN G,et al.Shock destructive reliability analysis of electromagnetic MEMS micromirror for automotive LiDAR [J].Journal of Microelectromechanical Systems,2022,31(1):134-142.

    • [34] LIU W J,TANG Y M,WANG B P.Reliability evaluation of micromirror of double S-shaped unimorph piezoelectric actuator with probabilistic approach [C]//The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.New York,USA:IEEE,2013:813-816.

    • [35] LIAO K M.Closed-loop adaptive control for electrostatically driven torsional micromirrors [J].Nanolithography,MEMS,and MOEMS,2005,4(4):041503.

    • [36] TAN Y H,DONG R L,LI Z Z,et al.Online optimization control with predictive gradient descent for MEMS micro-mirrors [J].IEEE Transactions on Industrial Electronics,2022,69(7):7307-7317.

    • [37] ATAMAN,LANI S,NOELL W,et al.A dual-axis pointing mirror with moving-magnet actuation [J].Journal of Micromechanics and Microengineering,2013,23(2):025002.

    • [38] 徐士浩.面向激光雷达的双轴MEMS微镜结构设计与制备工艺研究[D].西安:陕西科技大学,2022.XU S H.Research on structure design and fabrication of biaxial MEMS mirror for lidar application [D].Xi’an:Shaanxi University of Science & Technology,2022.(in Chinese)

    • [39] SCHENK H,DURR P,HAASE T,et al.Large deflection micromechanical scanning mirrors for linear scans and pattern generation [J].IEEE Journal of Selected Topics in Quantum Electronics,2000,6(5):715-722.

    • [40] SEO Y H,HWANG K,KIM H,et al.Scanning MEMS mirror for high definition and high frame rate lissajous patterns [J].Micromachines,2019,10(1):67.

    • [41] ZHANG X Y,ZHANG R,KOPPAL S,et al.MEMS mirrors submerged in liquid for wide-angle scanning [C]//18th International Conference on Solid-State Sensors,Actuators and Microsystems.New York,USA:IEEE,2015:847-850.

    • [42] YE L C,ZHANG G F,YOU Z.5 V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application [J].Sensors,2017,17(3):521.

    • [43] TASNEEM Z,WANG D K,XIE H K,et al.Directionally controlled time-of-flight ranging for mobile sensing platforms [C]//Robotics:Science and Systems XIV.Cambridge,MA,USA:MIT Press,2018.

    • [44] THONGRUENG J,TSUCHIYA T,NAGATA K.Lifetime and degradation mechanism of multilayer ceramic actuator [J].Japanese Journal of Applied Physics,1998,37(9):5306.

    • [45] HE Z M,LOH H T,ONG E H.Reliability evaluation of piezoelectric micro-actuators with application in hard disk drives [J].IEEE Transactions on Magnetics,2008,44(11):3722-3725.

    • [46] BARAN U,BROWN D,HOLMSTROM S,et al.Resonant PZT MEMS scanner for high-resolution displays [J].Journal of Microelectromechanical Systems,2012,21(6):1303-1310.

    • [47] MEINEL K,MELZER M,STOECKEL C,et al.2D scanning micromirror with large scan angle and monolithically integrated angle sensors based on piezoelectric thin film aluminum nitride [J].Sensors,2020,20(22):6599.

    • [48] KOH K H,LEE C K.A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage [J].Journal of Microelectromechanical Systems,2012,21(5):1124-1135.

    • [49] KIM S J,CHO Y H,NAM H J,et al.Piezoelectrically pushed rotational micromirrors for wide-angle optical switch applications [C]//The Sixteenth Annual International Conference on Micro Electro Mechanical Systems,2003.New York,USA:IEEE,2003:263-266.

    • [50] CHI C,YAO J,TSAI J,et al.Compact 1×8 MEMS Optical Switches Using Planar Lightwave Circuits[C]//Optical Fiber Communication Conference.Washington,USA:Optical Society of America,2004.

    • [51] CONANT R A,NEE J T,LAU K Y,et al.Dynamic deformation of scanning mirrors [C]//2000 IEEE/LEOS International Conference on Optical MEMS.New York,USA:IEEE,2002:49-50.

    • [52] 刘加凯,齐杏林,王波.温度应力对MEMS器件分层失效的影响规律[J].电子元件与材料,2013,32(3):84-87.LIU J K,QI X L,WANG B.Influence law of thermal stress on the delamination of MEMS components [J].Electronic Components and Materials,2013,32(3):84-87.(in Chinese)

    • [53] TU C C,FANCHIANG K,LIU C H.Rotary electrostatic micromirror switches using wafer-scale processing and assembly [J].Microsystem Technologies,2006,12(12):1099-1108.

    • [54] JI C H,YEE Y,CHOI J,et al.Electromagnetic 2 × 2 MEMS optical switch [J].IEEE Journal of Selected Topics in Quantum Electronics,2004,10(3):545-550.

    • [55] WANG Z F,CAO W,SHAN X C,et al.Development of 1×4 MEMS-based optical switch [J].Sensors and Actuators A:Physical,2004,114(1):80-87.

    • [56] BERNSTEIN J J,TAYLOR W P,BRAZZLE J D,et al.Electromagnetically actuated mirror arrays for use in 3-D optical switching applications [J].Journal of Microelectromechanical Systems,2004,13(3):526-535.

    • [57] SANDNER T,WILDENHAIN M,GERWIG C,et al.Large aperture MEMS scanner module for 3D distance measurement [C]//MOEMS and Miniaturized Systems IX.Bellingham,USA:SPIE,2010.

    • [58] CHEN K S,AYON A,SPEARING S M.Controlling and testing the fracture strength of silicon on the mesoscale [J].Journal of the American Ceramic Society,2000,83(6):1476-1484.

    • [59] MUHLSTEIN C L,BROWN S B,RITCHIE R O.High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air [J].Sensors and Actuators A:Physical,2001,94(3):177-188.

    • [60] 潘亦苏,陈大鹏.压电陶瓷非线性断裂的有限元分析[J].西南交通大学学报,2000,35(5):451-456.PAN Y S,CHEN D P.Finite element analysis of nonlinear fracture for piezoelectric ceramics [J].Journal of Southwest Jiaotong University,2000,35(5):451-456.(in Chinese)

    • [61] 毕美田,史运泽,陈晋,等.多层压电陶瓷驱动器纳米银粘接工艺应力分布的有限元分析[C]//2006年全国功能材料学术年会专辑.重庆:《功能材料》编辑部,2006:370-371+374.(in Chinese)BI M T,SHI Y Z,CHEN J,et al.FEM analysis of residual stress of nano Ag bonding for multilayer piezoelectric ceramic actuators[C]//Chongqing:China Academic Journal of Functional Materials,2006.(in Chinese)

    • [62] FURUTA A,UCHINO K.Destruction mechanism of multilayer ceramic actuators:case of antiferroelectrics [J].Ferroelectrics,1994,160(1):277-285.

    • [63] WOO S,GOO N.Analysis of the bending fracture process for piezoelectric composite actuators using dominant frequency bands by acoustic emission [J].Composites Science and Technology,2007,67(7/8):1499-1508.

    • [64] TUCK K,JUNGEN A,GEISBERGER A,et al.A study of creep in polysilicon MEMS devices [J].Journal of Engineering Materials and Technology,2005,127(1):90-96.

    • [65] MERLIJN VAN SPENGEN W.MEMS reliability from a failure mechanisms perspective [J].Microelectronics Reliability,2003,43(7):1049-1060.

    • [66] SILVESTRINI M,BARBATO M,COSTANTINI S,et al.Long-term stresses on linear micromirrors for pico projector application [J].Microelectronics Reliability,2017,76/77:626-630.

    • [67] CHUNG S H,LEE S K,JI C H,et al.Vacuum packaged electromagnetic 2D scanning micromirror [J].Sensors and Actuators A:Physical,2019,290:147-155.

    • [68] OU C H,LIN Y C,KEIKOIN Y,et al.Two-dimensional MEMS Fe-based metallic glass micromirror driven by an electromagnetic actuator [J].Japanese Journal of Applied Physics,2019,58:SDDL01.

    • [69] YOO H W,SCHITTER G.Complex valued state space model for weakly nonlinear duffing oscillator with noncollocated external disturbance [J].IFAC-PapersOnLine,2020,53(2):8546-8552.

    • [70] 王海宁,王水弟,蔡坚,等.先进的MEMS封装技术[J].半导体技术,2003(6):7-10.WANG H N,WANG S D,CAI J,et al.Advanced packaging technology for MEMS [J].Semiconductor Technology,2003,28(6):7-10.(in Chinese)

    • [71] 张昱,潘武.MEMS封装技术[J].纳米技术与精密工程,2005,3(3):194-198.ZHANG Y,PAN W.[J].Packaging technology for MEMS,2005,3(3):194-198.(in Chinese)

    • [72] LI G,TSENG A A.Low stress packaging of a micromachined accelerometer [J].IEEE Transactions on Electronics Packaging Manufacturing,2001,24(1):18-25.

    • [73] 吴忠烨,杨尚书,吴国强.MEMS器件低应力封装技术[J].微纳电子与智能制造,2020,2(4):43-51.WU Z Y,YANG S S,WU G Q.Low-stress packaging technology for MEMS devices [J].Micro/Nano Electronics and Intelligent Manufacturing,2020,2(4):43-51.(in Chinese)

    • [74] 钱磊,胡杰,单亚蒙,等.基于MEMS微镜角度反馈的新型封装应力隔离结构[J].光子学报,2022,51(5):187-196.QIAN L,HU J,SHAN Y M,et al.Novel packaging stress isolation structure for MEMS micromirror with piezoresistive angle sensor [J].Acta Photonica Sinica,2022,51(5):0551311.(in Chinese)

    • [75] SUHIR E.Predicted thermal stresses in a bimaterial assembly adhesively bonded at the ends [J].Journal of Applied Physics,2001,89(1):120-129.

    • [76] HAH D,HUANG S T Y,TSAI J C,et al.Low-voltage,large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators [J].Journal of Microelectromechanical Systems,2004,13(2):279-289.

    • [77] ZHOU L,ZHANG X Y,XIE H K.An electrothermal Cu/W bimorph tip-tilt-piston MEMS mirror with high reliability [J].Micromachines,2019,10(5):323.

    • [78] 师蔚,贡俊,黄苏融.永磁电动机永磁体防退磁技术研究综述[J].微特电机,2012,40(4):71-74+76.SHI W,GONG J,HUANG S R.An overview of anti-demagnetization technology of permanent magnet in permanent magnet motor [J].Small & Special Electrical Machines,2012,40(4):71-74+76.(in Chinese)

    • [79] 胡文艳.钕铁硼永磁材料的性能及研究进展[J].现代电子技术,2012,35(2):151-152+155.HU W Y.Property and research progress of NbFeB permanent magnets [J].Modern Electronics Technique,2012,35(2):151-152+155.(in Chinese)

    • [80] KUMAR S,PAVELYEV V,TRIPATHI N,et al.Review-recent advances in the development of carbon nanotubes based flexible sensors [J].Journal of the Electrochemical Society,2020,167(4):047506.

