en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

孙秀婷,E-mail:05mech_sunxiuting@tongji.edu.cn

中图分类号:O328

文献标识码:A

文章编号:1672-6553-2024-22(2)-004-019

DOI:10.6052/1672-6553-2023-056

参考文献 1
LEE W B,CHEUNG C F,TO S.Materials induced vibration in ultra-precision machining [J].Journal of Materials Processing Technology,1999,89/90:318-325.
参考文献 2
KANDASAMY R,CUI F S,TOWNSEND N,et al.A review of vibration control methods for marine offshore structures [J].Ocean Engineering,2016,127:279-297.
参考文献 3
董瑶海.航天器微振动:理论与实践[M].北京:中国宇航出版社,2015.
参考文献 4
彭献,黎大志,陈树年.准零刚度隔振器及其弹性特性设计[J].振动.测试与诊断,1997,17(4):44-46.PENG X,LI D Z,CHEN S N.Quasi-zero stiffness vibration isolators and design for their elastic characteristics [J].Journal of Vibration,Measurement & Diagnosis,1997,17(4):44-46.(in Chinese)
参考文献 5
ZHANG Y,ZHANG J R.Disturbance characteristics analysis of CMG due to imbalances and installation errors [J].IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1017-1026.
参考文献 6
ZHANG Y,ZHANG J R,XU S J.Parameters design of vibration isolation platform for control moment gyroscopes [J].Acta Astronautica,2012,81(2):645-659.
参考文献 7
任晨辉,杨德庆.船用新型多层负刚度冲击隔离器性能分析[J].振动与冲击,2018,37(20):81-87.REN C H,YANG D Q.Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure [J].Journal of Vibration and Shock,2018,37(20):81-87.(in Chinese)
参考文献 8
陆泽琦,陈立群.非线性被动隔振的若干进展[J].力学学报,2017,49(3):550-564.LU Z Q,CHEN L Q.Some recent progresses in nonlinear passive isolations of vibrations [J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):550-564.(in Chinese)
参考文献 9
CARRELLA A,BRENNAN M J,WATERS T P.Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Sound Vibration,2007,301(3/4/5):678-689.
参考文献 10
KOVACIC I,BRENNAN M J,WATERS T P.A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic [J].Journal of Sound Vibration,2008,315(3):700-711.
参考文献 11
IBRAHIM R A.Recent advances in nonlinear passive vibration isolators [J].Journal of Sound Vibration,2008,314(3/4/5):371-452.
参考文献 12
PFEIFER R,LUNGARELLA M,IIDA F.Self-Organization,embodiment,and biologically inspired robotics [J].Science,318.
参考文献 13
WU Z J,JING X J,BIAN J,et al.Vibration isolation by exploring bio-inspired structural nonlinearity [J].Bioinspiration & Biomimetics,2015,10(5):056015.
参考文献 14
BIAN J,JING X J.Superior nonlinear passive dam-ping characteristics of the bio-inspired limb-like or X-shaped structure [J].Mechanical Systems and Signal Processing,2019,125:21-51.
参考文献 15
LI S Y,WANG K W.Fluidic origami cellular structure:combining the plant nastic movements with paper folding art [C]//Active and Passive Smart Structures and Integrated Systems 2015.Bellingham,USA:SPIE,2015.
参考文献 16
LI S Y,WANG K W.Fluidic origami with embedded pressure dependent multi-stability:a plant inspired innovation [J].Journal of the Royal Society,Interface,2015,12(111):20150639.
参考文献 17
LI S Y,WANG K W.Fluidic origami:a plant-inspired adaptive structure with shape morphing and stiffness tuning [J].Smart Material Structures,2015,24(10):105031.
参考文献 18
GATTI G.A K-shaped spring configuration to boost elastic potential energy [J].Smart Materials and Structures,2019,28(7):077002.
参考文献 19
GATTI G.Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections [J].Communications in Nonlinear Science and Numerical Simulations,2020,83:105143.
参考文献 20
SUN X T,WANG F,XU J.A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck [J].International Journal of Mechanical Sciences,2021,193:106166.
参考文献 21
SUN X T,QI Z F,XU J.A novel multi-layer isolation structure for transverse stabilization inspired by neck structure [J].Acta Mechanica Sinica,2022,38(6):521543.
参考文献 22
SUN X T,JING X J,XU J,et al.Vibration isolation via a scissor-like structured platform [J].Journal of Sound and Vibration,2014,333(9):2404-2420.
参考文献 23
SUN X T,JING X J.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band [J].Mechanical Systems and Signal Processing,2016,80:166-188.
参考文献 24
SUN X T,JING X J.Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J].Mechanical Systems and Signal Processing,2016,66/67:723-742.
参考文献 25
ZHANG W,ZHAO J B.Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types [J].Nonlinear Dynamics,2016,86(1):17-36.
参考文献 26
SUN B,JING X J.A tracked robot with novel bio-inspired passive "legs" [J].Robotics and Biomimetics,2017,4(1):18.
参考文献 27
WANG Y,JING X J,GUO Y Q.Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints [J].Nonlinear Dynamics,2019,95(1):445-464.
参考文献 28
JING X J,ZHANG L L,FENG X,et al.A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J].Mechanical Systems and Signal Processing,2019,118:317-339.
参考文献 29
DAI H H,JING X J,WANG Y,et al.Post-capture vibration suppression of spacecraft via a bio-inspired isolation system [J].Mechanical Systems and Signal Processing,2018,105:214-240.
参考文献 30
DAI H H,JING X J,SUN C,et al.Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture [J].Mechanical Systems and Signal Processing,2018,109:111-133.
参考文献 31
DAI H H,CAO X Y,JING X J,et al.Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft:theory and experiment [J].Mechanical Systems and Signal Processing,2020,142:106785.
参考文献 32
PAN H H,JING X J,SUN W C,et al.Analysis and design of a bioinspired vibration sensor system in noisy environment [J].IEEE/ASME Transactions on Mechatronics,2018,23(2):845-855.
参考文献 33
WU Z J,JING X J,SUN B,et al.A 6DOF passive vibration isolator using X-shape supporting structures [J].Journal of Sound and Vibration,2016,380:90-111.
参考文献 34
HU F Z,JING X J.A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs [J].Nonlinear Dynamics,2018,91(1):157-185.
参考文献 35
JIANG G Q,JING X J,GUO Y Q.A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties [J].Mechanical Systems and Signal Processing,2020,138:106552.
参考文献 36
SUN X T,XU J,WANG F,et al.A novel isolation structure with flexible joints for impact and ultralow-frequency excitations [J].International Journal of Mechanical Sciences,2018,146/147:366-376.
参考文献 37
ZENG R,WEN G L,ZHOU J X,et al.Limb-inspired bionic quasi-zero stiffness vibration isolator [J].Acta Mechanica Sinica,2021,37(7):1152-1167.
参考文献 38
YAN G,WANG S,ZOU H X,et al.Bio-inspired polygonal skeleton structure for vibration isolation:design,modelling,and experiment [J].Science China Technological Sciences,2020,63(12):2617-2630.
参考文献 39
WARRICK D R,BUNDLE M W,DIAL K P.Bird maneuvering flight:blurred bodies,clear heads [J].Integrative and Comparative Biology,2002,42(1):141-148.
参考文献 40
RISTROPH L,BERGOU A J,RISTROPH G,et al.Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(11):4820-4824.
参考文献 41
CHIN D D,LENTINK D.Flapping wing aerodynamics:from insects to vertebrates [J].Journal of Experimental Biology,2016,219(7):920-932.
参考文献 42
PETE A E,KRESS D,DIMITROV M A,et al.The role of passive avian head stabilization in flapping flight [J].Journal of the Royal Society,Interface,2015,12(110):20150508.
参考文献 43
QUINN D,KRESS D,CHANG E,et al.How lovebirds maneuver through lateral gusts with minimal visual information [J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(30):15033-15041.
参考文献 44
FURET M,LETTL M,WENGER P.Kinematic analysis of planar tensegrity 2-X manipulators[C]//International Symposium on Advances in Robot Kinematics.Cham,Switzerland:Springer,2019:153-160.
参考文献 45
FURET M,WENGER P.Workspace and cuspidality analysis of a 2-X planar manipulator[C]//IFToMM Symposium on Mechanism Design for Robotics.Cham,Switzerland:Springer,2019:110-117.
参考文献 46
FASQUELLE B,KHANNA P,CHEVALLERE-AU C,et al.Identification and control of a 3-X cable-driven manipulator inspired from the bird’s neck [J].Journal of Mechanisms and Robotics,2022,14(1):011005.
参考文献 47
李召芹.张拉整体仿生鸟颈特性分析与运动控制研究[D].哈尔滨:哈尔滨工业大学,2020.LI Z Q.Research on characteristic analysis and motion control of bionic bird neck of tensegrity [D].Harbin:Harbin Institute of Technology,2020.(in Chinese)
参考文献 48
WANG Y H,LI Z Q,HE J F,et al.Inverse kinematics based on backbone curve for a hyper-redundant tensegrity bird-neck robotic mechanism [J].Journal of Physics:Conference Series,2021,1885(4):042030.
参考文献 49
DENG T C,WEN G L,DING H,et al.A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck [J].Mechanical Systems and Signal Processing,2020,145:106967.
参考文献 50
ODA J,SAKAMOTO J,SAKANO K.Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system [J].JSME International Journal Series A,2006,49(3):390-396.
参考文献 51
YOON S H,ROH J E,KIM K L.Woodpecker-inspired shock isolation by microgranular bed [J].Journal of Physics D:Applied Physics,2009,42(3):035501.
参考文献 52
BIAN J,JING X J.Biomimetic design of woodpecker for shock and vibration protection [C]//2014 IEEE International Conference on Robotics and Biomimetics(ROBIO 2014).New York,USA:IEEE,2014:2238-2243.
参考文献 53
FENG X,JING X J.Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping & nonlinear inertia [J].Mechanical Systems and Signal Processing,2019,117:786-812.
参考文献 54
FENG X,JING X J,XU Z D,et al.Bio-inspired anti-vibration with nonlinear inertia coupling [J].Mechanical Systems and Signal Processing,2019,124:562-595.
参考文献 55
YAN G,ZOU H X,WANG S,et al.Bio-inspired toe-like structure for low-frequency vibration isolation [J].Mechanical Systems and Signal Processing,2022,162:108010.
参考文献 56
YAN G,QI W H,SHI J W,et al.Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism [J].Journal of Sound Vibration,2022,525:116799.
参考文献 57
LING P,MIAO L L,ZHANG W M,et al.Cockroach-inspired structure for low-frequency vibration isolation [J].Mechanical Systems and Signal Processing,2022,171:108955.
参考文献 58
JIN G X,WANG Z H,YANG T Z.Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine [J].Applied Mathematics and Mechanics,2022,43(6):813-824.
参考文献 59
李小彭,王政浩,王碧涵.仿脊柱隔振器振动特性分析[J].振动与冲击,2022,41(8):231-237.LI X P,WANG Z H,WANG B H.Analysis of vibration characteristics of a simulated spinal vibration isolator [J].Journal of Vibration and Shock,2022,41(8):231-237.(in Chinese)
参考文献 60
SMEATHERS J E.Measurement of transmissibility for the human spine during walking and running [J].Clinical Biomechanics,1989,4(1):34-40.
参考文献 61
COERMANN R R.The mechanical impedance of the human body in sitting and standing position at low frequencies [J].Human Factors,1962,4:227-253.
参考文献 62
KIM D Y,PARK C I,PARK E S,et al.Role of arm swing on gait [J].Journal of the Korean Academy of Rehabilitation Medicine,2001,25(6):1031-1040.
参考文献 63
UMBERGER B R.Effects of suppressing arm swing on kinematics,kinetics,and energetics of human walking [J].Journal of Biomechanics,2008,41(11):2575-2580.
参考文献 64
JAYARAM K,FULL R J.Cockroaches traverse crevices,crawl rapidly in confined spaces,and inspire a soft,legged robot [J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(8):950-957.
参考文献 65
方虹斌,吴海平,刘作林,等.折纸结构和折纸超材料动力学研究进展[J].力学学报,2022,54(1):1-38.FANG H B,WU H P,LIU Z L,et al.Advances in the dynamics of origami structures and origami metamaterials [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(1):1-38.(in Chinese)
参考文献 66
SADEGHI S,LI S Y.Harnessing the quasi-zero stiffness from fluidic origami for low frequency vibration isolation [C]//Proceedings of ASME 2017 Conference on Smart Materials,Adaptive Structures and Intelligent Systems.New York,USA:American Society of Mechanical Engineers,2017
参考文献 67
HAN H S,SOROKIN V,TANG L H,et al.A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube [J].Nonlinear Dynamics,2021,105(2):1313-1325.
参考文献 68
YE K,JI J C.An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure [J].Mechanical Systems and Signal Processing,2022,165:108383.
参考文献 69
XIANG X M,QIANG W,HOU B,et al.Quasi-static and dynamic mechanical properties of Miura-ori metamaterials [J].Thin-Walled Structures,2020,157:106993.
参考文献 70
SADEGHI S,LI S Y.Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation [J].Smart Material Structures,2019,28(6):065006.
参考文献 71
WASSERTHAL L T.The open hemolymph system of Holometabola and its relation to the tracheal space [J].Microscopic Anatomy of Invertebrates,1998,11:583-620.
参考文献 72
JOHN F,COOKE J R.Natural twist buckling in shells:from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical Miura-ori [C]//6th International Conference on Computation of Shell & Spatial Structures 2008(IASS-IACM 2008).New York,USA:Curran Associates,2008.
参考文献 73
KRESLING B.Origami-structures in nature:lessons in designing “smart” materials [J].MRS Online Proceedings Library,2012,1420(1):42-54.
参考文献 74
ISHIDA S,UCHIDA H,SHIMOSAKA H,et al.Design concepts and prototypes of vibration isolators using Bi-stable foldable structures [C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2016.
参考文献 75
ISHIDA S,UCHIDA H,SHIMOSAKA H,et al.Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures [J].Journal of Vibration and Acoustics,2017,139(3):031015.
参考文献 76
ISHIDA S,SUZUKI K,SHIMOSAKA H.Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Vibration and Acoustics,2017,139(5):051004.
参考文献 77
INAMOTO K,ISHIDA S.Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with quasi-zero-stiffness characteristics [C]//ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2018.
参考文献 78
YASUDA H,TACHI T,LEE M A,et al.Origami-based tunable truss structures for non-volatile mechanical memory operation [J].Nature Communications,2017,8:962.
参考文献 79
YASUDA H,MIYAZAWA Y,CHARALAMPIDIS E G,et al.Origami-based impact mitigation via rarefaction solitary wave creation [J].Science Advances,2019,5(5):eaau2835.
参考文献 80
LI Z,KIDAMBI N,WANG L M,et al.Uncovering rotational multifunctionalities of coupled Kresling modular structures [J].Extreme Mechanics Letters,2020,39:100795.
目录contents

