en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王荣浩,E-mail:wrh@893.com.cn

中图分类号:TP273

文献标识码:A

文章编号:1672-6553-2024-22(1)-069-010

DOI:10.6052/1672-6553-2022-064

参考文献 1
KRSTIC M,KOKOTOVIC P V,KANELLAKOPOULOS I.Nonlinear and adaptive control design[M].New York,USA:John Wiley & Sons,Inc.,1995.
参考文献 2
MA Z Y,MA H J.Improved adaptive fuzzy output-feedback dynamic surface control of nonlinear systems with unknown dead-zone output [J].IEEE Transactions on Fuzzy Systems,2021,29(8):2122-2131.
参考文献 3
CHANG X H,JIN X.Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization [J].Applied Mathematics and Computation,2022,414:126657.
参考文献 4
CUI D,XIANG Z R.Nonsingular fixed-time fault-tolerant fuzzy control for switched uncertain nonlinear systems [J].IEEE Transactions on Fuzzy Systems,2023,31(1):174-183.
参考文献 5
王贵元,杨卓琴.非线性时滞奇异系统的严格实用稳定性研究 [J].动力学与控制学报,2018,16(4):317-323.WANG G Y,YANG Z Q.Strict practical stability of nonlinear singular systems with time delay [J].Journal of Dynamics and Control,2018,16(4):317-323.(in Chinese)
参考文献 6
向伟铭,向峥嵘.一类非线性切换系统输出与扰动的解耦 [J].动力学与控制学报,2007,5(2):165-168.XIANG W M,XIANG Z R.Output and disturbance decoupling of switched nonlinear systems [J].Journal of Dynamics and Control,2007,5(2):165-168.(in Chinese)
参考文献 7
向伟铭,向峥嵘.一类非线性切换系统的观测器设计 [J].动力学与控制学报,2008,6(3):239-242.XIANG W M,XIANG Z R.Observer design for a class of switched nonlinear systems [J].Journal of Dynamics and Control,2008,6(3):239-242.(in Chinese)
参考文献 8
周正.Lurie广义系统基于观测器的控制器设计 [J].动力学与控制学报,2013,11(3):284-288.ZHOU Z.Observer based controller design for lurie descriptor systems [J].Journal of Dynamics and Control,2013,11(3):284-288.(in Chinese)
参考文献 9
LI H F,ZHANG X F,FENG G.Event-triggered output feedback control of switched nonlinear systems with input saturation [J].IEEE Transactions on Cybernetics,2021,51(5):2319-2326.
参考文献 10
JEONG D M,YOO S J.Adaptive event-triggered tracking using nonlinear disturbance observer of arbitrarily switched uncertain nonlinear systems in pure-feedback form [J].Applied Mathematics and Computation,2021,407:126335.
参考文献 11
LIAN J,LI C.Event-triggered adaptive tracking control of uncertain switched nonlinear systems [J].International Journal of Robust and Nonlinear Control,2021,31(9):4154-4169.
参考文献 12
WANG F L,LONG L J.Dwell-time-based event-triggered adaptive control for switched strict-feedback nonlinear systems [J].International Journal of Robust and Nonlinear Control,2020,30(17):7052-7073.
参考文献 13
HUO X,MA L,ZHAO X D,et al.Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time [J].Applied Mathematics and Computation,2020,365:124665.
参考文献 14
LIU Y C,ZHU Q D,ZHOU X,et al.Adaptive fuzzy tracking of switched nonstrict-feedback nonlinear systems with state constraints based on event-triggered mechanism [J].ISA Transactions,2022,121:30-39.
参考文献 15
DONG X X,ZHANG X,SUN T.Event-triggered control of a class of cascade switched nonlinear systems [J].Nonlinear Dynamics,2021,105(2):1533-1541.