    • [81] HE S,BEN MRAD R,CHONG J.Repulsive-force out-of-plane large stroke translation micro electrostatic actuator [J].Journal of Micromechanics and Microengineering,2011,21(7):075002.

    • [82] 陈辉.MEMS扭转微镜的滑模控制研究[D].广州:华南理工大学,2014.CHEN H.Sliding mode control of torsinal MEMS micromirror [D].Guangzhou:South China University of Technology,2014.(in Chinese)

    • [83] FARGAS-MARQUES A,CASALS-TERRE J,SHKEL A M.Resonant pull-in condition in parallel-plate electrostatic actuators [J].Journal of Microelectromechanical Systems,2007,16(5):1044-1053.

    • [84] SEEGER J I,BOSER B E.Charge control of parallel-plate,electrostatic actuators and the tip-in instability [J].Journal of Microelectromechanical Systems,2003,12(5):656-671.

    • [85] TIAN D,AIN Q T,ANJUM N,et al.Fractal N/MEMS:from pull-in instability to pull-in stability [J].Fractals,2021,29(2):2150030.

    • [86] DEGANI O,SOCHER E,LIPSON A,et al.Pull-in study of an electrostatic torsion microactuator [J].Journal of Microelectromechanical Systems,1998,7(4):373-379.

    • [87] HOSSEINI M,ZHU G C,PETER Y A.A new formulation of fringing capacitance and its application to the control of parallel-plate electrostatic micro actuators [J].Analog Integrated Circuits and Signal Processing,2007,53(2):119-128.

    • [88] ZHANG W M,YAN H,PENG Z K,et al.Electrostatic pull-in instability in MEMS/NEMS:a review [J].Sensors and Actuators A:Physical,2014,214:187-218.

    • [89] BENI Y T,KOOCHI A,KAZEMI A S,et al.Modeling the influence of surface effect and molecular force on pull-in voltage of rotational nano-micro mirror using 2-DOF model [J].Canadian Journal of Physics,2012,90(10):963-974.

    • [90] DUAN J S,RACH R.A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy,fringing field and Casimir effects [J].International Journal of Solids and Structures,2013,50(22/23):3511-3518.

    • [91] ZHAO Y,TAY F E H,CHAU F S,et al.Stabilization of dual-axis micromirrors beyond the pull-in point by integral sliding mode control [J].Journal of Micromechanics and Microengineering,2006,16(7):1242-1250.

    • [92] KUMAR A,KUMAR P,BAJPAI A,et al.Design and development of a double-bridge micromirror with bending and twisting cantilevers for multiobject spectroscopy [J].IEEE Transactions on Electron Devices,2020,67(10):4392-4398.

    • [93] PU C,PARK S,CHU P B,et al.Electrostatic actuation of three-dimensional MEMS mirrors using sidewall electrodes [J].IEEE Journal of Selected Topics in Quantum Electronics,2004,10(3):472-477.

    • [94] HUNG E S,SENTURIA S D.Leveraged bending for full-gap positioning with electrostatic actuation [C]//1998 Solid-State,Actuators,and Microsystems Workshop Technical Digest.San Diego,USA:Transducer Research Foundation,Inc.,1998:83-86.

    • [95] LIU M J,CHEN Y L,CHENG W,et al.Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force [J].Capillarity,2022,5(3):51-64.

    • [96] 罗伟,杨国珂,叶坤涛.串联电容对MEMS扭转微镜吸合角的影响[J].仪表技术与传感器,2014(4):98-101+105.LUO W,YANG G K,YE K T.Influent of series capacitor on pull-in angle of MEMS torsional micromirror [J].Instrument Technique and Sensor,2014(4):98-101+105.(in Chinese)

    • [97] AFRANG S,MOBKI H,HASSANZADEH M,et al.Design and simulation of a MEMS analog micro-mirror with improved rotation angle [J].Microsystem Technologies,2019,25(3):1099-1109.

    • [98] SANGAMESWARAN S,DE COSTER J,LINTEN D,et al.Investigating ESD sensitivity in electrostatic SiGe MEMS [J].Journal of Micromechanics and Microengineering,2010,20(5):055005.

    • [99] SANGAMESWARAN S,DE COSTER J,LINTEN D,et al.ESD reliability issues in microelectromechanical systems(MEMS):a case study on micromirrors [C]//Electrical Overstress/Electrostatic Discharge Symposium.New York,USA:IEEE,2008:249-257.

    • [100] WIBBELER J,PFEIFER G,HIETSCHOLD M.Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems(MEMS)[J].Sensors and Actuators A:Physical,1998,71(1/2):74-80.

    • [101] GREASON W D.Analysis of the effect of ESD on the operation of MEMs [J].IEEE Transactions on Industry Applications.2008,45(6):2185-2191..

    • [102] 许成龙,李朋伟,张文栋,等.电容式RF MEMS开关介质层电荷积累消除方法[J].微纳电子技术,2013,50(9):559-565+580.XU C L,LI P W,ZHANG W D,et al.Dielectric charging-eliminating technology for capacitive RF MEMS switches [J].Micronanoelectronic Technology,2013,50(9):559-565+580.(in Chinese)

    • [103] TOUATI S,LORPHELIN N,KANCIURZEWSKI A,et al.Low actuation voltage totally free flexible RF MEMS switch with antistiction system [C]//2008 Symposium on Design,Test,Integration and Packaging of MEMS/MOEMS.New York,USA:IEEE,2008:66-70.

    • [104] PENG Z,YUAN X B,HWANG J C M,et al.Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms [J].IEEE Transactions on Microwave Theory and Techniques,2007,55(12):2911-2918.

    • [105] WONG W S H,LAI C H.Longer MEMS switch lifetime using novel dual-pulse actuation voltage [J].IEEE Transactions on Device and Materials Reliability,2009,9(4):569-575.

    • [106] LI G,CHEN X Y.Modified Fowler-Nordheim tunnelling for modelling charge injection into Si3N4 in an Al/Si3N4/Si structure [J].Applied Physics A,2012,109(3):539-545.

    • [107] 郭兴军,李朋伟,张文栋,等.基于电容式MEMS器件的静电斥力驱动研究[J].仪器仪表学报,2014,35(8):1738-1743.GUO X J,LI P W,ZHANG W D,et al.Investigation on electrostatic repulsion for driving capacitive MEMS devices [J].Chinese Journal of Scientific Instrument,2014,35(8):1738-1743.(in Chinese)

    • [108] 周凌峰.电热式双S结构MEMS微镜的热学特性研究[D].北京:北京理工大学,2016.ZHOU L F.Investigation of the thermal behavior of an electrothermal folded dual S-shaped micromirror [D].Beijing:Beijing Institute of Technology,2016.(in Chinese)

    • [109] PAL S,XIE H K.Fabrication of robust electrothermal MEMS devices using aluminum-tungsten bimorphs and polyimide thermal isolation [J].Journal of Micromechanics and Microengineering,2012,22(11):115036.

    • [110] CHUANG T H,LIN H J,WANG H C,et al.Mechanism of electromigration in Ag-alloy bonding wires with different Pd and Au content [J].Journal of Electronic Materials,2015,44(2):623-629.

    • [111] 杨刚,岳振星,李龙土.压电陶瓷场致疲劳特性与机理研究进展[J].无机材料学报,2007,22(1):1-6.YANG G,YUE Z X,LI L T.Research progress on the characteristics and mechanism of applied field-induced fatigue in piezoelectric ceramics [J].Journal of Inorganic Materials,2007,22(1):1-6.(in Chinese)

    • [112] NAKAMURA S,NANIWA I,SATO K,et al.Lifetime prediction method for piggyback PZT actuator [J].IEEE Transactions on Magnetics,2001,37(2):940-943.

    • [113] 王泓杰,王晨,沈星.典型智能材料结构疲劳可靠性问题研究进展[J].航空科学技术,2022,33(3):52-64.WANG H J,WANG C,SHEN X.Research progress on fatigue reliability in typical smart material structure [J].Aeronautical Science & Technology,2022,33(3):52-64.(in Chinese)

    • [114] 王伟强.压电陶瓷的场致疲劳与非线性研究[D].北京:清华大学,2006.WANG W Q.Study on field-induced fatigue and nonlinearity of piezoelectric ceramics [D].Beijing:Tsinghua University,2006.(in Chinese)

    • [115] 罗帅,王家秋,张彬.压电陶瓷驱动器疲劳特性对变形镜校正能力的影响[J].中国激光,2018,45(9):0905002.LUO S,WANG J Q,ZHANG B.Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror [J].Chinese Journal of Lasers,2018,45(9):0905002.(in Chinese)

    • [116] GAO X Y,XIN X D,WU J G,et al.A multilayered-cylindrical piezoelectric shear actuator operating in shear(d15)mode [J].Applied Physics Letters,2018,112(15):152902.

    • [117] 冉兵,赵帝植,文良华.压电倾斜镜中堆叠式压电陶瓷驱动器动态应力计算分析[J].激光与光电子学进展,2022,59(5):0523001.RAN B,ZHAO D Z,WEN L H.Research on dynamic stress of piezoelectric fast steering mirror stacked PZT actuator [J].Laser & Optoelectronics Progress,2022,59(5):0523001.(in Chinese)

    • [118] SANGAMESWARAN S,DE COSTER J,GROESENEKEN G,et al.Reliability test methodology for MEMS and MOEMS under electrical overstress and electrostatic discharge stress [J].Nanolithography,MEMS,and MOEMS,2012,11(2):021204.

    • [119] YOO H W,RIEGLER R,BRUNNER D,et al.Experimental evaluation of vibration influence on a resonant MEMS scanning system for automotive lidars [J].IEEE Transactions on Industrial Electronics,2022,69(3):3099-3108.

    • [120] FANG X Y,LI X Y,HU K M,et al.Destructive reliability analysis of electromagnetic MEMS micromirror under vibration environment [J].IEEE Journal of Selected Topics in Quantum Electronics,2022,28(5):2800108.

    • [121] 杜林云.应用于激光雷达的MEMS扫描镜研究[D].合肥:合肥工业大学,2021.DU L Y.Research on MEMS scanning mirror applied in lidar [D].Hefei:Hefei University of Technology,2021.(in Chinese)

    • [122] SIVAKUMAR G,RANGANATHAN R,GALE R,et al.Reliability study of a MEMS array under varying temperature and humidity conditions [C]//Reliability,Packaging,Testing,and Characterization of MEMS/MOEMS and Nanodevices IX.Bellingham,USA:SPIE,2010.