    摘要

    基于仿生学的思想,通过模仿生物系统的结构几何构成特性,创新优化隔振模型是当今隔振领域的热门问题.本文基于仿生灵感来源的不同,对现有的仿生隔振器进行了系统的分类,并对不同设计原理的仿生隔振器恢复力本构与隔振性能做了详细的阐述和对比,旨在通过隔振器隔振频带的横向对比厘清几何构型与可调参数的影响,以此厘清隔振器几何设计和隔振性能的关系.并且,本文展望了未来仿生隔振器的发展前景和研究方向.

    Abstract

    Based on the idea of bionics, innovation and optimization of vibration isolation model by imitating the structural characteristics of biological system is a hot issue in the field of vibration isolation. This review systematically classifies the existing bio-inspired isolators according to the different inspiration sources of bionic design. It also elaborates and compares the restoring force constitutive and vibration isolation performance of bio-inspired isolators with different design principles in detail. The aim is to clarify the influence of geometric configuration and adjustable parameters through the transverse comparison of the vibration isolation band of the bio-inspired isolator, so as to clarify the relationship between the geometric design of the isolator and vibration isolation performance. In addition, the future development prospect and research direction of bio-inspired isolators are prospected.

  • 引言

  • 振动在我们的日常生活中随处可见,在绝大多数的工程问题中,振动都是有害的,机械振动会导致仪器精密性的破坏[1]、影响工作人员的健康,例如波浪引起船舶的结构振动[2]或者火箭发动机振动、太阳能帆板展开和收缩导致的航天器微振动[3]等等,控制振动保持在可接受范围内是至关重要的,隔振问题逐渐受到人们的关注.

  • 隔振的目的在于减小或隔离力或位移的传递,无论是积极隔振还是消极隔振,主要方法都是在动力设备或精密仪器与支承结构之间设置隔振器或隔振材料,达到抑制振动的效果.线性隔振理论表明,质量为m、刚度为k的线性弹簧-质量-阻尼隔振器,能够有效地隔离频率大于2倍固有频率的谐波振动.这表明系统刚度越低,起始隔振频率越低,则隔离范围越宽,应用越广泛.然而,低刚度会导致变形位移过大、承载能力不足.要提高承载能力需要隔振器具有较高刚度,然而高刚度又势必导致较高的固有频率.二者之间的矛盾成为被动隔振技术发展的瓶颈,为同时获得足够的承载和足够宽的有效隔振频带,经典的线性隔振器已经不能满足我们的实际要求,创新隔振器设计方法逐渐受到人们的关注.

  • 针对经典线性理论设计下的隔振器的矛盾,学者们利用非线性机制构造新型隔振器,引入负刚度减小动态固有频率,利用非线性补偿负刚度带来的承载力减弱,达到高静态刚度、低动态刚度的目的,即“高静低动”特征的隔振器设计思路.基于这种设计思路研发的隔振器同时拥有承载能力大、静变形小、起始频率低的优点[4].具有高静低动特性的隔振器已被广泛应用于工程应用中,例如,Zhang等人[56]设计了一种多自由度非线性隔振平台对卫星上的扰动部件进行振动抑制;Kandasamy等人[2]综述了多种非线性振动控制方法以及在船舶与近海工程中的应用;任晨辉等人[7]利用多层负刚度余弦梁结构形成振动隔离装置用于船舶设备的冲击防护等等.为了达到“高静低动”的设计目的,学者们已经提出了多种典型的非线性隔振器,其核心的设计思路是利用特定的弹簧几何构型提供负刚度的方式获得较低的动态刚度与固有频率[8].根据非线性恢复力产生机理的不同,通常可以将现有的隔振器设计分为三弹簧隔振器、仿生设计隔振器、折纸设计隔振器.

  • 最经典的能够实现高静低动特性的非线性隔振器设计方法为三弹簧设计.三弹簧隔振器指的是由三组弹性元件组成的具有高静低动力学特征的隔振装置,其中由一对对称且与位移方向垂直的水平弹簧提供负刚度,竖直弹簧提供正刚度,二者并联形成准零刚度隔振器.Carrella等人[9]首次提出了三弹簧式高静态低动态刚度模型,明确了三弹簧机制能够实现高静低动的隔振机理.Kovacic等人[10]通过虚功原理推导得到三弹簧机制的准零刚度隔振器的非线性恢复力本构,其中斜弹簧的刚度系数和预变形量决定了等效负刚度的程度,提出调控负刚度元件的软化刚度与预压量的方式优化隔振器性能.Ibrahim等人[11]基于几种三弹簧隔振器的设计方法,总结了非线性隔振器的基本概念和特点,并指出了三弹簧隔振器中一些常见的强非线性现象,如频率跳变、共振峰倾斜、混沌等等.三弹簧设计的准零刚度隔振器突破了线性理论的设计瓶颈,在一定程度上达到了高静低动的设计要求,与线性隔振器相比降低了起始隔振频率,提高了隔振性能.但在实际应用过程当中,三弹簧构造的非线性隔振器在面对大振幅振动时,隔振系统的强非线性刚度容易诱发频率跳变现象进而导致有效隔振范围缩小、隔振效果下降.

  • 在这样的研究背景下,仿生设计的非线性隔振器应运而生.优胜劣汰、适者生存,现存的生物结构得益于百万年的进化,来源于自然界的想法可以极大地促进机器设备的发展[12].近年来,从自然界中动物在运动过程中依然能够维持躯干稳定得到启发,学者们逐渐关注到部分动物身体结构在抵抗冲击、抑制振动方面的优越性,设计出多种仿生非线性隔振器.大到生物骨架,小到微观组织,动植物所具有的天然的结构优势为学者们研究设计新型隔振器提供了设计灵感,Bian等人[1314]模拟动物腿部结构,设计出具有一定静承载能力又能有效隔离外部低频激励的X型非线性隔振器;Li等人[15-17]观察到捕蝇草在无肌肉作动下能够快速闭合叶片进行捕食,将Miura折纸结构与仿生设计方法相结合,设计出一种包含仿生元素的折纸多稳态单元;Gatti等人[1819]模拟肌节中的蛋白肌丝的排布,得到了一种仅由弹性元件构成的K型非线性隔振器,该结构具有优越的激励能量吸收能力;Sun等人[2021]从鸟类颈部维持头部结构稳定得到启发,设计出兼具轴向承载和抵抗弯曲变形能力的多层串联仿颈部构型隔振器.

  • 现如今学者们已经设计了多种仿生隔振器,但目前依然缺少关于建模方法和隔振原理的综述,本文基于仿生对象的不同,对隔振器隔振单元的几何构型进行分类,强调相应的可调控参数对隔振性能的影响,以期为仿生隔振器的结构设计和性能优化提供理论依据和指导意义.本文主要分为四部分,第一部分为绪论;第二部分将现有的仿生隔振器分为仿腿部构型、仿颈部构型及仿其他生物结构的三类非线性隔振器,并结合结构的非线性恢复力表达式对隔振性能展开讨论分析;第三部分主要介绍了几种包含仿生设计方法的折纸隔振器,并着重讨论了Miura折纸与Kresling折纸结构的等效建模方法与隔振机理;最后,总结了现有的仿生隔振器在几何构型上的异同点并展望了未来仿生隔振器的发展前景和研究方向.

  • 1 仿生设计隔振器

  • 三弹簧设计的准零刚度隔振器作为最早提出的非线性隔振器,通过设计非线性的负刚度元件突破了线性理论的设计瓶颈,在一定程度上达到了高静低动的设计要求,与线性弹簧-质量-阻尼隔振器相比降低了起始隔振频率,提高了隔振性能,在一定程度上验证了低频隔振的理论可行性.然而,经典的三弹簧隔振器在面对大幅低频振动时存在着强非线性效应导致的隔振性能不稳定的设计缺陷,以Kovacic等人[10]设计的三弹簧隔振器为例,其无量纲化的恢复力的泰勒级数展开式为:

  • f(x)k2-k1a2+h2+δa-1(x-h)+k1a2+h2+δa3(x-h)3
    (1)
  • 其中k2为竖向弹簧线性刚度,k1为斜弹簧线性刚度,ah为斜弹簧在水平方向和竖直方向的投影长度,δ为斜弹簧预压量.不难发现,三弹簧隔振器的非线性恢复力中的线性项和非线性项同时受水平弹簧的预压量和刚度的影响,增加弹簧的预压量或刚度在增大系统负刚度的同时,会导致非线性效应的增强,进而产生混沌、频率跳变等强非线性现象,影响隔振效果的稳定性.三弹簧隔振器的线性和非线性恢复力无法解耦调控使结构的隔振性能难以适应工程中动态变化的复杂环境,是制约其实际应用的根本原因之一.

  • 为了突破三弹簧准零刚度隔振器适用振幅较小、可调节参数较少、隔振性能不稳定等结构缺陷,学者们开始关注到自然界中动物抵抗冲击、抑制振动的机理,尝试利用现有的力学构件等效模拟出生物结构的力学性能,提出了一系列的新型仿生隔振器设计方法.现根据隔振器的设计灵感来源的不同,将现有的仿生隔振器分为仿腿部构型、仿颈部构型及仿其他生物结构的三类隔振器,并围绕其隔振单元的几何构型、可调控参数与低频隔振性能展开汇报讨论.