参考文献 16
LI S,AHN C K,GUO J,et al.Neural-network approximation-based adaptive periodic event-triggered output-feedback control of switched nonlinear systems [J].IEEE Transactions on Cybernetics,2021,51(8):4011-4020.
参考文献 17
李实,向峥嵘.切换非线性系统的输出反馈周期事件触发控制[J],控制理论与应用2022,39(8):1377-1386 LI S,XIANG Z R.Output feedback periodic event-triggered control for switched nonlinear systems [J].Control Theory & Applications,2022,39(8):1377-1386.(in Chinese)
参考文献 18
YANG H Y,JIANG Y C,YIN S.Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults [J].IEEE Transactions on Fuzzy Systems,2021,29(4):772-785.
参考文献 19
LIU G L,BASIN M V,LIANG H J,et al.Adaptive bipartite tracking control of nonlinear multiagent systems with input quantization [J].IEEE Transactions on Cybernetics,2022,52(3):1891-1901.
参考文献 20
YU X H,WANG T,QIU J B,et al.Barrier Lyapunov function-based adaptive fault-tolerant control for a class of strict-feedback stochastic nonlinear systems [J].IEEE Transactions on Cybernetics,2021,51(2):938-946.
参考文献 21
ZHANG M,SHI P,SHEN C,et al.Static output feedback control of switched nonlinear systems with actuator faults [J].IEEE Transactions on Fuzzy Systems,2020,28(8):1600-1609.
参考文献 22
LI Y M,TONG S C.Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults [J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(11):2541-2554.
参考文献 23
卢军锋,吴钟鸣,向峥嵘.一类非线性切换系统鲁棒H可靠控制 [J].动力学与控制学报,2014,12(4):353-358.LU J F,WU Z M,XIANG Z R.Robust H reliable control for a class of nonlinear switched systems [J].Journal of Dynamics and Control,2014,12(4):353-358.(in Chinese)
参考文献 24
ZHANG J,AHN C K,XIANG Z R.Fuzzy-approximation-based event-triggered output feedback adaptive control for nonlinear switched large-scale systems with actuator faults [J].IEEE Systems Journal,2022,16(2):2102-2109.
参考文献 25
LIU Y C,ZHU Q D,ZHAO N.Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints [J].Information Sciences,2021,562:28-43.
参考文献 26
CHEN B,LIU X P,LIU K F,et al.Direct adaptive fuzzy control of nonlinear strict-feedback systems [J].Automatica,2009,45(6):1530-1535.
参考文献 27
WANG L X.Adaptive fuzzy systems and contro:design and stability analysis [M].Upper Saddle River,USA:Prentice-Hall,1994
参考文献 28
李鹏杰,王新蕊,李小奇,等.下肢外骨骼膝关节模糊滑模位置控制器设计 [J].动力学与控制学报,2021,19(5):59-64.LI P J,WANG X R,LI X Q,et al.Design of fuzzy sliding mode position controller for exoskeleton knee joint with lower limbs [J].Journal of Dynamics and Control,2021,19(5):59-64.(in Chinese)
参考文献 29
XING L T,WEN C Y,LIU Z T,et al.Event-triggered adaptive control for a class of uncertain nonlinear systems [J].IEEE Transactions on Automatic Control,2017,62(4):2071-2076.
参考文献 30
ZHANG J,LI S,XIANG Z R.Adaptive fuzzy output feedback event-triggered control for a class of switched nonlinear systems with sensor failures [J].IEEE Transactions on Circuits and Systems I:Regular Papers,2020,67(12):5336
目录contents