    • [123] DOUGLASS M R.Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device(DMD)[C]//1998 IEEE International Reliability Physics Symposium Proceedings.New York,USA:IEEE,1998:9-16.

    • [124] QIAN L,YU H J,HU J,et al.Temperature compensation for MOEMS micromirror with piezoresistive angle sensor [C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS).New York,USA:IEEE,2021.

    • [125] GRAHMANN J,SCHROEDTER R,KIETHE O,et al.Vibration analysis of micro mirrors for LIDAR using on-chip piezo-resistive sensor [C]//MOEMS and Miniaturized Systems XIX.Bellingham,USA:SPIE,2020.

    • [126] HUA Y,WANG S Y,LI B C,et al.Dynamic modeling and anti-disturbing control of an electromagnetic MEMS torsional micromirror considering external vibrations in vehicular LiDAR [J].Micromachines,2021,12(1):69.

    • [127] 李岩,舒望.车载扬声器的环境可靠性测试技术探讨[J].电子质量,2013(1):24-28.LI Y,SHU W.Evaluation of automobile speaker reliability test technique [J].Electronics Quality,2013(1):24-28.(in Chinese)

    • [128] 张建宏.复杂力学环境中MEMS安全系统失效机理与分析方法研究[D].北京:北京理工大学,2014.ZHANG J H.Research of failure mechanism and analysis method for MEMS Safety&Arming device in complex mechanical environment [D].Beijing:Beijing Institute of Technology,2014.(in Chinese)

    • [129] MILANOVIC V,KASTURI A,YANG J.Novel fluidic packaging of gimbal-less MEMS mirrors for increased optical resolution and overall performance [C]//Micro/Nanotechnology Sensors,Systems,and Applications VIII.Bellingham,USA:SPIE,2016.

    • [130] SANG W Y.Vibration isolation and shock protection for MEMS[D].Ann Arbo,USA:University of Michigan,2009.

    • [131] BONI N,CARMINATI R,MENDICINO G,et al.Quasi-static PZT actuated MEMS mirror with 4×3mm2 reflective area and high robustness [C]//MOEMS and Miniaturized Systems XX.Bellingham,USA:SPIE,2021.

    • [132] 程源,刘培培,赵林平,等.汽车“三高” 环境适应性试验开发和验证[J].公路与汽运,2016(3):11-13.

    • [133] 吕良.MEMS汽车传感器设计关键技术的研究[D].北京:北京邮电大学,2011.LV L.A study on critical technologies of the design of the automotive sensors based on MEMS [D].Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)

    • [134] 盛斌.可靠性试验中三大加速模型的研究与应用[J].电子技术与软件工程,2014(14):147-149.

    • [135] 宋运康,赵坤帅,闫鑫,等.湿度对微型加速度计粘连失效的影响[J].传感技术学报,2014,27(3):316-319.SONG Y K,ZHAO K S,YAN X,et al.The adhesion failure in the MEMS accelerator influenced by relative humudity [J].Chinese Journal of Sensors and Actuators,2014,27(3):316-319.(in Chinese)

    • [136] 张文明,孟光.MEMS可靠性与失效分析[J].机械强度,2005,27(6):855-859.ZHANG W M,MENG G.Reliability of MEMS and its failure analysis [J].Journal of Mechanical Strength,2005,27(6):855-859.(in Chinese)

    • [137] 顾盼,刘景全,陈迪,等.采用RIE沉积法研制微纳工艺中的防粘连层[J].传感技术学报,2006,19(5):1395-1397+1400.GU P,LIU J Q,CHEN D,et al.The research of anti-adhesive film by RIE deposition in MEMS/NEMS [J].Chinese Journal of Sensors and Actuators,2006,19(5):1395-1397+1400.(in Chinese)

    • [138] DE GROOT W A,WEBSTER J R,FELNHOFER D,et al.Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices [J].IEEE Transactions on Device and Materials Reliability,2009,9(2):190-202.

    • [139] 彭明迪.一种二维MEMS扫描微镜结构动力学及制备工艺研究[D].南京:南京理工大学,2019.PENG M D.Research on structural dynamics and fabrication process on a 2D MEMS mirror [D].Nanjing:Nanjing University of Science & Technology,2019.(in Chinese)

    • [140] CHEN H,PALLAPA M,SUN W J,et al.Nonlinear control of an electromagnetic polymer MEMS hard-magnetic micromirror and its imaging application [J].Journal of Micromechanics and Microengineering,2014,24(4):045004.

    • [141] 乔大勇,杨璇,夏长锋,等.梳齿分布结构对静电驱动二维微扫描镜机械转角的影响[J].传感技术学报,2014,27(2):172-177.QIAO D Y,YANG X,XIA C F,et al.Influence of comb distribution on the twisting amplitude of two-dimensional microscanner actuated electrostatically [J].Chinese Journal of Sensors and Actuators,2014,27(2):172-177.(in Chinese)

    • [142] PENG M D,ZHU X H,JIANG B,et al.Response analysis of a 2D MEMS electromagnetically driven micro-mirror [C]//2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems(ICICM).New York,USA:IEEE,2018:5-9.

    • [143] HARTZELL A L,DA SILVA M G,SHEA H R.MEMS reliability [M].Boston,USA:Springer,2011.

    • [144] ISIKMAN S O,UREY H.Dynamic modeling of soft magnetic film actuated scanners [J].IEEE Transactions on Magnetics,2009,45(7):2912-2919.

    • [145] JUDY J W,MULLER R S.Magnetically actuated,addressable microstructures [J].Journal of Microelectromechanical Systems,1997,6(3):249-256.

    • [146] 杜林云,许高斌,花翔,等.用于激光雷达的双层梳齿驱动MEMS扫描镜[J].电子测量与仪器学报,2021,35(5):8-15.DU L Y,XU G B,HUA X,et al.MEMS scanning mirror driven by double comb teeth for lidar [J].Journal of Electronic Measurement and Instrumentation,2021,35(5):8-15.(in Chinese)

    • [147] CHU W H,MEHREGANY M,MULLEN R L.Analysis of tip deflection and force of a bimetallic cantilever microactuator [J].Journal of Micromechanics and Microengineering,1993,3(1):4-7.

    • [148] LEONDES C T.MEMS/NEMS:handbook techniques and applications [M].New York,USA:Springer,2006

    • [149] 白诚.静电扭转MEMS微镜的建模与控制研究[D].西安:西安电子科技大学,2017.BAI C.A survey on modelling and control of electrostatically actuated torsional MEMS micromirror [D].Xi’an:Xidian University,2017.(in Chinese)

    • [150] HOSAKA H,ITAO K,KURODA S.Damping characteristics of beam-shaped micro-oscillators [J].Sensors and Actuators A:Physical,1995,49(1/2):87-95.

    • [151] LANGLOIS W E.Isothermal squeeze films [J].Quarterly of Applied Mathematics,1962,20(2):131-150.

    • [152] HAO Z L,CLARK R,HAMMER J,et al.Modeling air-damping effect in a bulk micromachined 2D tilt mirror [J].Sensors and Actuators A:Physical,2002,102(1/2):42-48.

    • [153] TANG H W,YI Y B,MATIN M A.Simulation of thermoelastic damping of MEMS mirror using a finite element analysis [C]//International Society for Optics and Photonics.Bellingham,USA:SPIE,2007.

    • [154] UREY H,KAN C H,DAVIS W O.Vibration mode frequency formulae for micromechanical scanners [J].Journal of Micromechanics and Microengineering,2005,15(9):1713-1721.

    • [155] 李孝涛,陶俊勇,张云安.微倾斜悬臂梁力学特性研究与仿真分析[C]//2010年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第二次全体委员大会论文集.[出版者不详],2010:178-181.

    • [156] 何洋,霍鹏飞,苑伟政等.微结构的大转角非线性动态行为的宏建模方法[C]//中国机械工程学会.中国微米、纳米技术第七届学术会年会论文集(一).武汉:中国机械工程杂志社,2005:326-329.HE Y,HUO P F,YUAN W Z,et al.Macro-modeling of micro structure with nonlinear large angle rotation behavior[C]//Wuhan:Chinese Mechanical Engineering Society,2005:326-329.(in Chinese)

    • [157] 许筱玲,唐洁影.表面加工微多晶悬梁在振动载荷下的响应分析[J].微纳电子技术,2005,42(9):420-424.XU X L,TANG J Y.Analysis of response of the surface micromachined cantilever under vibration [J].Micronanoelectronic Technology,2005,42(9):420-424.(in Chinese)

    • [158] 赵建平,陈花玲,陈天宁.扭转微镜的动力学模型及其动态特性分析[J].振动工程学报,2004,17(4):449-452.ZHAO J P,CHEN H L,CHEN T N.Dynamic characteristics modeling and analysis of a torsional micromirror [J].Journal of Vibration Engineering,2004,17(4):449-452.(in Chinese)

    • [159] 周源,吕卫民,孙媛.基于逆Gaussian过程的MEMS加速度计寿命融合预测方法[J].中国惯性技术学报,2017,25(6):834-841.ZHOU Y,LV W M,SUN Y.Fusion prediction method for the life of MEMS accelerometer based on inverse Gaussian process [J].Journal of Chinese Inertial Technology,2017,25(6):834-841.(in Chinese)

    • [160] 王永泉,陈花玲,赵建平,等.基于Weibull分布的MEMS器件冲击可靠性建模[J].机械强度,2013,35(1):15-21.WANG Y Q,CHEN H L,ZHAO J P,et al.Modeling for the shock reliability of MEMS devices based on Weibull distribution [J].Journal of Mechanical Strength,2013,35(1):15-21.(in Chinese)

    • [161] TEIXEIRA A P,SOARES C G.Reliability assessment of plate elements with random properties[C]//Marine Technology and Engineering.Boca Raton,USA:Taylor & Francis,2011:1361-75.

    • [162] PATHAK R,JOSHI S,MISHRA D K.Distributive computing for reliability analysis of MEMS devices using MATLAB [C]//Proceedings of the International Conference on Advances in Computing,Communication and Control.New York,USA:ACM,2009:246-250.

    • [163] 张姣,李永红,刘国忠,等.MEMS惯导的加速寿命试验分析[J].仪表技术,2010(1):53-55+57.ZHANG J,LI Y H,LIU G Z,et al.Analysis of accelerated life testing [J].Instrumentation Technology,2010(1):53-55+57.(in Chinese)

    • [164] 林震,姜同敏,程永生,等.阿伦尼斯模型研究[J].电子产品可靠性与环境试验,2005,23(6):12-14.LIN Z,JIANG T M,CHENG Y S,et al.Study on Arrhenius relationship [J].Electronic Product Reliability and Environmental Testing,2005,23(6):12-14.(in Chinese)

    • [165] MANSON S S,DOLAN T J.Thermal stress and low cycle fatigue [J].Journal of Applied Mechanics,1966,33(4):957.