  • 1.1 仿腿部构型隔振器

  • 为了获得更好的隔振效果、抵抗冲击等不规律荷载产生的振动,学者们从动物的腿部结构得到灵感,设计出一系列仿腿部构型隔振器.对腿部结构进行合理的等效简化,设计成具有高静低动性能的非线性隔振单元,是进行后续设计优化和工程应用的基础.

  • 2014年,Sun等人[22-24]首次提出剪刀型非线性单元,并设计出一种多层剪刀型隔振平台,其结构如图1a所示.多层连杆的串并联布置可以调控弹性恢复力在相对运动方向上的作用,其恢复力的泰勒级数展开式为

  • f(y^)kltan2θn2y^+3klsec4θsinθ4n3ly^2+knn4-4kl+2knl2cos2θsec3θ-5klsec5θ8n4l2cosθy^3
    (2)
  • 其中kl为水平弹簧的线性刚度系数,kn为水平弹簧的非线性硬化刚度系数,l为连杆长度,θ为初始构型角度,n为单元层数.文章系统地研究了结构参数lθn对恢复力方程中线性项和非线性项的影响,其结果表明隔振器的等效刚度对不同的结构参数表现出不同程度的敏感性,能够通过调控参数改变隔振器的共振频率和刚度非线性程度以适应不同的应用工况,更有利于实现需求的高静低动特性.在这个基础上,Zhang等人[25]改变多层剪刀型隔振平台中的弹性元件的排布方式,研究了弹簧装配位置和预压量等参数对结构的等效刚度和隔振性能的影响(如图1b),通过移动弹性元件的方式使隔振器在不改变原有体积的情况下实现性能优化.

  • Bian等人[1314]注意到剪刀型结构的稳定性和强设计性,有利于系统的低频振动控制,尝试利用剪刀型隔振单元对鹤等鸟类动物的腿部肢体结构进行等效建模,设计出一种垂直和水平方向均不对称的X型仿生隔振器,其结构如图1c所示.该隔振系统每层均由两个水平放置的左右杆长不等的四边形结构组成,其恢复力的泰勒级数展开可以写为

  • f(y^)ξ1+1n2kvy^+ξ2y^2+ξ3y^3+ξ4y^4
    (3)
  • 其中

  • ξ1=khcos2θ1+cos2θ2+2cosθ1cosθ2sinθ1sinθ2-2cos2θ1cos2θ24n2cos2θ1cos2θ2ξ2=3khL1cos4θ1sinθ2+L1cos3θ1cosθ2sinθ1+L2cos4θ2sinθ1+L2cos3θ2cosθ1sinθ216n3L1L2cos4θ1cos4θ2ξ3=kh32n4L12L22cos6θ1cos6θ2sin2θ1sin2θ2-4cos2θ1cos2θ2+L12cos4θ1+L22cos4θ2+5L12cos6θ1+L22cos6θ2+2L1L2cos3θ1cos3θ2
    (4)
  • y^为隔振平台的竖向位移,kv为竖向弹簧刚度,kh为水平弹簧刚度,L1L2为四边形左右杆长,θ1θ2为连杆与基座的初始夹角,n为层数.该结构恢复力方程的线性项与非线性项受四边形杆长、弹簧刚度、结构层数等多个参数影响,具有较强的可设计性,图1c清晰展示了结构参数对隔振性能的影响,通过改变结构参数能够有效调控隔振器的承载能力与动态刚度.相应的实验样机的起始隔振频率为2.64Hz,远低于三弹簧隔振器,能够实现低频振动抑制,有利于工程中的实际应用.Sun等人[26]为了提高移动机器人的稳定性及负载能力,将这种X型仿生单元应用于履带式机器人的悬架设计当中,提出一种被动仿生类肢悬架系统.使用了该系统的履带机器人在连续通过多个障碍物时,顶端平台无明显响应,适用于在粗糙地面上执行多种工程任务.

  • 对于仿腿部构型设计的非线性隔振器而言,隔振器的隔振性能受恢复力本构方程的影响,本构方程中的线性项与非线性又由可调控参数唯一确定,相似的生物构型由于可调控参数的不同会得到不同的恢复力本构,进而影响起始隔振频率、承载能力等力学性能.Wang等人[27]受上下腿骨长度不等的鸟类腿部构型启发,提出了两种不同约束条件下的X型仿生隔振器,并研究了杆长比对隔振性能的影响,相应结构如图1d所示.该隔振器与剪刀型隔振器相比,基础的几何非线性单元不再是大小形状均相同的菱形结构,相应的恢复力本构表示为

  • F=2Xcosα1s1-X/21-cosα1s1-X/22+cosα1s1-X/2s12-cosα1s1-X/22
    (5)
  • 其中F=f/kla1X=x/a1α1为装配角度,S1=b1/a1为单个四边形相邻边的杆长比,S2=a2/a1为上下两个四边形的杆长比,x为水平弹簧变形量,与平台的竖向位移有着一一对应的非线性关系.当S1≠1且S2=1时,系统由两个相同的四边形结构竖直对称装配构成,每一层四边形结构由杆长不等的四根连杆和水平弹簧组成,通过调控杆长比S1可以有效降低隔振结构的非线性频率,抑制系统的强非线性效应导致的多稳态现象(如图1d).当S2≠1且S1=1时,隔振系统呈现为一种垂直不对称的仿生结构,上下四边形为两个边长不等的菱形结构.如图1d所示,当下菱形结构杆长更短(即S2>1)时,相应实验样机的固有频率为2.928 Hz,低于S2<1时样机的固有频率4.325 Hz,有更宽的隔振范围.为了减轻施工过程中重型手提钻引起的高强度振动对工作人员造成的伤害,Jing等人[28]利用多个杆长不等的菱形结构装配组合,设计出一种新型抗振外骨骼结构,该结构可以抑制80%以上的振动能量,具有操作方便、经济实惠的优点,能有效解决建筑施工领域长期存在的工程难题.

  • Dai等人[29-31]从袋鼠在奔跑过程中依然能够维持身体稳定得到启发,将动物腿骨简化为连杆,关节简化为铰链,肌肉的作动简化为水平弹簧的拉压,提出了一种每根杆长均相同的X型仿生隔振器(如图1e).该结构由两个大小形状均相同的菱形结构和一对水平弹簧组成,具有高度对称性,其恢复力的泰勒展开式为

  • fy1,y2-kn2y1-y2+kpx0-2lcosθ0n1lsecθ0-tanθ0sec2θ02nl2y1-y2+sec5θ0+2tan2θ0sec3θ08n2l3y1-y22-3tanθ0sec6θ0+2tan3θ0sec4θ016n3l4y1-y23
    (6)
  • 其中y1y2分别为隔振器两端的位移,k为弹簧刚度,l为连杆长度,θ0为连杆与水平面夹角,n为结构层数.减小初始装配角度或增加结构层数能够降低起始隔振频率与位移传递率(如图1e),可以有效抑制航天器在在轨任务过程中由于周期激励或脉冲激励产生的振动.Pan等人[32]基于这种高度对称设计的X型隔振结构,提出了一种测量振动物体绝对位移的仿生传感系统,该传感系统结构紧凑轻便,面对3 Hz的外部激励仍能保持80%的测量精度,能够有效测量由多种频率叠加而成的复杂信号,符合实际工况需求.

  • 图1 X型非线性隔振器.(a)多层剪刀型隔振平台[22-24],(b)不同的弹性元件装配方式下的剪刀型隔振平台结构和相应位移传递率曲线[25],(c)左右杆长不等的X型仿生隔振器在不同参数条件下的位移传递率曲线[1314],(d)两种设计条件下的上下杆长不等的X型仿生隔振器及杆长比对隔振性能的影响[27],(e)杆长完全相同的X型仿生隔振结构及不同单元层数和初始构型角度下的位移传递率曲线[29-31]

  • Fig.1 The X-shaped nonlinear vibration isolator. (a) The multi-layer scissor-like structured vibration isolation platform[22-24], (b) the structure and corresponding displacement transmissibility curves of the scissor-like structured vibration isolation platform with different assembly modes of elastic elements[25], (c) the displacement transmissibility curve of the X-shaped bio-inspired vibration isolator with unequal rod length under different parameter conditions[13, 14], (d) the influence of the bar length ratio on the isolation performance of the X-shaped bio-inspired isolator with unequal bar length under two design conditions[27], (e) the displacement transmissibility curve of the X-shaped bio-inspired vibration isolator with the same rod length under different cell layers and initial configuration angles[29-31]

  • 上图涉及的X型仿生隔振器均是由多层四边形隔振单元堆叠而成,通过对比不难看出,隔振单元的不对称程度越高,隔振器的起始隔振频率越低,能更好地吻合真实的动物腿部骨架结构,且采用非对称的隔振单元能够更大程度地压缩隔振器体积,减少占用的空间.除此以外,由于结构没有对称设计的条件约束,增加了设计中的可调控参数,强化了结构的可设计性,通过调节参数可以实现更低的起始隔振频率,在工程应用中具有更强的适用性.

  • 将依据动物腿部模型建立的X型隔振结构与现有的工程结构有机结合,可以进一步提高隔振器的隔振性能.Jing等人[3334]将X型隔振单元和六自由度Stewart平台相结合,设计出一种六自由度隔振平台(如图2a所示),其核心设计思路是利用X型结构替代Stewart平台原始的六根制动元件,并在原结构中央添加一根联结平台与基座的刚性梁以提高稳定性.该隔振平台在六个方向上均具有优异的高静低动性能,实验样机能有效隔离1.8 Hz以上的外部激励,解决了多向隔振问题.Jiang等人[35]通过模拟人腿的骨架和关节结构,将X型隔振单元与人腿部构型设计相结合,提出了一种多关节类肢隔振结构,该隔振器利用多个由短杆和水平弹簧组成的小型四连杆结构简化模拟人腿部关节,采用长杆来简化模拟骨骼,相应隔振结构如图2b所示.通过调节小四边形的边长、夹角等结构参数,可以使隔振系统在不牺牲承载能力的情况下,将起始隔振频率降低至2Hz(仅为相同承载能力的线性隔振器的1/5),拓宽了隔振范围,优化了隔振性能,满足实用要求.

  • 图2 X型隔振结构在工程结构中的应用.(a)X型隔振单元和Stewart平台相结合设计的六自由度隔振平台[3334],(b)X型隔振单元与仿腿构型设计相结合设计的多关节类肢隔振器[35]

  • Fig.2 The application of X-shaped vibration isolation in engineering structure. (a) 6-DOF vibration isolation platform designed by combining X-shaped vibration isolation unit and Stewart platform[33, 34], (b) the multiarticular limb-like vibration isolator designed by combining X-shaped vibration isolation unit and imitation leg configuration design[35]

  • 从以上几种仿双足动物腿部设计的X型仿生隔振器的仿生机理和隔振性能可以看到,X型隔振单元能够实现高静低动特性,可调的动态刚度和承载能力可以满足外界复杂的动态环境不断变化的需求,适用于大幅激励和冲击激励的振动抑制.然而,从以上对动物的腿部建模可以发现,学者们在对X型仿生隔振器展开设计研究时,通常是通过调节腿部杆长、夹角与关节处弹簧刚度等参数进行性能优化,并未将动物的脊椎或身体纳入建模范围,忽视了二者对动物腿部姿态的影响.