    摘要

    本文研究在平均驻留时间约束下,一类含有执行器故障的切换非线性系统输出反馈自适应模糊事件触发容错控制问题.首先,建立了一个模态依赖的状态观测器估计不可测量状态.利用模糊逻辑系统来逼近未知项.其次,构建自适应模糊容错事件触发控制方案能够节省网络资源和数据传输.然后,通过构造多Lyapunov函数和平均驻留时间法,证明闭环系统所有状态半全局一致最终有界的同时排除了Zeno现象.最后,通过数值仿真验证该方法的有效性.

    Abstract

    This paper investigates the event-triggered output feedback adaptive fuzzy fault-tolerant control problem for switched nonlinear systems with actuator faults. Firstly, A mode-dependent state observer is established to estimate unmeasured states. Fuzzy logic systems are employed to approximate the unknown uncertainties. The constructed adaptive fuzzy fault-tolerant event-triggered controller can reduce the usage of the communication resources. Then, by multi-Lyapunov functions and average dwell time method, it is proved that all states of the closed-loop systems are SGGUB. In addition, zeno phenomenon can be excluded. Finally, the effectiveness of the method is verified by simulation result.

  • 引言

  • 近年来人们对非线性系统的关注度越来越高,大量控制方案已被广泛研究[1-4].文献[5]将严格实用稳定性相关概念推广到具有控制输入的非线性奇异系统,利用两个Lyapunov函数和比较原理得出该类系统严格利用稳定及严格实用渐进稳定的充分条件;最近切换非线性系统的稳定性分析以及控制器设计逐渐成为研究热点[6-8].文献[6]研究了一类单输入单输出切换非线性系统输出与扰动的解耦问题,提出了此类系统输出与扰动的完全解耦的充分条件;文献[7]为基于切换规则为时间依赖型的切换非线性系统设计了观测器,保证了系统稳定性;文献[8]研究了典型非线性广义系统的状态反馈控制器和观测器设计问题.

  • 在实际应用中,许多切换非线性控制系统存在系统带宽和通讯资源有限的问题.如何节约通讯资源成为另一研究热点.针对这一问题,文献[9]研究一类输入饱和的切换非线性系统的事件触发输出反馈控制问题,设计了基于降维观测器的输出反馈控制器,保证了闭环信号全局有界;文献[10]设计了一种自适应非线性干扰观测器,用于任意切换非线性系统的事件触发跟踪;基于驻留时间条件,文献[11-13]研究了切换非线性系统的事件触发控制问题,所提出的方案在保证系统稳定性的同时排除了Zeno现象.文献[1415]研究了基于平均驻留时间约束的切换非线性系统,设计了事件触发控制器并导出了系统稳定所需要满足的平均驻留时间条件.文献[16]针对一类切换非线性系统的周期事件触发控制展开了研究,给出了输出反馈周期事件触发控制方案,保证了系统在任意切换下的稳定性.文献[17]研究了含有未知控制系数的切换非线性非严格反馈系统,设计了一个公共的降维观测器及带有离散事件触发控制器的输出反馈周期事件触发控制器,使通讯资源的利用降低.

  • 以上研究是在执行器正常工作前提下展开的,但是实际控制系统,由于外部环境或自身因素影响,执行器在实际运行过程中可能发生故障.文献[18-22]针对不同类型系统,研究了容错控制方案;文献[23]研究了包含未知扰动和执行器故障切换非线性系统,设计了鲁棒H可靠控制器,使系统在任意切换下全局二次稳定.文献[24]研究了切换非线性大系统的输出反馈自适应事件触发容错控制问题,设计了新型自适应容错事件触发控制器,保证了闭环信号有界.需要指出的是上述结果都是基于公共Lyapunov函数研究的,但是据作者所知针对含有平均驻留时间约束的切换非线性系统容错事件触发控制问题研究却鲜有报道,本文主要提出了3个具有挑战性的问题:(1)若切换非线性系统包含执行器故障,如何设计容错事件触发控制器来克服执行器故障带来的影响同时节约系统通讯资源?(2)如何为每个子系统设计状态观测器?(3)如何选取平均驻留时间条件,使闭环系统所有状态有界?本文针对以上问题展开研究,主要内容如下:

  • (1)与已有文献[11-15]相比,本文考虑的系统中包含执行器故障,为了有效地实现容错控制,我们引入坐标变换将原系统转换为新系统,并设计出模态依赖的状态观测器与控制器.

  • (2)不同于文献[1821]设计的控制器,为了节约控制系统的通讯资源,本文设计了一种新颖的自适应输出反馈事件触发容错控制方案.

  • (3)文中设计了一种新型事件触发机制,该机制可以有效避免切换发生在触发区间内,导致的控制器模态和系统模态不匹配的现象对系统稳定性的影响.

  • 1 问题描述

  • 考虑如下切换非线性系统:

  • x˙i=xi+1+f~i,σ(t)x-i+d~i,σ(t)(t)x˙n=v(t)+f~n,σ(t)(x)+d~n,σ(t)(t)y=x1,i=1,,n-1
    (1)
  • 其中x=x1xnT为系统状态,x-i=x1xnTυt)为系统输入,y为系统输出,σt:[0M={1,2m}为切换信号,m为子系统个数,σt)=k表示第k子系统激活. f~ikx-ii=1n表示未知光滑非线性函数,d~ikt表示外部扰动且d~iktd-ikd-ik>0是常数.考虑状态在切换时刻不发生跳变.

  • 由于外部环境或自身因素影响,执行器在实际运行过程中可能发生故障.在本文中,执行器的故障模型[9]被描述为:

  • v(t)=ζu(t)+v-(t).
    (2)
  • 其中常数ζ>0表示执行器效果的部分损失,满足ζζ<1,ζ>0,ut)表示控制器输入,v-t表示偏移故障且满足|v-t|v*v*>0是未知常数.