    • [166] COFFIN JR L F.A study of the effects of cyclic thermal stresses on a ductile metal [J].Journal of Fluids Engineering,1954,76(6):931-949.

    • [167] 卢炽华,张艳杰,卢思思,等.基于Hallberg-Peck模型的玻璃纤维增强PC的性能与寿命[J].塑料工业,2022,50(7):106-109+156.LU C H,ZHANG Y J,LU S S,et al.Properties and lifetime of glass fiber reinforced polycarbonate based on Hallberg-Peck model [J].China Plastics Industry,2022,50(7):106-109+156.(in Chinese)

    • [168] 薛阳,张蓬鹤,王雅涛,等.智能电能表可靠性评价方法研究与探讨[J].电测与仪表,2016,53(13):90-94+99.XUE Y,ZHANG P H,WANG Y T,et al.Study and exploration on reliability assessment method for smart meters [J].Electrical Measurement & Instrumentation,2016,53(13):90-94+99.(in Chinese)

    • [169] WANG X.Wiener processes with random effects for degradation data [J].Journal of Multivariate Analysis,2010,101(2):340-351.

    • [170] 盖炳良,滕克难,张晓瑜,等.基于性能检测信息的加速度计可靠性评估[J].航空兵器,2019,26(5):95-102.GAI B L,TENG K N,ZHANG X Y,et al.Reliability assessment of accelerometer based on performance test information [J].Aero Weaponry,2019,26(5):95-102.(in Chinese)

    • [171] YAN H,LIU K B,ZHANG X,et al.Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions [J].IEEE Transactions on Reliability,2016,65(3):1416-1426.

    • [172] SONG C Y,LIU K B,ZHANG X.Integration of data-level fusion model and kernel methods for degradation modeling and prognostic analysis [J].IEEE Transactions on Reliability,2018,67(2):640-650.

    • [173] CHEHADE A,SONG C Y,LIU K B,et al.A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes [J].Journal of Quality Technology,2018,50(2):150-165.

    • [174] 赵广社,吴思思,荣海军.多源统计数据驱动的航空发动机剩余寿命预测方法[J].西安交通大学学报,2017,51(11):150-155+172.ZHAO G S,WU S S,RONG H J.A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine [J].Journal of Xi’an Jiaotong University,2017,51(11):150-155+172.(in Chinese)

    • [175] 任子强,司小胜,胡昌华,等.融合多传感器数据的发动机剩余寿命预测方法[J].航空学报,2019,40(12):134-145.REN Z Q,SI X S,HU C H,et al.Remaining useful life prediction method for engine combining multi-sensors data [J].Acta Aeronautica et Astronautica Sinica,2019,40(12):134-145.(in Chinese)

    • [176] CHU C H,SHIH W P,CHUNG S Y,et al.A low actuation voltage electrostatic actuator for RF MEMS switch applications [J].Journal of Micromechanics and Microengineering,2007,17(8):1649-1656.

    • [177] BAI C,HUANG J.Modeling and active control of circular electrostatic torsional micromirror [J].Advanced Materials Research,2012,629:649-654.

    • [178] 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.LIU J K.MATLAB simulation for sliding mode control [M].Beijing:Tsinghua University Press,2005.(in Chinese)

    • [179] 胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.

    • [180] DAQAQ M F,REDDY C K,NAYFEH A H.Input-shaping control of nonlinear MEMS [J].Nonlinear Dynamics,2008,54(1):167-179.

    • [181] SHI M H,ZHANG H,CHEN Q.The input shaping control of eletro-thermal MEMS micromirror [C]//2014 IEEE International Conference on Mechatronics and Automation.New York,USA:IEEE,2014:583-587.

    • [182] CHEN K S,OU K S.Command-shaping techniques for electrostatic MEMS actuation:analysis and simulation [J].Journal of Microelectromechanical Systems,2007,16(3):537-549.

    • [183] LIAO K M,WANG Y C,YEH C H,et al.Closed-loop adaptive control for torsional micromirrors [C]//MOEMS and Miniaturized Systems IV.Bellingham,USA:SPIE,2004.

    • [184] MA Y,ISLAM S,PAN Y J.Electrostatic torsional micromirror with enhanced tilting angle using active control methods [J].IEEE/ASME Transactions on Mechatronics,2011,16(6):994-1001.

    • [185] SANE H S,YAZDI N,MASTRANGELO C H.Application of sliding mode control to electrostatically actuated two-axis gimbaled micromirrors [C]//Proceedings of the 2003 American Control Conference.New York,USA:IEEE,2003:3726-3731.

    • [186] SANE H S,YAZDI N,MASTRANGELO C H.Modified sliding mode control and its application to electrostatically controlled dual-axis micromirrors [C]//Proceedings of the 2004 American Control Conference.New York,USA:IEEE,2004:1934-1939.

    • [187] TAN J Z,SUN W J,YEOW J T W.Experimental validation of Nussbaum gain adaptive control for a polymer composite based electromagnetic micromirror [C]//2017 36th Chinese Control Conference(CCC).New York,USA:IEEE,2017:1058-1062.

    • [188] MAKSYMOVA I,GREINER P,STEGER C,et al.Adaptive MEMS mirror control for reliable automotive driving assistance applications [C]//2020 23rd Euromicro Conference on Digital System Design(DSD).New York,USA:IEEE,2020:469-475.

    • [189] EUN Y,JEONG B,KIM J.Switching time reduction for electrostatic torsional micromirrors using input shaping [J].Japanese Journal of Applied Physics,2010,49(5):054102.

    • [190] BAI C,HUANG J.Multistep-shaping control based on the static and dynamic behavior of nonlinear optical torsional micromirror [J].Optical Engineering,2014,53(5):057109.

    • [191] SHAN W W,CHEN X.A novel combined proportional-derivative control for electrostatic MEMS mirror actuation [J].IEICE Transactions on Electronics,2011,E94-C(9):1486-1489.

    • [192] WANG X C,XIE Y K,LIANG H H,et al.Analysis of distortion based on 2D MEMS micromirror scanning projection system [J].Micromachines,2021,12(7):818.

    • [193] SIDLER T.Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner [J].Optical Engineering,2003,42(4):1048.

    • [194] 刘涵.基于Ring-Down方法的MEMS二维扫描微镜驱动与控制研究[D].南京:南京理工大学,2019.〗LIU H.Research on driving and control of MEMS 2-D scanning micromirror based on Ring-Down method [D].Nanjing University of Science & Technology,2020.(in Chinese)

    • [195] 李冠霖.电磁驱动微镜的H控制及其应用[D].广州:华南理工大学,2016.LI G L.H control and application of electromagnetically actuated micromirror [D].Guangzhou:South China University of Technology,2016.(in Chinese)

    • [196] 章皓.电热式MEMS微镜驱动控制技术研究[D].苏州:苏州大学,2014.ZHANG H.The research of driving control technology based on electrothermal MEMS micromirror [D].Suzhou:Soochow University,2014.(in Chinese)

  • 参考文献

    • [1] 张文栋,熊继军.微光机电系统(MOEMS)[M].北京:机械工业出版社,2006.

    • [2] 马天义,余跃,许敬,等.MOEMS 2D扫描镜的研究进展[J].传感器与微系统,2016,35(6):1-3+8.MA T Y,YU Y,XU J,et al.Research progress of MOEMS 2D scanning mirror [J].Transducer and Microsystem Technologies,2016,35(6):1-3+8.(in Chinese)

    • [3] Wolter A,Hsu S T,Schenk H,et al.Applications and requirements for MEMS scanner mirrors[C]//MOEMS and Miniaturized Systems V.Bellingham,USA:SPIE,2005.

    • [4] HOLMSTRÖ M S T S,BARAN U,UREY H.MEMS laser scanners:a review [J].Journal of Microelectromechanical Systems,2014,23(2):259-275.

    • [5] LARA-CASTRO M,HERRERA-AMAYA A,ESCAROLA-ROSAS M A,et al.Design and modeling of polysilicon electrothermal actuators for a MEMS mirror with low power consumption [J].Micromachines,2017,8(7):203.

    • [6] SALEH A A M,SIMMONS J M.All-optical networking-evolution,benefits,challenges,and future vision [J].Proceedings of the IEEE,2012,100(5):1105-1117.

    • [7] TSAI C H,TSAI J C.MEMS optical switches and interconnects [J].Displays,2015,37:33-40.

    • [8] WANG H R,YANG H,CHEN Z F,et al.Development of dual-frequency PMUT arrays based on thin ceramic PZT for endoscopic photoacoustic imaging [J].Journal of Microelectromechanical Systems,2021,30(5):770-782.

    • [9] JUNG W,MCCORMICK D T,ZHANG J,et al.Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror [J].Applied Physics Letters,2006,88(16):163901.

    • [10] SCHENK H,WAGNER M,GRAHMANN J,et al.Advances in MOEMS technologies for high-quality imaging systems [C]//Optical Microlithography XXXI.Bellingham,USA:SPIE,2018.

    • [11] YALCINKAYA A D,UREY H,BROWN D,et al.Two-axis electromagnetic microscanner for high resolution displays [J].Journal of Microelectromechanical Systems,2006,15(4):786-794.

    • [12] WANG D K,XIE H K,THOMAS L,et al.A miniature LiDAR with a detached MEMS scanner for micro-robotics [J].IEEE Sensors Journal,2021,21(19):21941-21946.

    • [13] 王强.静电梳齿驱动MEMS扫描镜研究[D].成都:中国科学院光电技术研究所,2021.WANG Q.Study on MEMS scanner based on electrostatic comb drive actuator [D].Chengdu:Institute of Optics and Electronics,Chinese Academy of Sciences,2021.(in Chinese)

    • [14] ROYO S,BALLESTA-GARCIA M.An overview of lidar imaging systems for autonomous vehicles [J].Applied Sciences,2019,9(19):4093.

    • [15] POCZTER S L,JANKOVIC L M.The google car:driving toward A better future?[J].Journal of Business Case Studies(JBCS),2013,10(1):7.

    • [16] 吕江涛.自动驾驶技术超越特斯拉 “华为第一车” 暴拉A股[J].中国经济周刊,2021(8):76-77.

    • [17] ROSS P E.Volvo’s Self-Driving Program Will Have Redundancy For Everything[EB/OL].(2016-05-11)[2023-06-06].https://spectrum.ieee.org/volvos-selfdriving-program-will-have-redundancy-for-everything.