  • 观察到鸵鸟等两足动物在运动过程中有良好的隔振与抗冲击性能,Sun等人[36]提出一种仿鸟腿构型的新型隔振结构,其结构形式是一种刚柔耦合的隔振元胞,刚性杆件充当腿部骨骼,扭簧充当肌肉和关节作用,平台及负载充当动物身体,结构等效如图3a所示,利用拉格朗日法推导得到本构方程为

  • Fk=k1+4k2+k3(Lcosθ)2-Ly^sinθ-y^2/4θ-arctanLsinθ+y^/2(Lcosθ)2-Ly^sinθ-y^2/4
    (7)
  • 对非线性恢复力采取多项式拟合进行简化分析,相应的表达式为

  • Fk-k1+4k2+k32l2cos2θy^-3k1+4k2+k3tanθ8l3cos3θy^2-k1+4k2+k34+15tan2θ48l4cos4θy^3
    (8)
  • 其中k1k2k3为关节处扭簧的扭转刚度,θ为下钢片与基座夹角,L表示钢片长度,y^为基座与平台之间的相对位移.这种结构恢复力的变化表现为向上运动的刚度非线性硬化和向下运动的刚度非线性软化,符合动物的真实运动情况.当θ=45°时,相应的隔振样机能够有效隔离6.6Hz以上的外部激励,证明了结构性能的优越性.并通过实验得到了初始装配角度和激励幅值对有效隔离范围的影响(如图3a),建立了结构参数与隔振性能之间的对应关系并提出了在不同幅值的外部激励下的参数优化准则,可以有效隔离低频情况下的大振幅激励.2021年,Zeng等人[37]受青蛙M型四肢在跳跃过程中有良好的振动抑制特性的启发,提出一种新型仿生结构隔振器,其结构如图3b所示.该隔振结构主要由扭簧、连杆与刚性平台组成,研究者通过协调设计两层扭簧的扭转刚度使装置达到零刚度设计,拓宽隔振范围.该隔振结构的刚度表现出明显的非对称性,当外部承载较小时,平台位于水平位置上方,呈现出类似鸟等双足动物的腿部构型;当载荷较大,平台位于水平位置下方时,呈现出类似蛙的腿部结构.针对仿生模型,利用图形处理器研究了载荷和激励幅值对位移传递率和隔振范围的影响(如图3b),为后续的结构设计和优化提供理论基础.该仿生隔振器与三弹簧隔振器相比,对于低频周期激励,跳变频率由0.73Hz降低至0.5Hz,有效隔振范围扩大;对于脉冲激励,衰减速度更快,有良好的抗冲击性能.

  • 图3 仿动物腿部及身体(脊椎)构型的多边形仿生隔振器.(a)仿袋鼠腿部构型的隔振元胞及不同初始构型角度和外部激励幅值下的隔振性能曲线[36],(b)仿青蛙腿部的隔振单元及不同激励幅值和载荷下的力传递率曲线[37],(c)仿猫腿设计的非线性隔振器及初始构型角度与结构跨距对隔振性能的影响[38]

  • Fig.3 The bio-inspired polygon vibration isolator imitating animal leg and body (spine) configuration. (a) The vibration isolation unit modeled after kangaroo leg configuration and the vibration isolation performance curve under different initial configuration angles or external excitation amplitude[36], (b) the vibration isolation unit modeled after frog leg and the force transmissibility curve under different excitation amplitude or load[37], (c) the nonlinear vibration isolator modeled after cat leg and the influence of initial configuration angle and structure span on vibration isolation performance[38]

  • Yan等人[38]从猫由高空坠落仍能安全着陆得到灵感,进一步强调脊椎的伸缩在动物运动中对腿部姿态的调节作用,引入新的可调控参数,提出了一种如图3c所示的仿生多边形骨架结构.相应结构主要由连杆、水平弹簧与顶端平台构成,其中三连杆充当腿部骨架起支撑作用、四根水平弹簧替代关节处的肌肉运动、长度可调的平台替代猫伸缩的脊椎,利用竖向位移与弹簧变形量之间的几何非线性关系推导得到结构的恢复力表达式为

  • f=2kLcosα-cosα0cosαsinα+2cosα-p1-(2cosα-p)2y=2Lsinα0+L1-2cosα0-p2-2Lsinα+L1-(2cosα-p)2
    (9)
  • 其中p=d/Lk为水平弹簧刚度,α0为替代胫骨的下端连杆与地面的夹角,L为三连杆杆件长度,d为上下两关节的水平距离.将非线性恢复力方程泰勒展开后可以得到相应的表达式如下

  • fβ1y+β2y2+β3y3
    (10)
  • 其中β1β2β3是与pα0有关的函数.当水平距离或初始装配角增大时,猫的脊椎收缩,腿部姿态趋于竖直,结构的承载能力得到提高;当二者减小时,腿部发生弯曲,隔振性能提升.图3c为结构参数pα0对承载能力和隔振范围的影响,通过模拟猫在坠落时腿部姿态以及脊椎伸缩的变化,可以实现对隔振器性能的灵活调控.

  • 不难发现,仿腿部构型设计的仿生隔振器大多是利用多连杆机构的几何非线性关系实现高静低动的设计目的,在低动态刚度的产生机理上与经典的三弹簧隔振器存在本质的区别,前者的动态刚度会随着杆件夹角的减小实现向零动态刚度的渐进变化,后者则依赖负刚度弹性元件构造准零刚度.除此以外,仿腿部设计的隔振结构的连杆长度、弹簧刚度、初始构型角度、单元层数等可调参数为隔振器带了丰富的可设计性,能够实现对承载能力和动态刚度的调控.从以上仿腿部构型隔振器的恢复力和位移传递率曲线可以看出,结构的可调参数对隔振性能的影响通常是单调的,这与真实的动物腿部结构所呈现出的力学特性是一致的.然而,非线性隔振器的多种隔振性能(如承载能力、起始隔振频率、非线性效应等等)在设计过程中通常是矛盾且相互制约的,仿腿部构型隔振器的性能与参数之间单调的调控设计关系难以实现同时对多个性能的优化设计.考虑到仿腿部构型设计的隔振器结构层数较少、隔振方向有限且难以实现多种隔振性能同时调控的缺点,近年来学者们从折纸机制等结构入手,进一步提出刚度可编程的超材料隔振器.

  • 1.2 仿颈部构型隔振器

  • 对于奔跑或飞行过程中的动物来说,稳定的外界图像获取是至关重要的[3940],如果不能有效衰减来源于身体的振荡位移会极大影响动物视力导致其难以躲避运动过程中的障碍物.研究表明[41],鸟类的颈部会随着翅膀的拍打调整结构姿态以减弱来自身体的振动位移,Kress等人[4243]通过观察天鹅高速飞行反馈的视频记录指出鸟类动物在飞行过程中可以通过调节颈部肌肉维持头部的相对稳定.基于鸟类颈部所具有的支撑头部、维持稳定、振动隔离等功能,学者们逐渐关注到动物的颈部结构设计,仿颈部结构隔振器应运而生.

  • 鸟类颈部结构由多组肌肉群和关节铰联结多节骨骼构成,相应的隔振器的力学模型和仿生机理与仿腿部隔振器相比更加复杂.根据不同的建模方式和假设,目前已经有不少学者在脖子仿生建模这一领域取得了阶段性成果.Furet[4445]、Fasquelle[46]等人在对仿鸟脖子构型机械臂的设计研究中,将每一节脖子等效为刚柔耦合的平面四连杆结构,其中将骨骼简化为四根呈沙漏形状排布的刚性连杆,将肌肉简化为两根附着在两端的柔性弹簧,二者共同构成单节脖子的仿生结构,相应示意图如图4a所示.李召芹[47]、Wang等人[48]为了更好理解鸟类颈部的机械性能,提出利用张拉整体模型模仿鸟类颈部设计,结构如图4b所示.这种仿生结构由多层子结构弹性联结而成,每层子结构是由多连杆组成的“半扭转X型”刚性体,每两层子结构之间通过八根绳索弹性相连,前者替代骨骼,后者替代肌肉等联结组织,这种等效仿生设计方法简化了结构设计,有利于实现骨骼间灵活的协同运动效果.

  • 2020年,Deng等人[49]通过模拟鸟类颈部的多椎体结构,设计了一种多层准零刚度隔振器(如图4c).其中将鸟的身体视为结构的刚性基座;将头部视为外部载荷置于隔振结构顶端;颈部结构相对复杂,其中每层颈部骨骼的中心为均鞍形空腔,层与层之间通过三根骨突接触,肌肉附着在椎骨上作动,相应的结构与三弹簧设计的联结形式相似,故利用带有阻尼器和压缩弹簧的三弹簧隔振器代替颈部的单层结构,由此提出一种由多组三弹簧串联而成的多层仿生隔振器.

  • Sun等人[20]根据多种动物的颈部骨骼形状,利用折纸单元和弹性元件相结合的设计方式,将鸟类颈部的每一层结构等效设计为内含弹性元件的多面体空腔(如图4d),其中折纸单元充当颈部结构的外部框架,竖向和水平弹簧共同模拟鸟类颈部的肌肉组织.这种由多层相同的多面体结构堆叠形成的多节隔振器在多种风速下均能够维持末端稳定,有良好的低频隔振效果.在后续的研究中,Sun等人[21]进一步细化分析颈部椎间盘和周围肌肉在隔离振动时的作用,基于椎间盘构型和肌肉作动机理提出了一种新型仿生多层隔振器,其中用刚性基座等效替代枢椎,弹簧等效替代枢椎之间的连接肌群,内含一对对角弹簧和一对竖向支撑弹簧的六边形盘状结构等效替代椎间盘,相应的结构如图4e所示.该结构具有良好的轴向承载能力和弯曲动态零刚度特性,在机械臂、卫星传感器等工程领域具有显著的应用潜力.

  • 图4 仿鸟类颈部构型隔振器,(a)颈部结构的平面四连杆式建模[44-46],(b)颈部结构的半扭转X型建模[4748],(c)仿鸟类颈部的多层三弹簧串联仿生隔振器[49],(d)仿鸟类颈部的多面体空腔结构[20],(e)仿鸟类颈部的多层隔振结构及标准单元结构图[21]

  • Fig.4 The vibration isolator modeled after bird neck, (a) the planar four-link modeling of the neck structure[44-46], (b) the semi-torsional X-shaped modeling of the neck structure[47, 48], (c) the multi-layer three-spring series bio-inspired vibration isolator[49], (d) the polyhedral cavity structure modeled after bird neck[20], (e) the multi-layer vibration isolation structure modeled after bird neck and structure diagram of standard unit[21]

  • 1.3 仿其他生物构型设计的非线性隔振器

  • 除了生物的腿部和颈部结构,自然界还有许多具有良好的力学性能的典型生物结构值得研究学者们借鉴,例如啄木鸟的头部[50-52]、人体[5354]、肌肉中的蛋白肌丝[1819]、猫的爪子[5556]、小型昆虫的身体[57]、人体脊柱[5859]等等.以下对这些典型的仿生隔振器的仿生机理和设计原理展开综述.

  • 啄木鸟是一种啄木捕食为生的鸟类,其头部特殊的结构构型保护大脑在高频高速的啄木过程中不会受到损伤.为了进一步明确啄木鸟头部的抗振机理,Juhachi等人[50]解剖了啄木鸟头部骨骼,利用有限元法对其抗冲击性能展开分析,结果表明啄木鸟的脑液较少且大脑被颅骨和硬脑膜紧密包裹,能够有效抵抗来自鸟喙的振动冲击.Yoon等人[51]基于啄木鸟头部结构设计,将大脑等效为需要保护的精密器件、外部头骨等效为金属外壳、海绵骨等效为一系列细小微粒群,提出一种新型抗冲击隔振系统.当外部激励频率达到该结构的截止频率时,仿生隔振系统可以吸收90%~99%的振动能量,达到保护系统内部元件的设计目的.Bian等人[52]仿照啄木鸟头部的多层结构构型,设计了两类不同形式的仿生隔振器,其结构如图5a所示.前者利用不锈钢外壳替代鸟喙、中间橡胶层替代舌骨、内部铝制层替代颅骨,设计了一种由三种结构材料层层包裹而成的仿生隔振器,这种复合的结构设计可以有效吸收外部激励产生的冲击能量,减少冲击变形;后者主要由橡胶垫和金属刚性框架堆叠而成,结构在垂直和水平方向上均有良好的隔振效果,研究表明,通过优化橡胶层排布和金属框架构型可以进一步降低结构的起始隔振频率及位移传递率.