  • 假设1[25]  跟踪信号yd连续有界并且其n阶导数ydii=1n连续有界.

  • 引理1[26]  切换信号有平均驻留时间τa>0,若存在常数N0>0则存在:

  • Nσ (T, t) N0+ (T-t) τa.

  • 引理2[2728]基于集合Ωz存在连续函数FZ),对于任意>0,令L为模糊规则数,存在模糊逻辑系统ΘTΦZ满足:

  • supZΩ F (Z) -ΘTΦ (Z) , >0.

  • 其中

  • Z=Z1, , ZnT, Θ=Θ1, , ΘLT, Φ (Z) =φ1 (Z) , , φL (Z) T, φk=i=1n εHikZi/k=1L i=1n εHikZi.

  • 通常将εHikZi选为高斯函数.则函数FZ)可以表示为:

  • F (Z) =ΘTΦ (Z) +μ (Z) ,

  • 其中μZ)为逼近误差,满足|μZ|μ-μ->0.

  • 引理3[29]  对于η>0xR函数tanh(·)满足

  • 0|x|-xtanhxη0.2785η.

  • 注1  当ζ=v-t=0,系统(1)退化为文献[101630]中的模型,因此本文考虑的系统更具有一般性.

  • 本文的控制目标是为系统(1)设计输出反馈自适应模糊事件触发控制器,保证其对应的闭环系统所有状态半全局一致最终有界.

  • 2 主要结果

  • 2.1 观测器设计

  • 由于状态未知,我们引入如下的坐标变换:

  • ξi=xi/ζ,
    (3)
  • 其中i=1,···,n.

  • 由公式(3),系统(1)可以描述为:

  • ξ˙i=ξi+1+fi,σ(t)ξ-i+di,σ(t)(t),ξ˙n=u(t)+u-*(t)+fn,σ(t)(ξ)+dn,σ(t)(t),y=ζξ1,i=1,,n-1.
    (4)
  • 其中

  • fi, σ (t) ξ-i=f~i, σ (t) /ζ, di, δ (t) (t) =d~i, δ (t) (t) /ζ, v-* (t) =v- (t) /ζ, ξ-i=ξ1, , ξnT.

  • 设计状态观测器如下:

  • ξ^˙i=ξ^i+1+bi,σ(t)y-ξ^1,ξ^˙i=u+bn,σ(t)y-ξ^1,
    (5)
  • 其中i=1,···,n-1,ξ^1ξi的估计量,biσt>0是设计参数并满足以下矩阵:

  • Aσ (t) =-b1, σ (t) 10-bn-1, σ (t) 01-bn, σ (t) 00

  • 是Hurwitz矩阵.

  • 定义观测误差ei=ξi-ξ^ii=1ne=e1enT.

  • 由式(4)和式(5)可得:

  • e˙=Aσ(t)e+Fσ(t)(ξ)+Dσ(t)(t)+v~(t),
    (6)
  • 其中

  • Fσ (t) (ξ) =f1, σ (t) ξ1+b1, σ (t) (1-ζ) ξ1, , fn, σ (t) (ξ-) +bn, σ (t) (1-ζ) ξ^1T, Dσ (t) (t) =d1, σ (t) (t) , , dn, σ (t) (t) T, v~ (t) =0, 0, , v-* (t) T.

  • 注2  由于系统(1)的执行器中未知,我们针对系统直接设计观测器存在一定的难度.因此,我们引入坐标变换(3),将系统(1)转换为系统(4),并由此设计模态依赖的状态观测器(5).

  • 2.2 事件触发控制器设计

  • 基于观测器(5),首先定义坐标变换如下:

  • z1=y-yd,zi=ξ^i-αi-1,i=2,,n,
    (7)
  • 其中αi-1为虚拟控制器.

  • σt)=k表示第k子系统激活.

  • 第1步:选择Lyapunov形式为:

  • V1, k=V0, k+z122ζ+θ~122r1,

  • 其中r1>0是设计参数,选择Lyapunov函数V0k=eTPke.任意给定正定对称矩阵Qk>0,存在矩阵Pk=PkT>00满足:

  • AkTPk+PkAk=-Qk.
    (8)
  • 进而可得:

  • V˙0,k=-eTQke+2eTPkFk(ξ)+Dk(t)+v~(t),
    (9)
  • 根据引理2得:

  • Fk (ξ) =Θ0, kTΦ0 (ξ) +μ0, k (ξ) , μ0k (ξ) μ-0k

  • 其中μ0kξ为逼近误差,μ-0k>0是常数.定义一个常量:

  • θi=maxΘi,k2:kM,i=0,1,2,,n,
    (10)
  • 其中θ^iθi的估计,满足θ~i=θi-θ^ii=1,2n.