    • [18] 朱敏慧.Innovusion鲍君威:蔚来ET7激光雷达量产,2022年为中国激光雷达上车元年[J].汽车与配件,2022(1):34-35.

    • [19] 陆英.一种用于激光雷达的微振镜设计[J].激光与红外,2022,52(6):900-904.LU Y.A design of micro scanning mirror based on laser radar system [J].Laser & Infrared,2022,52(6):900-904.(in Chinese)

    • [20] LI Y,IBANEZ-GUZMAN J.Lidar for autonomous driving:the principles,challenges,and trends for automotive lidar and perception systems [J].IEEE Signal Processing Magazine,2020,37(4):50-61.

    • [21] RASSHOFER R H,GRESSER K.Automotive radar and lidar systems for next generation driver assistance functions [J].Advances in Radio Science,2005,3(10):205-209.

    • [22] HUANG Y H,SAI SARATHI VASAN A,DORAISWAMI R,et al.MEMS reliability review [J].IEEE Transactions on Device and Materials Reliability,2012,12(2):482-493.

    • [23] SOMÀ A.A survey of Mechanical failure and design for Reliability of MEMS [J].IOP Conference Series:Materials Science and Engineering,2020,724(1):012051.

    • [24] 李斌,贾颖,韩鑫,等.车载液晶显示器环境试验技术分析[J].环境技术,2008,26(3):7-10.LI B,JIA Y,HAN X,et al.The analysis of environmental testing technical on vehicle LCD [J].Environmental Technology,2008,26(3):7-10.(in Chinese)

    • [25] 王汉青.车载电子设备复杂电磁环境效应分析[D].长春:吉林大学,2019.WANG H Q.Analysis of complicated electromagnetic environmental effects of vehicular electronic devices [D].Changchun:Jilin University,2019.(in Chinese)

    • [26] DOUGLASS M.DMD reliability:a MEMS success story [C]//Reliability,Testing,and Characterization of MEMS/MOEMS II.Bellingham,USA:SPIE,2003.

    • [27] PAL S,XIE H K.Repeatability study of an electrothermally actuated micromirror [C]//2009 IEEE International Reliability Physics Symposium.New York,USA:IEEE,2009:549-556.

    • [28] MAHARSHI V,AGARWAL A.Reliability analysis of thermally actuated MEMS micromirror[C]//LENKA T R,MISRA D,FU L.Micro and Nanoelectronics Devices,Circuits and Systems.Singapore:Springer,2023:427-436.

    • [29] ARYAL N,EMADI A.A method to enhance stroke level of a MEMS micromirror with repulsive electrostatic force [J].Micromachines,2020,11(4):401.

    • [30] JIA K M,PAL S,XIE H K.An electrothermal tip-tilt-piston micromirror based on folded dual S-shaped bimorphs [J].Journal of Microelectromechanical Systems,2009,18(5):1004-1015.

    • [31] WANG H R,ZHANG X Y,ZHANG D H,et al.Characterization and reliability study of a MEMS mirror based on electrothermal bimorph actuation [C]//2017 International Conference on Optical MEMS and Nanophotonics(OMN).New York,USA:IEEE,2017.

    • [32] KOH K H,LEE C K.A low power 2-D raster scanning MEMS mirror driven by hybrid electrothermal and electromagnetic actuation mechanisms [C]//2012 International Conference on Optical MEMS and Nanophotonics.New York,USA:IEEE,2012:236-237.

    • [33] FANG X Y,HU K M,YAN G,et al.Shock destructive reliability analysis of electromagnetic MEMS micromirror for automotive LiDAR [J].Journal of Microelectromechanical Systems,2022,31(1):134-142.

    • [34] LIU W J,TANG Y M,WANG B P.Reliability evaluation of micromirror of double S-shaped unimorph piezoelectric actuator with probabilistic approach [C]//The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.New York,USA:IEEE,2013:813-816.

    • [35] LIAO K M.Closed-loop adaptive control for electrostatically driven torsional micromirrors [J].Nanolithography,MEMS,and MOEMS,2005,4(4):041503.

    • [36] TAN Y H,DONG R L,LI Z Z,et al.Online optimization control with predictive gradient descent for MEMS micro-mirrors [J].IEEE Transactions on Industrial Electronics,2022,69(7):7307-7317.

    • [37] ATAMAN,LANI S,NOELL W,et al.A dual-axis pointing mirror with moving-magnet actuation [J].Journal of Micromechanics and Microengineering,2013,23(2):025002.

    • [38] 徐士浩.面向激光雷达的双轴MEMS微镜结构设计与制备工艺研究[D].西安:陕西科技大学,2022.XU S H.Research on structure design and fabrication of biaxial MEMS mirror for lidar application [D].Xi’an:Shaanxi University of Science & Technology,2022.(in Chinese)

    • [39] SCHENK H,DURR P,HAASE T,et al.Large deflection micromechanical scanning mirrors for linear scans and pattern generation [J].IEEE Journal of Selected Topics in Quantum Electronics,2000,6(5):715-722.

    • [40] SEO Y H,HWANG K,KIM H,et al.Scanning MEMS mirror for high definition and high frame rate lissajous patterns [J].Micromachines,2019,10(1):67.

    • [41] ZHANG X Y,ZHANG R,KOPPAL S,et al.MEMS mirrors submerged in liquid for wide-angle scanning [C]//18th International Conference on Solid-State Sensors,Actuators and Microsystems.New York,USA:IEEE,2015:847-850.

    • [42] YE L C,ZHANG G F,YOU Z.5 V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application [J].Sensors,2017,17(3):521.

    • [43] TASNEEM Z,WANG D K,XIE H K,et al.Directionally controlled time-of-flight ranging for mobile sensing platforms [C]//Robotics:Science and Systems XIV.Cambridge,MA,USA:MIT Press,2018.

    • [44] THONGRUENG J,TSUCHIYA T,NAGATA K.Lifetime and degradation mechanism of multilayer ceramic actuator [J].Japanese Journal of Applied Physics,1998,37(9):5306.

    • [45] HE Z M,LOH H T,ONG E H.Reliability evaluation of piezoelectric micro-actuators with application in hard disk drives [J].IEEE Transactions on Magnetics,2008,44(11):3722-3725.

    • [46] BARAN U,BROWN D,HOLMSTROM S,et al.Resonant PZT MEMS scanner for high-resolution displays [J].Journal of Microelectromechanical Systems,2012,21(6):1303-1310.

    • [47] MEINEL K,MELZER M,STOECKEL C,et al.2D scanning micromirror with large scan angle and monolithically integrated angle sensors based on piezoelectric thin film aluminum nitride [J].Sensors,2020,20(22):6599.

    • [48] KOH K H,LEE C K.A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage [J].Journal of Microelectromechanical Systems,2012,21(5):1124-1135.

    • [49] KIM S J,CHO Y H,NAM H J,et al.Piezoelectrically pushed rotational micromirrors for wide-angle optical switch applications [C]//The Sixteenth Annual International Conference on Micro Electro Mechanical Systems,2003.New York,USA:IEEE,2003:263-266.

    • [50] CHI C,YAO J,TSAI J,et al.Compact 1×8 MEMS Optical Switches Using Planar Lightwave Circuits[C]//Optical Fiber Communication Conference.Washington,USA:Optical Society of America,2004.

    • [51] CONANT R A,NEE J T,LAU K Y,et al.Dynamic deformation of scanning mirrors [C]//2000 IEEE/LEOS International Conference on Optical MEMS.New York,USA:IEEE,2002:49-50.

    • [52] 刘加凯,齐杏林,王波.温度应力对MEMS器件分层失效的影响规律[J].电子元件与材料,2013,32(3):84-87.LIU J K,QI X L,WANG B.Influence law of thermal stress on the delamination of MEMS components [J].Electronic Components and Materials,2013,32(3):84-87.(in Chinese)

    • [53] TU C C,FANCHIANG K,LIU C H.Rotary electrostatic micromirror switches using wafer-scale processing and assembly [J].Microsystem Technologies,2006,12(12):1099-1108.

    • [54] JI C H,YEE Y,CHOI J,et al.Electromagnetic 2 × 2 MEMS optical switch [J].IEEE Journal of Selected Topics in Quantum Electronics,2004,10(3):545-550.

    • [55] WANG Z F,CAO W,SHAN X C,et al.Development of 1×4 MEMS-based optical switch [J].Sensors and Actuators A:Physical,2004,114(1):80-87.

    • [56] BERNSTEIN J J,TAYLOR W P,BRAZZLE J D,et al.Electromagnetically actuated mirror arrays for use in 3-D optical switching applications [J].Journal of Microelectromechanical Systems,2004,13(3):526-535.

    • [57] SANDNER T,WILDENHAIN M,GERWIG C,et al.Large aperture MEMS scanner module for 3D distance measurement [C]//MOEMS and Miniaturized Systems IX.Bellingham,USA:SPIE,2010.

    • [58] CHEN K S,AYON A,SPEARING S M.Controlling and testing the fracture strength of silicon on the mesoscale [J].Journal of the American Ceramic Society,2000,83(6):1476-1484.

    • [59] MUHLSTEIN C L,BROWN S B,RITCHIE R O.High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air [J].Sensors and Actuators A:Physical,2001,94(3):177-188.

    • [60] 潘亦苏,陈大鹏.压电陶瓷非线性断裂的有限元分析[J].西南交通大学学报,2000,35(5):451-456.PAN Y S,CHEN D P.Finite element analysis of nonlinear fracture for piezoelectric ceramics [J].Journal of Southwest Jiaotong University,2000,35(5):451-456.(in Chinese)

    • [61] 毕美田,史运泽,陈晋,等.多层压电陶瓷驱动器纳米银粘接工艺应力分布的有限元分析[C]//2006年全国功能材料学术年会专辑.重庆:《功能材料》编辑部,2006:370-371+374.(in Chinese)BI M T,SHI Y Z,CHEN J,et al.FEM analysis of residual stress of nano Ag bonding for multilayer piezoelectric ceramic actuators[C]//Chongqing:China Academic Journal of Functional Materials,2006.(in Chinese)

    • [62] FURUTA A,UCHINO K.Destruction mechanism of multilayer ceramic actuators:case of antiferroelectrics [J].Ferroelectrics,1994,160(1):277-285.

    • [63] WOO S,GOO N.Analysis of the bending fracture process for piezoelectric composite actuators using dominant frequency bands by acoustic emission [J].Composites Science and Technology,2007,67(7/8):1499-1508.

    • [64] TUCK K,JUNGEN A,GEISBERGER A,et al.A study of creep in polysilicon MEMS devices [J].Journal of Engineering Materials and Technology,2005,127(1):90-96.