  • 图5 仿其他生物构型设计的非线性隔振器.(a)仿啄木鸟头部构型设计的多层仿生隔振器[52],(b)仿人体结构的超低频非线性隔振器[5354](c)仿肌肉中蛋白肌丝设计的K型非线性隔振器[18],(d)仿猫爪构型隔振器的力学模型[55],(e)仿蟑螂身体和腿部的多连杆隔振器[57],(f)仿人体脊柱的多层串联抗冲击隔振器[58]

  • Fig.5 The nonlinear vibration isolator modeled after other biological configurations. (a) The multi-layer bio-inspired vibration isolator modeled after woodpecker head configuration[52], (b) the nonlinear ultra-low frequency vibration isolator modeled after human body structure[53, 54], (c) the K-shaped nonlinear vibration isolator modeled after protein muscle filaments in muscle[18], (d) the mechanical model of vibration isolator modeled after cat claw configuration[55], (e) the multi-link vibration isolator modeled after cockroach body and legs[57], (f) the multi-layer series shock isolator modeled after human spine[58]

  • 人们在行走过程中会受到来自地面的振动,为了防止振动冲击对脑部造成损伤,人体本身充当着一个大型的隔振结构[60],能够有效隔离20 Hz以上的外部激励[61].研究表明,人类的平稳行走离不开腿部的姿态调整和手臂的规律性摆动,调节腿部姿态可以改变结构的刚度和承载能力,有规律的手臂摆动可以提高行走的稳定性且降低身体质心在垂直方向上的位移[6263].基于人体天然的隔振优势,2019年,Feng等人[5354]在仿腿部构型隔振器的基础上,进一步对规律性摆动的手臂展开研究,设计出一种如图5b所示的超低频仿生隔振器.其建模的核心思路是将人腿等效为对称的X型隔振结构、手臂等效为摆动的集中质量块,其中前者提供非线性恢复力,后者提供非线性惯性力,引入质量块可以有效降低结构的共振频率(由1.7 Hz降低至1.3 Hz),抑制共振峰峰值,实现超低频隔振.

  • 骨骼肌通常借助肌腱附着在骨骼上,是身体运动的关键结构,具有显著的非线弹性的特点,而肌节作为骨骼肌纤维结构和功能的基本单位,肌肉收缩与舒张是通过肌节中的蛋白肌丝的滑动来实现的.Gatti等人[1819]仿照肌节中的蛋白肌丝的排布,设计了一种K型非线性隔振器(如图5c),该结构模型不同于仿腿或颈部设计的隔振器,相应的隔振单元仅由四根线性弹簧组成,其中斜弹簧等效替代肌联蛋白,竖直弹簧等效替代肌球蛋白与肌动蛋白间的连接结构,二者并联构成非线性隔振器.结构的动态刚度在静平衡位置处为正,然后以软化的方式减小,直至达到准零.

  • 猫科动物在奔跑和跳跃的过程中,常常受到来自地面的冲击,在这个过程中,猫爪需要支撑起整个身体的重量,并调整结构刚度以适应环境的变化,保护身体免受振动损伤.Yan等人[55]注意到猫科动物的脚掌在与地面接触时所起到的缓冲作用,仿猫爪设计的隔振器应运而生,研究者利用轻杆模拟趾骨、线性弹簧模拟肌肉,相应的结构如图5d所示.联系到猫在运动时可以通过调整脚趾的姿态达到抑制振动的目的,学者们灵活调控杆件间的夹角、杆长比、杆件水平跨度等结构参数,以获得不同的隔振性能.在后续的研究中,Yan等人[56]进一步对猫爪底部脂肪垫的刚度补偿机理展开研究,利用一对互斥的磁铁模拟脂肪垫的非线性硬化刚度并补偿趾部的负刚度以实现刚度准零.实验研究表明,这种隔振机构可以有效隔离4 Hz以上的外部激励,并通过增加阻尼可以有效降低共振峰,减弱非线性效应,提高隔振性能的稳定性.

  • 自然界中的一些昆虫可以通过调整其身体结构来承受较大的外部载荷,减少冲击对身体的损伤.研究表明[64],蟑螂可以承受近体重900倍的外力而不受伤害,Ling等人[57]基于蟑螂的拓扑结构,提出一种仿昆虫设计的低频隔振结构,其中利用四根长连杆形成的菱形结构模拟蟑螂的身体空腔,弹簧模拟肌肉,与基座相接触的连杆和滑块模拟腿,小四边形结构模拟关节,相应的结构如图5e所示.通过这种方式设计的非线性隔振器结构更加稳定紧凑,且能够有效隔离1.2 Hz以上的超低频振动.

  • 脊柱作为身体的支柱,有负重减震等功能,人们在奔跑或跳跃时脊柱可以起到缓冲隔振的作用,防止颅骨大脑受到损伤.受此生物学原理启发,Wang等人[5859]建立了如图5f所示的仿脊柱设计的多节隔振器,其中弹簧等效人体脊柱内部的韧带提供弹性恢复力、四连杆结构等效脊柱的单节椎骨提供刚性承载,该隔振器具有良好的可设计性,通过调控弹簧刚度比、初始装配角度、层数等结构参数可以改变隔振器起始隔振频率、承载能力、位移传递率等力学性能.

  • 2 仿生设计方法在折纸隔振器中的应用

  • 折纸结构最早起源于中国的折纸艺术,近十年开始成为工程学科的研究前沿和热点问题,在众多工程领域具有广泛的应用前景.由于其无穷的几何可设计性和丰富的折叠变形,折纸结构呈现出多种独特的力学特性,如结构轻量化、负泊松比、多稳态、自锁、刚度可调性等等[65],其中刚度可调和多稳态特性使折纸结构在多个稳定构型之间切换、途经不稳定构型时,呈现出一种负刚度特性,为仿生低频隔振结构提供了建模思路.

  • 2.1 仿捕蝇草设计的Miura折纸隔振器

  • 基于折纸结构轻便、自由度少且动力学特性可调的特点,学者们开始尝试利用折纸设计实现非线性隔振器.Li等人[15-17]受捕蝇草可以在无肌肉作动的情况下快速闭合叶片捕食昆虫的启发,将捕蝇草变形迅速且可恢复的生物特征与折纸丰富的拓扑结构相结合,提出了一种新型自适应折纸结构.这种多功能折纸由两层不同的Miura-Ori堆叠而成,其中结构的整体构型与内部压力的关系主要由折纸折痕决定,基于二者之间的本构关系,可以通过主动改变内部工作流体的体积来实现折纸的变形和驱动并调节结构刚度.在这个基础上,学者们利用Miura折纸结构设计的多稳态和刚度可调特性,设计出多种典型的Miura折纸隔振器.

  • Sadeghi和Li等人[66]利用Miura折纸结构表现出的负刚度特性设计出一种折纸非线性准零刚度隔振器,结构如图6a所示.通过推导结构的恢复力本构方程和动态刚度表达式,阐明了Miura折纸的准零刚度特性是由折纸的竖向位移与内部体积变化之间的非线性几何关系引起的,并证明了Miura折纸隔振器可以在低频下提供有效的振动隔离.Han等人[67]从Miura折纸结构能够实现零刚度特性获得灵感,将折纸截面等效设计为一种平面四连杆非线性隔振器,如图6b所示,其中连杆通过铰链两两相连,水平弹簧提供负刚度,竖向弹簧提供正刚度,二者并联实现等效零刚度,极大地简化了动能和势能的计算,有利于隔振器的性能优化.该隔振器结构建模简单且能够有效减小低频激励的响应幅值,有广泛的应用前景.Ye等人[68]为了降低传统Miura折纸折痕处的设计和制作难度,提出了一种利用桁架弹簧等效替代折痕设计的新型折纸隔振器,其结构如图6c所示,其中桁架弹簧提供沿折痕方向的线性恢复力,由结构的几何非线性关系形成非线性刚度,通过调节结构的几何参数、弹簧的刚度及预压量,可以灵活调控隔振器的力学性能.

  • 为了进一步提高折纸隔振器的抗冲击性能、实现大振幅激励的振动隔离,学者们针对多层Miura折纸结构展开研究.Xiang等人[69]利用尼龙材料制作了一种多层折纸超结构,并利用电子万能试验机和分离式霍普金森压杆实验系统得到其在准静态加压和冲击载荷下力—位移曲线(如图6d).实验结果表明,该结构在z方向上具有优秀的承载能力,且面对不同速度的冲击载荷均表现出良好的能量吸收能力.Sadeghi S等人[70]尝试将多个Miura 单元串联,设计出一种具有非对称准零刚度的管状射流折纸隔振器(如图6e),这种非对称刚度能够显著提高装置的能量耗散率并降低振动的位移传递率.除此以外,多层Miura折纸隔振器从准零刚度构型完全展开到初始构型所允许的最大位移与结构层数线性相关,适当增加折纸单元数量可以扩大隔振范围,有效隔离大幅值振动.

  • 图6 仿捕蝇草设计的双层Miura折纸隔振器.(a)Miura单胞折纸结构[66],(b)Miura折纸等效为平面四连杆隔振器[67],(c)Miura折纸等效为空间桁架结构[68],(d)多层Miura折纸超材料的准静态和动态力学实验[69],(e)Miura折纸串联形成管状射流折纸隔振器实验样机[70]

  • Fig.6 The double-layer Miura origami vibration isolator modeled after Dionaea muscipula. (a) The Miura cell origami structure[66], (b) Miura Origami equivalent design of planar four-link vibration isolator[67], (c) Miura Origami equivalent design of space truss structure[68], (d) quasi-static and dynamic mechanical experiments of multi-layer Miura metamaterial[69], (e) experimental prototype of Miura origami series forming tubular jet origami junction vibration isolator[70]The double-layer Miura origami vibration isolator modeled after Dionaea muscipula. (a) The Miura cell origami structure[66], (b) Miura Origami equivalent design of planar four-link vibration isolator[67], (c) Miura Origami equivalent design of space truss structure[68], (d) quasi-static and dynamic mechanical experiments of multi-layer Miura metamaterial[69], (e) experimental prototype of Miura origami series forming tubular jet origami junction vibration isolator[70]

  • 2.2 仿鹰蛾气囊设计的Kresling折纸隔振器

  • 昆虫在从幼虫变态发育为成虫的过程中,其体内一些细小的微观组织会逐渐成长为排布巧妙的折叠结构,进而导致生物的外部形态和内部结构发生巨大的变化.研究表明[71],鹰蛾的气囊可以在无外部压力的作用下自主完成呼吸运动,Kresling等人[7273]基于这种现象,针对鹰蛾气囊的生物结构展开研究,发现其中堆叠的毛细组织形成了一种天然的微观折叠结构,这种结构能够完成形态间的自由切换,具有良好的多稳态性能,在呼吸过程中充当着气泵的作用,使鹰蛾能够在无外部压力的情况下实现气体循环.基于这种兼具轴向运动和扭转运动的折叠结构,Kresling提出了一种新型弯扭折叠机制,并将其命名为Kresling结构.这种折叠机制在变形过程中表现出的多稳态性质,启发了人们针对其力学性能展开进一步研究,设计出多种典型的Kresling折纸隔振器.

  • 图7 仿鹰蛾气囊设计的Kresling折纸隔振器.(a)单层Kresling折纸隔振器的模型演化过程及加速度传递率曲线[74-76],(b)双层Kresling折纸隔振器的结构及恢复力曲线[80]

  • Fig.7 Kresling origami vibration isolator designed to mimic the air sac of hawk moth. (a) Model evolution process and acceleration transmissibility curve of single-layer Kresling origami vibration isolator, (b) Model and restoring force curve of double-layer Kresling origami vibration isolator

  • Ishida等人[74]基于Kresling的折展结构设计了一种新型可折叠的双稳态隔振器,该隔振器主要由金属桁架、万向节和线性弹簧构成,其中金属桁架替代折纸折痕、万向节替代折痕交点,相应的结构如图7a所示.在后续的研究中,Ishida等人[7576]观察到隔振器中水平桁架的变形量远小于纵向桁架和斜桁架的变形量,因此在原来的基础上进一步优化隔振器模型,将原来的水平六边形桁架简化为刚性圆环,并在每根斜桁架的中央增加一根线性弹簧实现桁架单元的拉伸或压缩,搭建了如图7a所示的隔振平台.实验过程中,研究者们通过模拟神户地震和太平洋地震的地震波,记录不同频率下的加速度传递率,证明该结构能够有效隔离6 Hz以上的外部激励,验证了其实用价值.然而,通过这种方式设计的Kresling折纸隔振器只能隔离固定载荷下的外部激励,无法解决低频隔振中存在的变载荷问题.为了进一步优化隔振性能,Inamoto等人[77]在原有结构的基础上通过增加中心轴承与线性弹簧之间距离的方式,提高结构的承载能力,实现高静低动的隔振性能.