  • 0<Φ0TξΦ0ξ<1,有:

  • 2eTPkFk(ξ)+Dk(t)+v~(t)2e2+Pk2θ0+D-k2+μ-0,k2+v-*ζ2,
    (11)
  • 其中D-k=d-1kd-nkT.将式(10)、式(11)代入式(9)得:

  • V˙0,k-λminQk-4e2+δ0,k,
    (12)
  • 其中

  • δ0, k=Pk2θ0+D-k2+μ-0, k2+v-*ζ2.

  • 根据式(12)可得V˙1k

  • V˙1,k=V˙0,k+z1ζζz2+e2+α1+f1,k+d1,k-y˙d-θ~1θ^˙1r1,
    (13)
  • f1k-y˙d/ζ=F1kZ1,根据引理2得:

  • F1, kZ1=Θ1, kTΦ1Z1+μ1, kZ1, μ1, kZ1μ-1, k

  • 其中μ1k>0Z1=yydy˙dT.

  • 由Young’s不等式可得:

  • z1F1,k12z12θ1Φ1TZ1Φ1Z1+z122+12+μ-21,k2,
    (14)
  • z1e2+d1,kz12+e22+d-1,k22.
    (15)
  • 设计虚拟控制律和自适应律:

  • α1=-c-1z1-12θ^1Φ1TZ1Φ1Z1z1,θ^˙1=r12z12Φ1TZ1Φ1Z1-l1θ^1,
    (16)
  • 其中c-1=c1+2c1l1>0是设计参数.

  • 由Young’s不等式得:

  • l1r1θ~1θ^1-l12r1θ~12+l12r1θ12.
    (17)
  • 将式(12),式(14)~式(17)代入式(13)得:

  • V˙1,k-λminQk-5e2-c1z12+z222-l12r1θ~12+δ1,k,
    (18)
  • 其中δ1k=δ0k+12+d-21k2+μ-1k22+l12r1θ12.

  • 第2步:选择Lyapunov函数形式为:

  • V2, k=V1, k+z222+θ~222r2,

  • 其中r2>0是设计参数.对其求导得:

  • V˙2,k=V˙1,k+z2α2+z3+b2,ky-ξ^1-α˙1-θ~2θ^˙2r2,
    (19)
  • 其中α˙1=α1yy˙+α1ydy˙d+α1y˙dy¨d+α1θ^1θ^˙1,利用Young’s不等式得:

  • -z2α1yy˙=-z2ζα1yξ^2+e2+f1k+d1,k-z2ζα1yξ^2+f1k+e24+z2ζα1y2+d-21,k2+z222ζα1y2,
    (20)
  • z2b2,ky-ξ^1b222z22+e22,
    (21)
  • 其中b2=maxkM b2k.

  • 将式(18),式(20)和式(21)代入式(19)得:

  • V˙2,k-λminQk-5e2-c1z12+z222-l12r1θ~12+d-21,k2+b222z22+z2z3+α2+F2,kZ2-θ~2θ^˙2r2,
    (22)
  • 其中

  • F2, kZ2=-i=01 α1yd (i) yd (i+1) +z2ζα1y2-ζα1yξ^2+f1, k-α1θ˙1θ^˙1+z22ζα1y2, Z2=y, yd, y˙d, y¨d, ξ^2, θ^1T.

  • 根据引理2得:

  • F2, kZ2=Θ2, kTΦ2Z2+μ2, kZ2, μ2, kZ2μ-2, k, μ-2, k>0,

  • 其中μ2kZ2为逼近误差.

  • 利用Young’s不等式,有:

  • z2F2,kZ2=z2Θ2,kTΦ2Z2+z2μ2,kZ212z22θ2Φ2TZ2Φ2Z2+z222+12+μ-22,k2.
    (23)
  • 设计虚拟控制律和自适应律:

  • α2=-c-2z2-12θ^2Φ2TZ2Φ2Z2z2,θ^˙2=r22z22Φ2TZ2Φ2Z2-l2θ^2,
    (24)
  • 其中

  • c-2=c2+32+b222c2>0l2>0是设计参数.