    • [65] MERLIJN VAN SPENGEN W.MEMS reliability from a failure mechanisms perspective [J].Microelectronics Reliability,2003,43(7):1049-1060.

    • [66] SILVESTRINI M,BARBATO M,COSTANTINI S,et al.Long-term stresses on linear micromirrors for pico projector application [J].Microelectronics Reliability,2017,76/77:626-630.

    • [67] CHUNG S H,LEE S K,JI C H,et al.Vacuum packaged electromagnetic 2D scanning micromirror [J].Sensors and Actuators A:Physical,2019,290:147-155.

    • [68] OU C H,LIN Y C,KEIKOIN Y,et al.Two-dimensional MEMS Fe-based metallic glass micromirror driven by an electromagnetic actuator [J].Japanese Journal of Applied Physics,2019,58:SDDL01.

    • [69] YOO H W,SCHITTER G.Complex valued state space model for weakly nonlinear duffing oscillator with noncollocated external disturbance [J].IFAC-PapersOnLine,2020,53(2):8546-8552.

    • [70] 王海宁,王水弟,蔡坚,等.先进的MEMS封装技术[J].半导体技术,2003(6):7-10.WANG H N,WANG S D,CAI J,et al.Advanced packaging technology for MEMS [J].Semiconductor Technology,2003,28(6):7-10.(in Chinese)

    • [71] 张昱,潘武.MEMS封装技术[J].纳米技术与精密工程,2005,3(3):194-198.ZHANG Y,PAN W.[J].Packaging technology for MEMS,2005,3(3):194-198.(in Chinese)

    • [72] LI G,TSENG A A.Low stress packaging of a micromachined accelerometer [J].IEEE Transactions on Electronics Packaging Manufacturing,2001,24(1):18-25.

    • [73] 吴忠烨,杨尚书,吴国强.MEMS器件低应力封装技术[J].微纳电子与智能制造,2020,2(4):43-51.WU Z Y,YANG S S,WU G Q.Low-stress packaging technology for MEMS devices [J].Micro/Nano Electronics and Intelligent Manufacturing,2020,2(4):43-51.(in Chinese)

    • [74] 钱磊,胡杰,单亚蒙,等.基于MEMS微镜角度反馈的新型封装应力隔离结构[J].光子学报,2022,51(5):187-196.QIAN L,HU J,SHAN Y M,et al.Novel packaging stress isolation structure for MEMS micromirror with piezoresistive angle sensor [J].Acta Photonica Sinica,2022,51(5):0551311.(in Chinese)

    • [75] SUHIR E.Predicted thermal stresses in a bimaterial assembly adhesively bonded at the ends [J].Journal of Applied Physics,2001,89(1):120-129.

    • [76] HAH D,HUANG S T Y,TSAI J C,et al.Low-voltage,large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators [J].Journal of Microelectromechanical Systems,2004,13(2):279-289.

    • [77] ZHOU L,ZHANG X Y,XIE H K.An electrothermal Cu/W bimorph tip-tilt-piston MEMS mirror with high reliability [J].Micromachines,2019,10(5):323.

    • [78] 师蔚,贡俊,黄苏融.永磁电动机永磁体防退磁技术研究综述[J].微特电机,2012,40(4):71-74+76.SHI W,GONG J,HUANG S R.An overview of anti-demagnetization technology of permanent magnet in permanent magnet motor [J].Small & Special Electrical Machines,2012,40(4):71-74+76.(in Chinese)

    • [79] 胡文艳.钕铁硼永磁材料的性能及研究进展[J].现代电子技术,2012,35(2):151-152+155.HU W Y.Property and research progress of NbFeB permanent magnets [J].Modern Electronics Technique,2012,35(2):151-152+155.(in Chinese)

    • [80] KUMAR S,PAVELYEV V,TRIPATHI N,et al.Review-recent advances in the development of carbon nanotubes based flexible sensors [J].Journal of the Electrochemical Society,2020,167(4):047506.

    • [81] HE S,BEN MRAD R,CHONG J.Repulsive-force out-of-plane large stroke translation micro electrostatic actuator [J].Journal of Micromechanics and Microengineering,2011,21(7):075002.

    • [82] 陈辉.MEMS扭转微镜的滑模控制研究[D].广州:华南理工大学,2014.CHEN H.Sliding mode control of torsinal MEMS micromirror [D].Guangzhou:South China University of Technology,2014.(in Chinese)

    • [83] FARGAS-MARQUES A,CASALS-TERRE J,SHKEL A M.Resonant pull-in condition in parallel-plate electrostatic actuators [J].Journal of Microelectromechanical Systems,2007,16(5):1044-1053.

    • [84] SEEGER J I,BOSER B E.Charge control of parallel-plate,electrostatic actuators and the tip-in instability [J].Journal of Microelectromechanical Systems,2003,12(5):656-671.

    • [85] TIAN D,AIN Q T,ANJUM N,et al.Fractal N/MEMS:from pull-in instability to pull-in stability [J].Fractals,2021,29(2):2150030.

    • [86] DEGANI O,SOCHER E,LIPSON A,et al.Pull-in study of an electrostatic torsion microactuator [J].Journal of Microelectromechanical Systems,1998,7(4):373-379.

    • [87] HOSSEINI M,ZHU G C,PETER Y A.A new formulation of fringing capacitance and its application to the control of parallel-plate electrostatic micro actuators [J].Analog Integrated Circuits and Signal Processing,2007,53(2):119-128.

    • [88] ZHANG W M,YAN H,PENG Z K,et al.Electrostatic pull-in instability in MEMS/NEMS:a review [J].Sensors and Actuators A:Physical,2014,214:187-218.

    • [89] BENI Y T,KOOCHI A,KAZEMI A S,et al.Modeling the influence of surface effect and molecular force on pull-in voltage of rotational nano-micro mirror using 2-DOF model [J].Canadian Journal of Physics,2012,90(10):963-974.

    • [90] DUAN J S,RACH R.A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy,fringing field and Casimir effects [J].International Journal of Solids and Structures,2013,50(22/23):3511-3518.

    • [91] ZHAO Y,TAY F E H,CHAU F S,et al.Stabilization of dual-axis micromirrors beyond the pull-in point by integral sliding mode control [J].Journal of Micromechanics and Microengineering,2006,16(7):1242-1250.

    • [92] KUMAR A,KUMAR P,BAJPAI A,et al.Design and development of a double-bridge micromirror with bending and twisting cantilevers for multiobject spectroscopy [J].IEEE Transactions on Electron Devices,2020,67(10):4392-4398.

    • [93] PU C,PARK S,CHU P B,et al.Electrostatic actuation of three-dimensional MEMS mirrors using sidewall electrodes [J].IEEE Journal of Selected Topics in Quantum Electronics,2004,10(3):472-477.

    • [94] HUNG E S,SENTURIA S D.Leveraged bending for full-gap positioning with electrostatic actuation [C]//1998 Solid-State,Actuators,and Microsystems Workshop Technical Digest.San Diego,USA:Transducer Research Foundation,Inc.,1998:83-86.

    • [95] LIU M J,CHEN Y L,CHENG W,et al.Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force [J].Capillarity,2022,5(3):51-64.

    • [96] 罗伟,杨国珂,叶坤涛.串联电容对MEMS扭转微镜吸合角的影响[J].仪表技术与传感器,2014(4):98-101+105.LUO W,YANG G K,YE K T.Influent of series capacitor on pull-in angle of MEMS torsional micromirror [J].Instrument Technique and Sensor,2014(4):98-101+105.(in Chinese)

    • [97] AFRANG S,MOBKI H,HASSANZADEH M,et al.Design and simulation of a MEMS analog micro-mirror with improved rotation angle [J].Microsystem Technologies,2019,25(3):1099-1109.

    • [98] SANGAMESWARAN S,DE COSTER J,LINTEN D,et al.Investigating ESD sensitivity in electrostatic SiGe MEMS [J].Journal of Micromechanics and Microengineering,2010,20(5):055005.

    • [99] SANGAMESWARAN S,DE COSTER J,LINTEN D,et al.ESD reliability issues in microelectromechanical systems(MEMS):a case study on micromirrors [C]//Electrical Overstress/Electrostatic Discharge Symposium.New York,USA:IEEE,2008:249-257.

    • [100] WIBBELER J,PFEIFER G,HIETSCHOLD M.Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems(MEMS)[J].Sensors and Actuators A:Physical,1998,71(1/2):74-80.

    • [101] GREASON W D.Analysis of the effect of ESD on the operation of MEMs [J].IEEE Transactions on Industry Applications.2008,45(6):2185-2191..

    • [102] 许成龙,李朋伟,张文栋,等.电容式RF MEMS开关介质层电荷积累消除方法[J].微纳电子技术,2013,50(9):559-565+580.XU C L,LI P W,ZHANG W D,et al.Dielectric charging-eliminating technology for capacitive RF MEMS switches [J].Micronanoelectronic Technology,2013,50(9):559-565+580.(in Chinese)

    • [103] TOUATI S,LORPHELIN N,KANCIURZEWSKI A,et al.Low actuation voltage totally free flexible RF MEMS switch with antistiction system [C]//2008 Symposium on Design,Test,Integration and Packaging of MEMS/MOEMS.New York,USA:IEEE,2008:66-70.

    • [104] PENG Z,YUAN X B,HWANG J C M,et al.Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms [J].IEEE Transactions on Microwave Theory and Techniques,2007,55(12):2911-2918.

    • [105] WONG W S H,LAI C H.Longer MEMS switch lifetime using novel dual-pulse actuation voltage [J].IEEE Transactions on Device and Materials Reliability,2009,9(4):569-575.

    • [106] LI G,CHEN X Y.Modified Fowler-Nordheim tunnelling for modelling charge injection into Si3N4 in an Al/Si3N4/Si structure [J].Applied Physics A,2012,109(3):539-545.

    • [107] 郭兴军,李朋伟,张文栋,等.基于电容式MEMS器件的静电斥力驱动研究[J].仪器仪表学报,2014,35(8):1738-1743.GUO X J,LI P W,ZHANG W D,et al.Investigation on electrostatic repulsion for driving capacitive MEMS devices [J].Chinese Journal of Scientific Instrument,2014,35(8):1738-1743.(in Chinese)

    • [108] 周凌峰.电热式双S结构MEMS微镜的热学特性研究[D].北京:北京理工大学,2016.ZHOU L F.Investigation of the thermal behavior of an electrothermal folded dual S-shaped micromirror [D].Beijing:Beijing Institute of Technology,2016.(in Chinese)

    • [109] PAL S,XIE H K.Fabrication of robust electrothermal MEMS devices using aluminum-tungsten bimorphs and polyimide thermal isolation [J].Journal of Micromechanics and Microengineering,2012,22(11):115036.