  • 基于单层Kresling折展结构所表现出的优异的隔振性能,Yasuda等人[7879]针对多层折纸结构展开研究,搭建了一种由20个相同的Kresling折纸堆叠而成的超材料结构,并利用高速相机观察和记录了周期激励下每一节Kresling单元的折展运动.实验结果表明,折纸单元的软化刚度和单元间的耦合效应可以形成一种稀疏孤立波,能够有效衰减冲击产生的应变,在振动隔离、能量采集方面具有良好的应用前景.Li等人[80]设计出一种具有可编程刚度的双层Kresling折纸隔振器,其结构如图7b所示,其中双层折纸单元之间的相互作用能够提供一种非对称的双稳态性质和良好的能量吸收能力,实现结构的转动刚度准零.研究表明,当外部激励幅值较小时(Y<4°),能够有效隔离0.2 Hz以上的超低频振动.

  • 折纸结构具有的折叠行为和多稳态性质使基于仿生机理提出的折纸设计隔振器具有良好的刚度可调控和可编程特性,适用于多方向隔振的超结构设计中,在隔振领域有广泛的应用前景.然而折纸作为一种复杂的刚柔耦合结构,折纸隔振器在建模和设计过程中还存在比较大的缺陷.首先,现有的折纸隔振结构的动力学建模大多依赖于极强的基本假设,在理论分析过程中,学者通常都忽略了连续面的变形,而仅考虑折纸折痕变形,例如将单胞Miura结构等效设计为一种特殊的平面四连杆隔振结构[67]或空间桁架结构[68];将Kresling折纸的弯扭折叠机制简化为连杆与弹簧的拉压变形[74-76].然而在工程实际中,折纸连续面的刚度并不是无限大的,折痕的折展弯曲常常伴随着连续面的挤压和拉伸,动力学建模完全依赖于现有的强基本假设会对结构的动力学分析产生误差.除此以外,伴随着折纸隔振器结构多样化、功能复杂化的发展趋势,隔振器可能包含多个异构的折纸单元,然而,基于单个折纸单元的动力学特性无法准确预估出隔振器整体结构的隔振性能,多胞、多层的高维复杂折纸隔振器的结构与性能之间的对应关系还是模糊的,难以从工程需求的性能目标出发,设计出符合要求的多胞折纸隔振结构.

  • 3 总结、讨论与展望

  • 3.1 总结

  • 仿生学是生物学与工程技术的有机结合,分析生物结构、模拟生物行为用于优化现有的隔振器是富有创新性和实用性的设计方法.本文综述了近十年来仿生隔振器的研究进展,并依据不同的仿生机理对现有的仿生隔振器进行分类,重点介绍了仿生隔振器的几何构型和建模方法,并结合泰勒级数展开后的恢复力本构方程介绍了可调控参数对低频隔振性能的影响.

  • 3.2 讨论

  • 仿生隔振器的设计并不是对生物外部形态或内部结构的机械复制,而是从组织、结构所表现出的性能入手,对可借鉴和参考的生物展开研究设计.其通常的设计思路是通过模仿自然界中具有良好抗冲击和隔振性能的生物结构设计出基础的隔振单元,并在基础的几何构型上增加设计不同的可调控参数,拓宽承载能力和动态刚度的可达范围,实现隔振性能的优化.从现有的仿生隔振器的恢复力和位移传递率曲线可以看出,仿生隔振器的隔振性能是由结构的几何构型和可调控参数共同决定的,二者在隔振器设计的过程中分别起着“定性”和“定量”的作用,前者决定性能曲线的走向和形状,后者影响性能曲线的曲率大小和峰值高低.

  • (1)从几何构型和隔振性能的关系来看.仿猫腿结构设计的仿生多边形隔振器[38]能够在进行竖向方向隔振的同时提供良好的承载能力,而仿鸟类颈部设计的仿生多层隔振器[21]则具有优越的弯曲动态零刚度特性,能够实现支撑头部、扭转隔振等多种功能.从其力学模型的单元建模和弹性元件的排布可以发现,二者在隔振方向和性能上的区别是由结构的几何构型决定的.

  • (2)从可调控参数和隔振性能的关系来看.仿袋鼠腿部结构设计的X型仿生隔振器[29-31]与仿人体脊椎设计的多节非线性隔振器[5859]在几何构型上均是由多个相同的四连杆单元组合而成,相对应的生物结构在奔跑或跳跃时都具有承载与缓冲隔振的作用.为了实现不同的设计的目的,二者在参数设计和调控方面有不同的侧重点,前者基于腿部关节的弯曲,通过改变初始构型角度实现隔振范围的扩大;后者侧重于模仿人体脊椎的多层级设计,通过改变结构层数实现大幅值隔振、提高抗冲击性能.无独有偶,模拟鸟类颈部的多椎体结构设计的准零刚度隔振器[49]与基于Miura单胞折纸等效设计的机械式四连杆隔振器[67]在结构框架上同样表现出与三弹簧非线性隔振器相似的几何构型,二者在三弹簧结构的基础上,引入了不同的可调控参数,增强了原有结构的可设计性和冗余性,提高了隔振器的隔振性能.

  • 3.3 展望

  • 现如今,学者们针对仿生隔振器已经进行了大量的研究,取得了丰厚的学术成果.关注结构的几何构型并选择合适的可调控参数是进一步拓宽仿生隔振器隔振范围、优化隔振性能的关键,如下方向还需要开展进一步的深入探索:

  • (1)仿生隔振器性能多目标优化方法.现有的仿生隔振器在设计过程中常常只侧重于单目标设计,通常仅考虑降低动态刚度扩大隔振范围这一个目的,而并未将隔振器的承载能力大小和刚度的非线性程度同时作为评判隔振器性能优劣的指标.其中隔振器的起始隔离频率受恢复力的线性项调控;承载能力与非线性效应受恢复力的非线性项影响,得到起始隔振频率低、承载能力强、非线性效应弱的仿生隔振器的关键在于设计出线性项和非线性项可解耦调控的恢复力本构.

  • (2)多方向隔振器可编程动态刚度设计方法.针对大幅值的外部激励,在现有的隔振结构的基础上,关注多层隔振单元串联设计的新型隔振器的建模和优化,突破现有的振动抑制方法对小振动幅值有效的局限性,实现大幅值的振动隔离;除此以外,实际工况中的振动通常是复杂且多方向的,兼具多方向隔振能力的结构是未来的隔振器发展方向之一.然而多层、多方向的振动隔离也会产生更加复杂的非线性效应,设计出具有高维可解耦刚度、可编程的高静低动功能的仿生隔振器是研究的关键.

  • (3)数据驱动模型重构和智能调控方法.针对仿生隔振器的设计、实现和应用,柔性折痕、黏弹性材料、仿人工肌肉新材料等因素结合非线性几何关系使得第一性原理得到的动力学模型具有误差;其次,面向全频带隔振需要多胞、多层协调的仿生设计办法.因此,基于数据驱动方法修正模型并提出动态位移场最优协同设计方法是研究仿生非线性隔振器的关键,也充分体现其先进性.

  • (4)仿生结构的主动控制.主动控制与被动控制相比,其隔振性能更好、能够适应环境中复杂多变的外部激励,但复杂的控制装置和较高的能耗限制了其应用范围.优胜劣汰使得生物结构向着便携、节能的方向发展,将仿生结构与主动控制相结合,实现低能耗的主动控制方法.

  • 参考文献

    • [1] LEE W B,CHEUNG C F,TO S.Materials induced vibration in ultra-precision machining [J].Journal of Materials Processing Technology,1999,89/90:318-325.

    • [2] KANDASAMY R,CUI F S,TOWNSEND N,et al.A review of vibration control methods for marine offshore structures [J].Ocean Engineering,2016,127:279-297.

    • [3] 董瑶海.航天器微振动:理论与实践[M].北京:中国宇航出版社,2015.

    • [4] 彭献,黎大志,陈树年.准零刚度隔振器及其弹性特性设计[J].振动.测试与诊断,1997,17(4):44-46.PENG X,LI D Z,CHEN S N.Quasi-zero stiffness vibration isolators and design for their elastic characteristics [J].Journal of Vibration,Measurement & Diagnosis,1997,17(4):44-46.(in Chinese)

    • [5] ZHANG Y,ZHANG J R.Disturbance characteristics analysis of CMG due to imbalances and installation errors [J].IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1017-1026.

    • [6] ZHANG Y,ZHANG J R,XU S J.Parameters design of vibration isolation platform for control moment gyroscopes [J].Acta Astronautica,2012,81(2):645-659.

    • [7] 任晨辉,杨德庆.船用新型多层负刚度冲击隔离器性能分析[J].振动与冲击,2018,37(20):81-87.REN C H,YANG D Q.Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure [J].Journal of Vibration and Shock,2018,37(20):81-87.(in Chinese)

    • [8] 陆泽琦,陈立群.非线性被动隔振的若干进展[J].力学学报,2017,49(3):550-564.LU Z Q,CHEN L Q.Some recent progresses in nonlinear passive isolations of vibrations [J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):550-564.(in Chinese)

    • [9] CARRELLA A,BRENNAN M J,WATERS T P.Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Sound Vibration,2007,301(3/4/5):678-689.

    • [10] KOVACIC I,BRENNAN M J,WATERS T P.A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic [J].Journal of Sound Vibration,2008,315(3):700-711.

    • [11] IBRAHIM R A.Recent advances in nonlinear passive vibration isolators [J].Journal of Sound Vibration,2008,314(3/4/5):371-452.

    • [12] PFEIFER R,LUNGARELLA M,IIDA F.Self-Organization,embodiment,and biologically inspired robotics [J].Science,318.

    • [13] WU Z J,JING X J,BIAN J,et al.Vibration isolation by exploring bio-inspired structural nonlinearity [J].Bioinspiration & Biomimetics,2015,10(5):056015.

    • [14] BIAN J,JING X J.Superior nonlinear passive dam-ping characteristics of the bio-inspired limb-like or X-shaped structure [J].Mechanical Systems and Signal Processing,2019,125:21-51.

    • [15] LI S Y,WANG K W.Fluidic origami cellular structure:combining the plant nastic movements with paper folding art [C]//Active and Passive Smart Structures and Integrated Systems 2015.Bellingham,USA:SPIE,2015.

    • [16] LI S Y,WANG K W.Fluidic origami with embedded pressure dependent multi-stability:a plant inspired innovation [J].Journal of the Royal Society,Interface,2015,12(111):20150639.

    • [17] LI S Y,WANG K W.Fluidic origami:a plant-inspired adaptive structure with shape morphing and stiffness tuning [J].Smart Material Structures,2015,24(10):105031.

    • [18] GATTI G.A K-shaped spring configuration to boost elastic potential energy [J].Smart Materials and Structures,2019,28(7):077002.

    • [19] GATTI G.Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections [J].Communications in Nonlinear Science and Numerical Simulations,2020,83:105143.

    • [20] SUN X T,WANG F,XU J.A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck [J].International Journal of Mechanical Sciences,2021,193:106166.

    • [21] SUN X T,QI Z F,XU J.A novel multi-layer isolation structure for transverse stabilization inspired by neck structure [J].Acta Mechanica Sinica,2022,38(6):521543.

    • [22] SUN X T,JING X J,XU J,et al.Vibration isolation via a scissor-like structured platform [J].Journal of Sound and Vibration,2014,333(9):2404-2420.

    • [23] SUN X T,JING X J.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band [J].Mechanical Systems and Signal Processing,2016,80:166-188.

    • [24] SUN X T,JING X J.Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J].Mechanical Systems and Signal Processing,2016,66/67:723-742.

    • [25] ZHANG W,ZHAO J B.Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types [J].Nonlinear Dynamics,2016,86(1):17-36.