  • 将式(23),式(24)代入式(22)得:

  • V˙2,k-λminQk-6e2-i=12 cizi2+z322-i=12 li2riθ~i2+δ2,k,
    (25)
  • 其中δ2k=δ1k+12+μ-22k2+d-21k2+l22r2θ22.

  • 第j步:(3≤jn-1)选择Lyapunov形式为:

  • Vj,k=Vj-1,k+zj22+θ~j22rj,
    (26)
  • 其中rj>0是设计参数.

  • 对其求导得:

  • V˙j,k=V˙j-1,k+zjαj+zj+1+bj,ky-ξ^1-α˙j-1-θ~jθ^˙jrj,
    (27)
  • 其中

  • α˙j-1=i=0j-1 αj-1ydiyd(i+1)+i=1j-1 αj-1θ^iθ^˙i+αj-1yy˙+i=2j-1 αj-1ξ^iξ^˙i.
    (28)
  • 利用Young’s不等式可得:

  • -zjα1yy˙=-zjζα1yξ^2+e2+f1,k+d1,k-zjζα1yξ^2+f1,k+z2ζα1y2+e24+d-1,k22+z222ζα1y2,
    (29)
  • zjbj,ky-ξ^1bj22zj2+e22,
    (30)
  • 其中bj=maxkM bjk.

  • Fj, kZj=-i=0j-1 αj-1ydiyd (i+1) -i=1j-1 αj-1θ^iθ^˙i-i=2j-1 αj-1ξ^iξ^˙i+ζα1yξ^2+f1, k+z2ζα1y2+z22ζα1y2,

  • 其中Zj=ydy˙dydjyθ^1θ^j-1ξ^2ξ^jT.

  • 设计虚拟控制律和自适应律:

  • αj=-c-jzj-12θ^jΦjTZjΦjZjzjθ^˙j=rj2zj2ΦjTZjΦjZj-ljθ^j,
    (31)
  • 其中c-j=cj+32+bj22cj>0lj>0是设计参数.

  • 将式(29)~式(31)代入式(27)得:

  • V˙j,k-λminQk-4-je2-i=1j cizi2+zj+122-i=1j li2riθ~i2+δj,k,
    (32)
  • 其中δjk=δj-1k+12+μ-jk22+d-1k22+lj2rjθj2.

  • 步骤n:选择Lyapunov函数形式为:

  • Vn,k=Vn-1,k+zn22+θ~n22rn,
    (33)
  • 其中rn>0是设计参数,对其求导得:

  • V˙n,k=V˙n-1,k+znu+bn,ky-ξ^1-α˙n-1-θ~nTθ^˙nr,
    (34)
  • 其中

  • α˙n-1=i=0n-1 αn-1yd (i) yd (i+1) +i=1n-1 αn-1θ˙iθ^˙i+αn-1yy˙+i=2n-1 αn-1ξ^iξ^˙i,

  • Fn, kZn=-i=0n-1 αn-1yd (i) yd (i+1) -i=1n-1 αn-1θ˙iθ^˙i+-ζα1yξ^2+f1, k+i=2n αn-1ξ˙iξ^˙i+znζα1y2+zn2ζα1y2,

  • 其中Zn=ydy˙dydnyθ^1θ^n-1ξ^2ξ^nT.由引理2得:

  • Fn,kZn=Θn,kTΦnZn+μn,kZn,μn,kZ2μ-n,k,
    (35)
  • 其中μ-nk>0为常数.进一步有:

  • znFn,kZn=znΘnTΦnZn+znμn,kZn12zn2θnΦnTZnΦnZn+zn22+12+μ-n,k22
    (36)
  • znbn,ky-ξ^1bn22zn2+e22,
    (37)
  • 其中bn=maxkM bnk.

  • 设计虚拟控制律和自适应律为:

  • u*=αn,k=-c-n,kzn-12θ^nΦnTZnΦnZnzn,
    (38)
  • θ^˙n=rn2zn2ΦnTZnΦnZn-lnθ^n,
    (39)
  • 其中c-nk=cnk+32+bn22cnk>0ln>0是设计参数.

  • 将式(36)~式(39)代入式(34)得:

  • V˙n,kλmin Qk-4-ne2-i=1n cizi2-ln2rθ~n2+znu-u*+δn,k,
    (40)
  • 其中cn=maxkM cnkδnk=δn-1k+12+μ-nk22+d-1k22+ln2rnθn2.