    • [110] CHUANG T H,LIN H J,WANG H C,et al.Mechanism of electromigration in Ag-alloy bonding wires with different Pd and Au content [J].Journal of Electronic Materials,2015,44(2):623-629.

    • [111] 杨刚,岳振星,李龙土.压电陶瓷场致疲劳特性与机理研究进展[J].无机材料学报,2007,22(1):1-6.YANG G,YUE Z X,LI L T.Research progress on the characteristics and mechanism of applied field-induced fatigue in piezoelectric ceramics [J].Journal of Inorganic Materials,2007,22(1):1-6.(in Chinese)

    • [112] NAKAMURA S,NANIWA I,SATO K,et al.Lifetime prediction method for piggyback PZT actuator [J].IEEE Transactions on Magnetics,2001,37(2):940-943.

    • [113] 王泓杰,王晨,沈星.典型智能材料结构疲劳可靠性问题研究进展[J].航空科学技术,2022,33(3):52-64.WANG H J,WANG C,SHEN X.Research progress on fatigue reliability in typical smart material structure [J].Aeronautical Science & Technology,2022,33(3):52-64.(in Chinese)

    • [114] 王伟强.压电陶瓷的场致疲劳与非线性研究[D].北京:清华大学,2006.WANG W Q.Study on field-induced fatigue and nonlinearity of piezoelectric ceramics [D].Beijing:Tsinghua University,2006.(in Chinese)

    • [115] 罗帅,王家秋,张彬.压电陶瓷驱动器疲劳特性对变形镜校正能力的影响[J].中国激光,2018,45(9):0905002.LUO S,WANG J Q,ZHANG B.Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror [J].Chinese Journal of Lasers,2018,45(9):0905002.(in Chinese)

    • [116] GAO X Y,XIN X D,WU J G,et al.A multilayered-cylindrical piezoelectric shear actuator operating in shear(d15)mode [J].Applied Physics Letters,2018,112(15):152902.

    • [117] 冉兵,赵帝植,文良华.压电倾斜镜中堆叠式压电陶瓷驱动器动态应力计算分析[J].激光与光电子学进展,2022,59(5):0523001.RAN B,ZHAO D Z,WEN L H.Research on dynamic stress of piezoelectric fast steering mirror stacked PZT actuator [J].Laser & Optoelectronics Progress,2022,59(5):0523001.(in Chinese)

    • [118] SANGAMESWARAN S,DE COSTER J,GROESENEKEN G,et al.Reliability test methodology for MEMS and MOEMS under electrical overstress and electrostatic discharge stress [J].Nanolithography,MEMS,and MOEMS,2012,11(2):021204.

    • [119] YOO H W,RIEGLER R,BRUNNER D,et al.Experimental evaluation of vibration influence on a resonant MEMS scanning system for automotive lidars [J].IEEE Transactions on Industrial Electronics,2022,69(3):3099-3108.

    • [120] FANG X Y,LI X Y,HU K M,et al.Destructive reliability analysis of electromagnetic MEMS micromirror under vibration environment [J].IEEE Journal of Selected Topics in Quantum Electronics,2022,28(5):2800108.

    • [121] 杜林云.应用于激光雷达的MEMS扫描镜研究[D].合肥:合肥工业大学,2021.DU L Y.Research on MEMS scanning mirror applied in lidar [D].Hefei:Hefei University of Technology,2021.(in Chinese)

    • [122] SIVAKUMAR G,RANGANATHAN R,GALE R,et al.Reliability study of a MEMS array under varying temperature and humidity conditions [C]//Reliability,Packaging,Testing,and Characterization of MEMS/MOEMS and Nanodevices IX.Bellingham,USA:SPIE,2010.

    • [123] DOUGLASS M R.Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device(DMD)[C]//1998 IEEE International Reliability Physics Symposium Proceedings.New York,USA:IEEE,1998:9-16.

    • [124] QIAN L,YU H J,HU J,et al.Temperature compensation for MOEMS micromirror with piezoresistive angle sensor [C]//2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS).New York,USA:IEEE,2021.

    • [125] GRAHMANN J,SCHROEDTER R,KIETHE O,et al.Vibration analysis of micro mirrors for LIDAR using on-chip piezo-resistive sensor [C]//MOEMS and Miniaturized Systems XIX.Bellingham,USA:SPIE,2020.

    • [126] HUA Y,WANG S Y,LI B C,et al.Dynamic modeling and anti-disturbing control of an electromagnetic MEMS torsional micromirror considering external vibrations in vehicular LiDAR [J].Micromachines,2021,12(1):69.

    • [127] 李岩,舒望.车载扬声器的环境可靠性测试技术探讨[J].电子质量,2013(1):24-28.LI Y,SHU W.Evaluation of automobile speaker reliability test technique [J].Electronics Quality,2013(1):24-28.(in Chinese)

    • [128] 张建宏.复杂力学环境中MEMS安全系统失效机理与分析方法研究[D].北京:北京理工大学,2014.ZHANG J H.Research of failure mechanism and analysis method for MEMS Safety&Arming device in complex mechanical environment [D].Beijing:Beijing Institute of Technology,2014.(in Chinese)

    • [129] MILANOVIC V,KASTURI A,YANG J.Novel fluidic packaging of gimbal-less MEMS mirrors for increased optical resolution and overall performance [C]//Micro/Nanotechnology Sensors,Systems,and Applications VIII.Bellingham,USA:SPIE,2016.

    • [130] SANG W Y.Vibration isolation and shock protection for MEMS[D].Ann Arbo,USA:University of Michigan,2009.

    • [131] BONI N,CARMINATI R,MENDICINO G,et al.Quasi-static PZT actuated MEMS mirror with 4×3mm2 reflective area and high robustness [C]//MOEMS and Miniaturized Systems XX.Bellingham,USA:SPIE,2021.

    • [132] 程源,刘培培,赵林平,等.汽车“三高” 环境适应性试验开发和验证[J].公路与汽运,2016(3):11-13.

    • [133] 吕良.MEMS汽车传感器设计关键技术的研究[D].北京:北京邮电大学,2011.LV L.A study on critical technologies of the design of the automotive sensors based on MEMS [D].Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)

    • [134] 盛斌.可靠性试验中三大加速模型的研究与应用[J].电子技术与软件工程,2014(14):147-149.

    • [135] 宋运康,赵坤帅,闫鑫,等.湿度对微型加速度计粘连失效的影响[J].传感技术学报,2014,27(3):316-319.SONG Y K,ZHAO K S,YAN X,et al.The adhesion failure in the MEMS accelerator influenced by relative humudity [J].Chinese Journal of Sensors and Actuators,2014,27(3):316-319.(in Chinese)

    • [136] 张文明,孟光.MEMS可靠性与失效分析[J].机械强度,2005,27(6):855-859.ZHANG W M,MENG G.Reliability of MEMS and its failure analysis [J].Journal of Mechanical Strength,2005,27(6):855-859.(in Chinese)

    • [137] 顾盼,刘景全,陈迪,等.采用RIE沉积法研制微纳工艺中的防粘连层[J].传感技术学报,2006,19(5):1395-1397+1400.GU P,LIU J Q,CHEN D,et al.The research of anti-adhesive film by RIE deposition in MEMS/NEMS [J].Chinese Journal of Sensors and Actuators,2006,19(5):1395-1397+1400.(in Chinese)

    • [138] DE GROOT W A,WEBSTER J R,FELNHOFER D,et al.Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices [J].IEEE Transactions on Device and Materials Reliability,2009,9(2):190-202.

    • [139] 彭明迪.一种二维MEMS扫描微镜结构动力学及制备工艺研究[D].南京:南京理工大学,2019.PENG M D.Research on structural dynamics and fabrication process on a 2D MEMS mirror [D].Nanjing:Nanjing University of Science & Technology,2019.(in Chinese)

    • [140] CHEN H,PALLAPA M,SUN W J,et al.Nonlinear control of an electromagnetic polymer MEMS hard-magnetic micromirror and its imaging application [J].Journal of Micromechanics and Microengineering,2014,24(4):045004.

    • [141] 乔大勇,杨璇,夏长锋,等.梳齿分布结构对静电驱动二维微扫描镜机械转角的影响[J].传感技术学报,2014,27(2):172-177.QIAO D Y,YANG X,XIA C F,et al.Influence of comb distribution on the twisting amplitude of two-dimensional microscanner actuated electrostatically [J].Chinese Journal of Sensors and Actuators,2014,27(2):172-177.(in Chinese)

    • [142] PENG M D,ZHU X H,JIANG B,et al.Response analysis of a 2D MEMS electromagnetically driven micro-mirror [C]//2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems(ICICM).New York,USA:IEEE,2018:5-9.

    • [143] HARTZELL A L,DA SILVA M G,SHEA H R.MEMS reliability [M].Boston,USA:Springer,2011.

    • [144] ISIKMAN S O,UREY H.Dynamic modeling of soft magnetic film actuated scanners [J].IEEE Transactions on Magnetics,2009,45(7):2912-2919.

    • [145] JUDY J W,MULLER R S.Magnetically actuated,addressable microstructures [J].Journal of Microelectromechanical Systems,1997,6(3):249-256.

    • [146] 杜林云,许高斌,花翔,等.用于激光雷达的双层梳齿驱动MEMS扫描镜[J].电子测量与仪器学报,2021,35(5):8-15.DU L Y,XU G B,HUA X,et al.MEMS scanning mirror driven by double comb teeth for lidar [J].Journal of Electronic Measurement and Instrumentation,2021,35(5):8-15.(in Chinese)

    • [147] CHU W H,MEHREGANY M,MULLEN R L.Analysis of tip deflection and force of a bimetallic cantilever microactuator [J].Journal of Micromechanics and Microengineering,1993,3(1):4-7.

    • [148] LEONDES C T.MEMS/NEMS:handbook techniques and applications [M].New York,USA:Springer,2006

    • [149] 白诚.静电扭转MEMS微镜的建模与控制研究[D].西安:西安电子科技大学,2017.BAI C.A survey on modelling and control of electrostatically actuated torsional MEMS micromirror [D].Xi’an:Xidian University,2017.(in Chinese)

    • [150] HOSAKA H,ITAO K,KURODA S.Damping characteristics of beam-shaped micro-oscillators [J].Sensors and Actuators A:Physical,1995,49(1/2):87-95.

    • [151] LANGLOIS W E.Isothermal squeeze films [J].Quarterly of Applied Mathematics,1962,20(2):131-150.

    • [152] HAO Z L,CLARK R,HAMMER J,et al.Modeling air-damping effect in a bulk micromachined 2D tilt mirror [J].Sensors and Actuators A:Physical,2002,102(1/2):42-48.