    • [26] SUN B,JING X J.A tracked robot with novel bio-inspired passive "legs" [J].Robotics and Biomimetics,2017,4(1):18.

    • [27] WANG Y,JING X J,GUO Y Q.Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints [J].Nonlinear Dynamics,2019,95(1):445-464.

    • [28] JING X J,ZHANG L L,FENG X,et al.A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J].Mechanical Systems and Signal Processing,2019,118:317-339.

    • [29] DAI H H,JING X J,WANG Y,et al.Post-capture vibration suppression of spacecraft via a bio-inspired isolation system [J].Mechanical Systems and Signal Processing,2018,105:214-240.

    • [30] DAI H H,JING X J,SUN C,et al.Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture [J].Mechanical Systems and Signal Processing,2018,109:111-133.

    • [31] DAI H H,CAO X Y,JING X J,et al.Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft:theory and experiment [J].Mechanical Systems and Signal Processing,2020,142:106785.

    • [32] PAN H H,JING X J,SUN W C,et al.Analysis and design of a bioinspired vibration sensor system in noisy environment [J].IEEE/ASME Transactions on Mechatronics,2018,23(2):845-855.

    • [33] WU Z J,JING X J,SUN B,et al.A 6DOF passive vibration isolator using X-shape supporting structures [J].Journal of Sound and Vibration,2016,380:90-111.

    • [34] HU F Z,JING X J.A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs [J].Nonlinear Dynamics,2018,91(1):157-185.

    • [35] JIANG G Q,JING X J,GUO Y Q.A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties [J].Mechanical Systems and Signal Processing,2020,138:106552.

    • [36] SUN X T,XU J,WANG F,et al.A novel isolation structure with flexible joints for impact and ultralow-frequency excitations [J].International Journal of Mechanical Sciences,2018,146/147:366-376.

    • [37] ZENG R,WEN G L,ZHOU J X,et al.Limb-inspired bionic quasi-zero stiffness vibration isolator [J].Acta Mechanica Sinica,2021,37(7):1152-1167.

    • [38] YAN G,WANG S,ZOU H X,et al.Bio-inspired polygonal skeleton structure for vibration isolation:design,modelling,and experiment [J].Science China Technological Sciences,2020,63(12):2617-2630.

    • [39] WARRICK D R,BUNDLE M W,DIAL K P.Bird maneuvering flight:blurred bodies,clear heads [J].Integrative and Comparative Biology,2002,42(1):141-148.

    • [40] RISTROPH L,BERGOU A J,RISTROPH G,et al.Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(11):4820-4824.

    • [41] CHIN D D,LENTINK D.Flapping wing aerodynamics:from insects to vertebrates [J].Journal of Experimental Biology,2016,219(7):920-932.

    • [42] PETE A E,KRESS D,DIMITROV M A,et al.The role of passive avian head stabilization in flapping flight [J].Journal of the Royal Society,Interface,2015,12(110):20150508.

    • [43] QUINN D,KRESS D,CHANG E,et al.How lovebirds maneuver through lateral gusts with minimal visual information [J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(30):15033-15041.

    • [44] FURET M,LETTL M,WENGER P.Kinematic analysis of planar tensegrity 2-X manipulators[C]//International Symposium on Advances in Robot Kinematics.Cham,Switzerland:Springer,2019:153-160.

    • [45] FURET M,WENGER P.Workspace and cuspidality analysis of a 2-X planar manipulator[C]//IFToMM Symposium on Mechanism Design for Robotics.Cham,Switzerland:Springer,2019:110-117.

    • [46] FASQUELLE B,KHANNA P,CHEVALLERE-AU C,et al.Identification and control of a 3-X cable-driven manipulator inspired from the bird’s neck [J].Journal of Mechanisms and Robotics,2022,14(1):011005.

    • [47] 李召芹.张拉整体仿生鸟颈特性分析与运动控制研究[D].哈尔滨:哈尔滨工业大学,2020.LI Z Q.Research on characteristic analysis and motion control of bionic bird neck of tensegrity [D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [48] WANG Y H,LI Z Q,HE J F,et al.Inverse kinematics based on backbone curve for a hyper-redundant tensegrity bird-neck robotic mechanism [J].Journal of Physics:Conference Series,2021,1885(4):042030.

    • [49] DENG T C,WEN G L,DING H,et al.A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck [J].Mechanical Systems and Signal Processing,2020,145:106967.

    • [50] ODA J,SAKAMOTO J,SAKANO K.Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system [J].JSME International Journal Series A,2006,49(3):390-396.

    • [51] YOON S H,ROH J E,KIM K L.Woodpecker-inspired shock isolation by microgranular bed [J].Journal of Physics D:Applied Physics,2009,42(3):035501.

    • [52] BIAN J,JING X J.Biomimetic design of woodpecker for shock and vibration protection [C]//2014 IEEE International Conference on Robotics and Biomimetics(ROBIO 2014).New York,USA:IEEE,2014:2238-2243.

    • [53] FENG X,JING X J.Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping & nonlinear inertia [J].Mechanical Systems and Signal Processing,2019,117:786-812.

    • [54] FENG X,JING X J,XU Z D,et al.Bio-inspired anti-vibration with nonlinear inertia coupling [J].Mechanical Systems and Signal Processing,2019,124:562-595.

    • [55] YAN G,ZOU H X,WANG S,et al.Bio-inspired toe-like structure for low-frequency vibration isolation [J].Mechanical Systems and Signal Processing,2022,162:108010.

    • [56] YAN G,QI W H,SHI J W,et al.Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism [J].Journal of Sound Vibration,2022,525:116799.

    • [57] LING P,MIAO L L,ZHANG W M,et al.Cockroach-inspired structure for low-frequency vibration isolation [J].Mechanical Systems and Signal Processing,2022,171:108955.

    • [58] JIN G X,WANG Z H,YANG T Z.Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine [J].Applied Mathematics and Mechanics,2022,43(6):813-824.

    • [59] 李小彭,王政浩,王碧涵.仿脊柱隔振器振动特性分析[J].振动与冲击,2022,41(8):231-237.LI X P,WANG Z H,WANG B H.Analysis of vibration characteristics of a simulated spinal vibration isolator [J].Journal of Vibration and Shock,2022,41(8):231-237.(in Chinese)

    • [60] SMEATHERS J E.Measurement of transmissibility for the human spine during walking and running [J].Clinical Biomechanics,1989,4(1):34-40.

    • [61] COERMANN R R.The mechanical impedance of the human body in sitting and standing position at low frequencies [J].Human Factors,1962,4:227-253.

    • [62] KIM D Y,PARK C I,PARK E S,et al.Role of arm swing on gait [J].Journal of the Korean Academy of Rehabilitation Medicine,2001,25(6):1031-1040.

    • [63] UMBERGER B R.Effects of suppressing arm swing on kinematics,kinetics,and energetics of human walking [J].Journal of Biomechanics,2008,41(11):2575-2580.

    • [64] JAYARAM K,FULL R J.Cockroaches traverse crevices,crawl rapidly in confined spaces,and inspire a soft,legged robot [J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(8):950-957.

    • [65] 方虹斌,吴海平,刘作林,等.折纸结构和折纸超材料动力学研究进展[J].力学学报,2022,54(1):1-38.FANG H B,WU H P,LIU Z L,et al.Advances in the dynamics of origami structures and origami metamaterials [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(1):1-38.(in Chinese)

    • [66] SADEGHI S,LI S Y.Harnessing the quasi-zero stiffness from fluidic origami for low frequency vibration isolation [C]//Proceedings of ASME 2017 Conference on Smart Materials,Adaptive Structures and Intelligent Systems.New York,USA:American Society of Mechanical Engineers,2017

    • [67] HAN H S,SOROKIN V,TANG L H,et al.A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube [J].Nonlinear Dynamics,2021,105(2):1313-1325.

    • [68] YE K,JI J C.An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure [J].Mechanical Systems and Signal Processing,2022,165:108383.

    • [69] XIANG X M,QIANG W,HOU B,et al.Quasi-static and dynamic mechanical properties of Miura-ori metamaterials [J].Thin-Walled Structures,2020,157:106993.

    • [70] SADEGHI S,LI S Y.Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation [J].Smart Material Structures,2019,28(6):065006.

    • [71] WASSERTHAL L T.The open hemolymph system of Holometabola and its relation to the tracheal space [J].Microscopic Anatomy of Invertebrates,1998,11:583-620.

    • [72] JOHN F,COOKE J R.Natural twist buckling in shells:from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical Miura-ori [C]//6th International Conference on Computation of Shell & Spatial Structures 2008(IASS-IACM 2008).New York,USA:Curran Associates,2008.

    • [73] KRESLING B.Origami-structures in nature:lessons in designing “smart” materials [J].MRS Online Proceedings Library,2012,1420(1):42-54.

    • [74] ISHIDA S,UCHIDA H,SHIMOSAKA H,et al.Design concepts and prototypes of vibration isolators using Bi-stable foldable structures [C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2016.

    • [75] ISHIDA S,UCHIDA H,SHIMOSAKA H,et al.Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures [J].Journal of Vibration and Acoustics,2017,139(3):031015.

    • [76] ISHIDA S,SUZUKI K,SHIMOSAKA H.Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Vibration and Acoustics,2017,139(5):051004.

    • [77] INAMOTO K,ISHIDA S.Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with quasi-zero-stiffness characteristics [C]//ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2018.

    • [78] YASUDA H,TACHI T,LEE M A,et al.Origami-based tunable truss structures for non-volatile mechanical memory operation [J].Nature Communications,2017,8:962.

    • [79] YASUDA H,MIYAZAWA Y,CHARALAMPIDIS E G,et al.Origami-based impact mitigation via rarefaction solitary wave creation [J].Science Advances,2019,5(5):eaau2835.

    • [80] LI Z,KIDAMBI N,WANG L M,et al.Uncovering rotational multifunctionalities of coupled Kresling modular structures [J].Extreme Mechanics Letters,2020,39:100795.

  • 参考文献

    • [1] LEE W B,CHEUNG C F,TO S.Materials induced vibration in ultra-precision machining [J].Journal of Materials Processing Technology,1999,89/90:318-325.

    • [2] KANDASAMY R,CUI F S,TOWNSEND N,et al.A review of vibration control methods for marine offshore structures [J].Ocean Engineering,2016,127:279-297.

    • [3] 董瑶海.航天器微振动:理论与实践[M].北京:中国宇航出版社,2015.

    • [4] 彭献,黎大志,陈树年.准零刚度隔振器及其弹性特性设计[J].振动.测试与诊断,1997,17(4):44-46.PENG X,LI D Z,CHEN S N.Quasi-zero stiffness vibration isolators and design for their elastic characteristics [J].Journal of Vibration,Measurement & Diagnosis,1997,17(4):44-46.(in Chinese)

    • [5] ZHANG Y,ZHANG J R.Disturbance characteristics analysis of CMG due to imbalances and installation errors [J].IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1017-1026.

    • [6] ZHANG Y,ZHANG J R,XU S J.Parameters design of vibration isolation platform for control moment gyroscopes [J].Acta Astronautica,2012,81(2):645-659.

    • [7] 任晨辉,杨德庆.船用新型多层负刚度冲击隔离器性能分析[J].振动与冲击,2018,37(20):81-87.REN C H,YANG D Q.Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure [J].Journal of Vibration and Shock,2018,37(20):81-87.(in Chinese)

    • [8] 陆泽琦,陈立群.非线性被动隔振的若干进展[J].力学学报,2017,49(3):550-564.LU Z Q,CHEN L Q.Some recent progresses in nonlinear passive isolations of vibrations [J].Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):550-564.(in Chinese)

    • [9] CARRELLA A,BRENNAN M J,WATERS T P.Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Sound Vibration,2007,301(3/4/5):678-689.

    • [10] KOVACIC I,BRENNAN M J,WATERS T P.A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic [J].Journal of Sound Vibration,2008,315(3):700-711.

    • [11] IBRAHIM R A.Recent advances in nonlinear passive vibration isolators [J].Journal of Sound Vibration,2008,314(3/4/5):371-452.

    • [12] PFEIFER R,LUNGARELLA M,IIDA F.Self-Organization,embodiment,and biologically inspired robotics [J].Science,318.