    • [153] TANG H W,YI Y B,MATIN M A.Simulation of thermoelastic damping of MEMS mirror using a finite element analysis [C]//International Society for Optics and Photonics.Bellingham,USA:SPIE,2007.

    • [154] UREY H,KAN C H,DAVIS W O.Vibration mode frequency formulae for micromechanical scanners [J].Journal of Micromechanics and Microengineering,2005,15(9):1713-1721.

    • [155] 李孝涛,陶俊勇,张云安.微倾斜悬臂梁力学特性研究与仿真分析[C]//2010年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第二次全体委员大会论文集.[出版者不详],2010:178-181.

    • [156] 何洋,霍鹏飞,苑伟政等.微结构的大转角非线性动态行为的宏建模方法[C]//中国机械工程学会.中国微米、纳米技术第七届学术会年会论文集(一).武汉:中国机械工程杂志社,2005:326-329.HE Y,HUO P F,YUAN W Z,et al.Macro-modeling of micro structure with nonlinear large angle rotation behavior[C]//Wuhan:Chinese Mechanical Engineering Society,2005:326-329.(in Chinese)

    • [157] 许筱玲,唐洁影.表面加工微多晶悬梁在振动载荷下的响应分析[J].微纳电子技术,2005,42(9):420-424.XU X L,TANG J Y.Analysis of response of the surface micromachined cantilever under vibration [J].Micronanoelectronic Technology,2005,42(9):420-424.(in Chinese)

    • [158] 赵建平,陈花玲,陈天宁.扭转微镜的动力学模型及其动态特性分析[J].振动工程学报,2004,17(4):449-452.ZHAO J P,CHEN H L,CHEN T N.Dynamic characteristics modeling and analysis of a torsional micromirror [J].Journal of Vibration Engineering,2004,17(4):449-452.(in Chinese)

    • [159] 周源,吕卫民,孙媛.基于逆Gaussian过程的MEMS加速度计寿命融合预测方法[J].中国惯性技术学报,2017,25(6):834-841.ZHOU Y,LV W M,SUN Y.Fusion prediction method for the life of MEMS accelerometer based on inverse Gaussian process [J].Journal of Chinese Inertial Technology,2017,25(6):834-841.(in Chinese)

    • [160] 王永泉,陈花玲,赵建平,等.基于Weibull分布的MEMS器件冲击可靠性建模[J].机械强度,2013,35(1):15-21.WANG Y Q,CHEN H L,ZHAO J P,et al.Modeling for the shock reliability of MEMS devices based on Weibull distribution [J].Journal of Mechanical Strength,2013,35(1):15-21.(in Chinese)

    • [161] TEIXEIRA A P,SOARES C G.Reliability assessment of plate elements with random properties[C]//Marine Technology and Engineering.Boca Raton,USA:Taylor & Francis,2011:1361-75.

    • [162] PATHAK R,JOSHI S,MISHRA D K.Distributive computing for reliability analysis of MEMS devices using MATLAB [C]//Proceedings of the International Conference on Advances in Computing,Communication and Control.New York,USA:ACM,2009:246-250.

    • [163] 张姣,李永红,刘国忠,等.MEMS惯导的加速寿命试验分析[J].仪表技术,2010(1):53-55+57.ZHANG J,LI Y H,LIU G Z,et al.Analysis of accelerated life testing [J].Instrumentation Technology,2010(1):53-55+57.(in Chinese)

    • [164] 林震,姜同敏,程永生,等.阿伦尼斯模型研究[J].电子产品可靠性与环境试验,2005,23(6):12-14.LIN Z,JIANG T M,CHENG Y S,et al.Study on Arrhenius relationship [J].Electronic Product Reliability and Environmental Testing,2005,23(6):12-14.(in Chinese)

    • [165] MANSON S S,DOLAN T J.Thermal stress and low cycle fatigue [J].Journal of Applied Mechanics,1966,33(4):957.

    • [166] COFFIN JR L F.A study of the effects of cyclic thermal stresses on a ductile metal [J].Journal of Fluids Engineering,1954,76(6):931-949.

    • [167] 卢炽华,张艳杰,卢思思,等.基于Hallberg-Peck模型的玻璃纤维增强PC的性能与寿命[J].塑料工业,2022,50(7):106-109+156.LU C H,ZHANG Y J,LU S S,et al.Properties and lifetime of glass fiber reinforced polycarbonate based on Hallberg-Peck model [J].China Plastics Industry,2022,50(7):106-109+156.(in Chinese)

    • [168] 薛阳,张蓬鹤,王雅涛,等.智能电能表可靠性评价方法研究与探讨[J].电测与仪表,2016,53(13):90-94+99.XUE Y,ZHANG P H,WANG Y T,et al.Study and exploration on reliability assessment method for smart meters [J].Electrical Measurement & Instrumentation,2016,53(13):90-94+99.(in Chinese)

    • [169] WANG X.Wiener processes with random effects for degradation data [J].Journal of Multivariate Analysis,2010,101(2):340-351.

    • [170] 盖炳良,滕克难,张晓瑜,等.基于性能检测信息的加速度计可靠性评估[J].航空兵器,2019,26(5):95-102.GAI B L,TENG K N,ZHANG X Y,et al.Reliability assessment of accelerometer based on performance test information [J].Aero Weaponry,2019,26(5):95-102.(in Chinese)

    • [171] YAN H,LIU K B,ZHANG X,et al.Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions [J].IEEE Transactions on Reliability,2016,65(3):1416-1426.

    • [172] SONG C Y,LIU K B,ZHANG X.Integration of data-level fusion model and kernel methods for degradation modeling and prognostic analysis [J].IEEE Transactions on Reliability,2018,67(2):640-650.

    • [173] CHEHADE A,SONG C Y,LIU K B,et al.A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes [J].Journal of Quality Technology,2018,50(2):150-165.

    • [174] 赵广社,吴思思,荣海军.多源统计数据驱动的航空发动机剩余寿命预测方法[J].西安交通大学学报,2017,51(11):150-155+172.ZHAO G S,WU S S,RONG H J.A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine [J].Journal of Xi’an Jiaotong University,2017,51(11):150-155+172.(in Chinese)

    • [175] 任子强,司小胜,胡昌华,等.融合多传感器数据的发动机剩余寿命预测方法[J].航空学报,2019,40(12):134-145.REN Z Q,SI X S,HU C H,et al.Remaining useful life prediction method for engine combining multi-sensors data [J].Acta Aeronautica et Astronautica Sinica,2019,40(12):134-145.(in Chinese)

    • [176] CHU C H,SHIH W P,CHUNG S Y,et al.A low actuation voltage electrostatic actuator for RF MEMS switch applications [J].Journal of Micromechanics and Microengineering,2007,17(8):1649-1656.

    • [177] BAI C,HUANG J.Modeling and active control of circular electrostatic torsional micromirror [J].Advanced Materials Research,2012,629:649-654.

    • [178] 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.LIU J K.MATLAB simulation for sliding mode control [M].Beijing:Tsinghua University Press,2005.(in Chinese)

    • [179] 胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.

    • [180] DAQAQ M F,REDDY C K,NAYFEH A H.Input-shaping control of nonlinear MEMS [J].Nonlinear Dynamics,2008,54(1):167-179.

    • [181] SHI M H,ZHANG H,CHEN Q.The input shaping control of eletro-thermal MEMS micromirror [C]//2014 IEEE International Conference on Mechatronics and Automation.New York,USA:IEEE,2014:583-587.

    • [182] CHEN K S,OU K S.Command-shaping techniques for electrostatic MEMS actuation:analysis and simulation [J].Journal of Microelectromechanical Systems,2007,16(3):537-549.

    • [183] LIAO K M,WANG Y C,YEH C H,et al.Closed-loop adaptive control for torsional micromirrors [C]//MOEMS and Miniaturized Systems IV.Bellingham,USA:SPIE,2004.

    • [184] MA Y,ISLAM S,PAN Y J.Electrostatic torsional micromirror with enhanced tilting angle using active control methods [J].IEEE/ASME Transactions on Mechatronics,2011,16(6):994-1001.

    • [185] SANE H S,YAZDI N,MASTRANGELO C H.Application of sliding mode control to electrostatically actuated two-axis gimbaled micromirrors [C]//Proceedings of the 2003 American Control Conference.New York,USA:IEEE,2003:3726-3731.

    • [186] SANE H S,YAZDI N,MASTRANGELO C H.Modified sliding mode control and its application to electrostatically controlled dual-axis micromirrors [C]//Proceedings of the 2004 American Control Conference.New York,USA:IEEE,2004:1934-1939.

    • [187] TAN J Z,SUN W J,YEOW J T W.Experimental validation of Nussbaum gain adaptive control for a polymer composite based electromagnetic micromirror [C]//2017 36th Chinese Control Conference(CCC).New York,USA:IEEE,2017:1058-1062.

    • [188] MAKSYMOVA I,GREINER P,STEGER C,et al.Adaptive MEMS mirror control for reliable automotive driving assistance applications [C]//2020 23rd Euromicro Conference on Digital System Design(DSD).New York,USA:IEEE,2020:469-475.

    • [189] EUN Y,JEONG B,KIM J.Switching time reduction for electrostatic torsional micromirrors using input shaping [J].Japanese Journal of Applied Physics,2010,49(5):054102.

    • [190] BAI C,HUANG J.Multistep-shaping control based on the static and dynamic behavior of nonlinear optical torsional micromirror [J].Optical Engineering,2014,53(5):057109.

    • [191] SHAN W W,CHEN X.A novel combined proportional-derivative control for electrostatic MEMS mirror actuation [J].IEICE Transactions on Electronics,2011,E94-C(9):1486-1489.

    • [192] WANG X C,XIE Y K,LIANG H H,et al.Analysis of distortion based on 2D MEMS micromirror scanning projection system [J].Micromachines,2021,12(7):818.

    • [193] SIDLER T.Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner [J].Optical Engineering,2003,42(4):1048.

    • [194] 刘涵.基于Ring-Down方法的MEMS二维扫描微镜驱动与控制研究[D].南京:南京理工大学,2019.〗LIU H.Research on driving and control of MEMS 2-D scanning micromirror based on Ring-Down method [D].Nanjing University of Science & Technology,2020.(in Chinese)

    • [195] 李冠霖.电磁驱动微镜的H控制及其应用[D].广州:华南理工大学,2016.LI G L.H control and application of electromagnetically actuated micromirror [D].Guangzhou:South China University of Technology,2016.(in Chinese)

    • [196] 章皓.电热式MEMS微镜驱动控制技术研究[D].苏州:苏州大学,2014.ZHANG H.The research of driving control technology based on electrothermal MEMS micromirror [D].Suzhou:Soochow University,2014.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码