    • [13] WU Z J,JING X J,BIAN J,et al.Vibration isolation by exploring bio-inspired structural nonlinearity [J].Bioinspiration & Biomimetics,2015,10(5):056015.

    • [14] BIAN J,JING X J.Superior nonlinear passive dam-ping characteristics of the bio-inspired limb-like or X-shaped structure [J].Mechanical Systems and Signal Processing,2019,125:21-51.

    • [15] LI S Y,WANG K W.Fluidic origami cellular structure:combining the plant nastic movements with paper folding art [C]//Active and Passive Smart Structures and Integrated Systems 2015.Bellingham,USA:SPIE,2015.

    • [16] LI S Y,WANG K W.Fluidic origami with embedded pressure dependent multi-stability:a plant inspired innovation [J].Journal of the Royal Society,Interface,2015,12(111):20150639.

    • [17] LI S Y,WANG K W.Fluidic origami:a plant-inspired adaptive structure with shape morphing and stiffness tuning [J].Smart Material Structures,2015,24(10):105031.

    • [18] GATTI G.A K-shaped spring configuration to boost elastic potential energy [J].Smart Materials and Structures,2019,28(7):077002.

    • [19] GATTI G.Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections [J].Communications in Nonlinear Science and Numerical Simulations,2020,83:105143.

    • [20] SUN X T,WANG F,XU J.A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck [J].International Journal of Mechanical Sciences,2021,193:106166.

    • [21] SUN X T,QI Z F,XU J.A novel multi-layer isolation structure for transverse stabilization inspired by neck structure [J].Acta Mechanica Sinica,2022,38(6):521543.

    • [22] SUN X T,JING X J,XU J,et al.Vibration isolation via a scissor-like structured platform [J].Journal of Sound and Vibration,2014,333(9):2404-2420.

    • [23] SUN X T,JING X J.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band [J].Mechanical Systems and Signal Processing,2016,80:166-188.

    • [24] SUN X T,JING X J.Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J].Mechanical Systems and Signal Processing,2016,66/67:723-742.

    • [25] ZHANG W,ZHAO J B.Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types [J].Nonlinear Dynamics,2016,86(1):17-36.

    • [26] SUN B,JING X J.A tracked robot with novel bio-inspired passive "legs" [J].Robotics and Biomimetics,2017,4(1):18.

    • [27] WANG Y,JING X J,GUO Y Q.Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints [J].Nonlinear Dynamics,2019,95(1):445-464.

    • [28] JING X J,ZHANG L L,FENG X,et al.A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J].Mechanical Systems and Signal Processing,2019,118:317-339.

    • [29] DAI H H,JING X J,WANG Y,et al.Post-capture vibration suppression of spacecraft via a bio-inspired isolation system [J].Mechanical Systems and Signal Processing,2018,105:214-240.

    • [30] DAI H H,JING X J,SUN C,et al.Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture [J].Mechanical Systems and Signal Processing,2018,109:111-133.

    • [31] DAI H H,CAO X Y,JING X J,et al.Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft:theory and experiment [J].Mechanical Systems and Signal Processing,2020,142:106785.

    • [32] PAN H H,JING X J,SUN W C,et al.Analysis and design of a bioinspired vibration sensor system in noisy environment [J].IEEE/ASME Transactions on Mechatronics,2018,23(2):845-855.

    • [33] WU Z J,JING X J,SUN B,et al.A 6DOF passive vibration isolator using X-shape supporting structures [J].Journal of Sound and Vibration,2016,380:90-111.

    • [34] HU F Z,JING X J.A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs [J].Nonlinear Dynamics,2018,91(1):157-185.

    • [35] JIANG G Q,JING X J,GUO Y Q.A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties [J].Mechanical Systems and Signal Processing,2020,138:106552.

    • [36] SUN X T,XU J,WANG F,et al.A novel isolation structure with flexible joints for impact and ultralow-frequency excitations [J].International Journal of Mechanical Sciences,2018,146/147:366-376.

    • [37] ZENG R,WEN G L,ZHOU J X,et al.Limb-inspired bionic quasi-zero stiffness vibration isolator [J].Acta Mechanica Sinica,2021,37(7):1152-1167.

    • [38] YAN G,WANG S,ZOU H X,et al.Bio-inspired polygonal skeleton structure for vibration isolation:design,modelling,and experiment [J].Science China Technological Sciences,2020,63(12):2617-2630.

    • [39] WARRICK D R,BUNDLE M W,DIAL K P.Bird maneuvering flight:blurred bodies,clear heads [J].Integrative and Comparative Biology,2002,42(1):141-148.

    • [40] RISTROPH L,BERGOU A J,RISTROPH G,et al.Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(11):4820-4824.

    • [41] CHIN D D,LENTINK D.Flapping wing aerodynamics:from insects to vertebrates [J].Journal of Experimental Biology,2016,219(7):920-932.

    • [42] PETE A E,KRESS D,DIMITROV M A,et al.The role of passive avian head stabilization in flapping flight [J].Journal of the Royal Society,Interface,2015,12(110):20150508.

    • [43] QUINN D,KRESS D,CHANG E,et al.How lovebirds maneuver through lateral gusts with minimal visual information [J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(30):15033-15041.

    • [44] FURET M,LETTL M,WENGER P.Kinematic analysis of planar tensegrity 2-X manipulators[C]//International Symposium on Advances in Robot Kinematics.Cham,Switzerland:Springer,2019:153-160.

    • [45] FURET M,WENGER P.Workspace and cuspidality analysis of a 2-X planar manipulator[C]//IFToMM Symposium on Mechanism Design for Robotics.Cham,Switzerland:Springer,2019:110-117.

    • [46] FASQUELLE B,KHANNA P,CHEVALLERE-AU C,et al.Identification and control of a 3-X cable-driven manipulator inspired from the bird’s neck [J].Journal of Mechanisms and Robotics,2022,14(1):011005.

    • [47] 李召芹.张拉整体仿生鸟颈特性分析与运动控制研究[D].哈尔滨:哈尔滨工业大学,2020.LI Z Q.Research on characteristic analysis and motion control of bionic bird neck of tensegrity [D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [48] WANG Y H,LI Z Q,HE J F,et al.Inverse kinematics based on backbone curve for a hyper-redundant tensegrity bird-neck robotic mechanism [J].Journal of Physics:Conference Series,2021,1885(4):042030.

    • [49] DENG T C,WEN G L,DING H,et al.A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck [J].Mechanical Systems and Signal Processing,2020,145:106967.

    • [50] ODA J,SAKAMOTO J,SAKANO K.Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system [J].JSME International Journal Series A,2006,49(3):390-396.

    • [51] YOON S H,ROH J E,KIM K L.Woodpecker-inspired shock isolation by microgranular bed [J].Journal of Physics D:Applied Physics,2009,42(3):035501.

    • [52] BIAN J,JING X J.Biomimetic design of woodpecker for shock and vibration protection [C]//2014 IEEE International Conference on Robotics and Biomimetics(ROBIO 2014).New York,USA:IEEE,2014:2238-2243.

    • [53] FENG X,JING X J.Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping & nonlinear inertia [J].Mechanical Systems and Signal Processing,2019,117:786-812.

    • [54] FENG X,JING X J,XU Z D,et al.Bio-inspired anti-vibration with nonlinear inertia coupling [J].Mechanical Systems and Signal Processing,2019,124:562-595.

    • [55] YAN G,ZOU H X,WANG S,et al.Bio-inspired toe-like structure for low-frequency vibration isolation [J].Mechanical Systems and Signal Processing,2022,162:108010.

    • [56] YAN G,QI W H,SHI J W,et al.Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism [J].Journal of Sound Vibration,2022,525:116799.

    • [57] LING P,MIAO L L,ZHANG W M,et al.Cockroach-inspired structure for low-frequency vibration isolation [J].Mechanical Systems and Signal Processing,2022,171:108955.

    • [58] JIN G X,WANG Z H,YANG T Z.Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine [J].Applied Mathematics and Mechanics,2022,43(6):813-824.

    • [59] 李小彭,王政浩,王碧涵.仿脊柱隔振器振动特性分析[J].振动与冲击,2022,41(8):231-237.LI X P,WANG Z H,WANG B H.Analysis of vibration characteristics of a simulated spinal vibration isolator [J].Journal of Vibration and Shock,2022,41(8):231-237.(in Chinese)

    • [60] SMEATHERS J E.Measurement of transmissibility for the human spine during walking and running [J].Clinical Biomechanics,1989,4(1):34-40.

    • [61] COERMANN R R.The mechanical impedance of the human body in sitting and standing position at low frequencies [J].Human Factors,1962,4:227-253.

    • [62] KIM D Y,PARK C I,PARK E S,et al.Role of arm swing on gait [J].Journal of the Korean Academy of Rehabilitation Medicine,2001,25(6):1031-1040.

    • [63] UMBERGER B R.Effects of suppressing arm swing on kinematics,kinetics,and energetics of human walking [J].Journal of Biomechanics,2008,41(11):2575-2580.

    • [64] JAYARAM K,FULL R J.Cockroaches traverse crevices,crawl rapidly in confined spaces,and inspire a soft,legged robot [J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(8):950-957.

    • [65] 方虹斌,吴海平,刘作林,等.折纸结构和折纸超材料动力学研究进展[J].力学学报,2022,54(1):1-38.FANG H B,WU H P,LIU Z L,et al.Advances in the dynamics of origami structures and origami metamaterials [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(1):1-38.(in Chinese)

    • [66] SADEGHI S,LI S Y.Harnessing the quasi-zero stiffness from fluidic origami for low frequency vibration isolation [C]//Proceedings of ASME 2017 Conference on Smart Materials,Adaptive Structures and Intelligent Systems.New York,USA:American Society of Mechanical Engineers,2017

    • [67] HAN H S,SOROKIN V,TANG L H,et al.A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube [J].Nonlinear Dynamics,2021,105(2):1313-1325.

    • [68] YE K,JI J C.An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure [J].Mechanical Systems and Signal Processing,2022,165:108383.

    • [69] XIANG X M,QIANG W,HOU B,et al.Quasi-static and dynamic mechanical properties of Miura-ori metamaterials [J].Thin-Walled Structures,2020,157:106993.

    • [70] SADEGHI S,LI S Y.Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation [J].Smart Material Structures,2019,28(6):065006.

    • [71] WASSERTHAL L T.The open hemolymph system of Holometabola and its relation to the tracheal space [J].Microscopic Anatomy of Invertebrates,1998,11:583-620.

    • [72] JOHN F,COOKE J R.Natural twist buckling in shells:from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical Miura-ori [C]//6th International Conference on Computation of Shell & Spatial Structures 2008(IASS-IACM 2008).New York,USA:Curran Associates,2008.

    • [73] KRESLING B.Origami-structures in nature:lessons in designing “smart” materials [J].MRS Online Proceedings Library,2012,1420(1):42-54.

    • [74] ISHIDA S,UCHIDA H,SHIMOSAKA H,et al.Design concepts and prototypes of vibration isolators using Bi-stable foldable structures [C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2016.

    • [75] ISHIDA S,UCHIDA H,SHIMOSAKA H,et al.Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures [J].Journal of Vibration and Acoustics,2017,139(3):031015.

    • [76] ISHIDA S,SUZUKI K,SHIMOSAKA H.Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Vibration and Acoustics,2017,139(5):051004.

    • [77] INAMOTO K,ISHIDA S.Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with quasi-zero-stiffness characteristics [C]//ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2018.

    • [78] YASUDA H,TACHI T,LEE M A,et al.Origami-based tunable truss structures for non-volatile mechanical memory operation [J].Nature Communications,2017,8:962.

    • [79] YASUDA H,MIYAZAWA Y,CHARALAMPIDIS E G,et al.Origami-based impact mitigation via rarefaction solitary wave creation [J].Science Advances,2019,5(5):eaau2835.

    • [80] LI Z,KIDAMBI N,WANG L M,et al.Uncovering rotational multifunctionalities of coupled Kresling modular structures [J].Extreme Mechanics Letters,2020,39:100795.

  • 微信公众号二维码

    手机版网站二维码