  • 设计事件触发控制器:

  • ϑ(t)=-1+βku*tanhznu*ηk+γ1ktanhznγ1,kηk,
    (41)
  • u(t)=ϑtp,ttp,tp+1,
    (42)
  • tp+1=inftR||ε(t)βku(t)+γ2,k or σ(t)σtp,
    (43)
  • 其中εt=ϑt-utηk>0γ1k>0γ2k>0,0<βk<1是设计参数满足γ1,kγ2,k/(1-βk),tppZ+是触发时刻,当触发规则式(43)被满足则控制器输入为utp+1).

  • 基于式(41)~式(43)可得:

  • ϑ(t)=1+ζ1(t)βku(t)+ζ2(t)γ2,k,
    (44)
  • 其中ζ1t)≤1,ζ2t)≤1.

  • 控制器可表示为:

  • u(t)=ϑ(t)-ζ2(t)γ2,k1+ζ1(t)βk,
    (45)
  • 将控制律式(45)代入式(40)得:

  • V˙n,k-λminQk-4-ne2-i=1n cizi2-i=1n li2riθ~i2+znϑ(t)1+ζ1(t)βk+δn,k+znζ2(t)γ2,k1+ζ1(t)βk+znu*,
    (46)
  • znϑ(t)1+ζ1(t)βk=-1+βk1+ζ1(t)βkzntanhznu*ηk+znγ1ktanhznγ1,kηk-znu*tanhznu*ηk-znγ1ktanhznγ1,kηk.
    (47)
  • 结合式(46)、式(47)与引理3可得:

  • V˙n,k-λminQk-4-ne2-i=1n cizi2-i=1n li2riθ~i2+δn,k-znu*tanhznu*ηk-znγ1,ktanhznγ1,kηk+znu*-λminQk-4-n]e2-i=1n cizi2-i=1n li2riθ~i2+δn,k-znγ1,k-znζ2(t)γ2,k1+ζ1(t)βk+0.557ηk.
    (48)
  • -znζ2tγ2k1+ζ1tβkznγ2k1-βk,可得:

  • V˙n,k-λminQk-4-ne2-i=1n cizi2-i=1n li2riθ~i2+δn,k-znγ1,k+znγ2,k1-βk+0.557ηk.
    (49)
  • γ1k>γ2k1-βk得:

  • V˙n,k-λminQk-4-ne2-i=1n cizi2-i=1n li2riθ~i2+δn,k+0.557ηk.
    (50)
  • 注3  当切换发生在触发区间[tptp+1)时,由于控制器需要在tp+1时刻才进行更新,因此,可能出现控制器模态和系统模态不匹配的情况,进而对系统稳定性产生影响,为了避免这一问题,我们构造了新型的触发机制式(43).

  • 2.3 稳定性分析

  • h=minkM λminQk-4-n/λmaxPk, 2ci, 2li, i=1, , n, ω~=maxλmaxPkλminPs, k, sM, φ=maxkM δn, k+0.557ηk.

  • 可得:

  • V˙n,k-hVn,k+φ.
    (51)
  • 定理1:考虑切换非线性系统(1)满足假设1,在观测器(5),事件控制器(42)及触发机制(43)的作用下,如果平驻留时间满足τa>lnω~/h,那么可得系统(1)对应闭环系统所有状态半全局一致最终有界.

  • 证明:为系统(1)选取Lyapunov函数为:

  • Vσ (t) (X) =eTPσ (t) e+i=1n cizi2+i=1n li2riθ~i2,

  • 其中X=eTz1znθ~1θ~nT,同时由上述分析得:

  • Vk[X(t)]ω~Vs[X(t)],
    (52)
  • 其中ω~>1,ksM.

  • 选择函数Ht=ehtVσt[Xt],有:

  • H˙(t)=hehtVσ(t)[X(t)]+ehtV˙σ(t)[X(t)]φeht,ttq,tq+1
    (53)
  • 其中[tqtq+1)表示相邻切换时间间隔.

  • 结合式(52)可得:

  • Htq+1=ehtq+1Vσtq+1Xtq+1ω~ehtq+1VσtqXtq+1=ω~Htq+1-ω~Htq+tqtq+1 φehtdt,
    (54)
  • 选择区间q=0→q=NσT,0)-1,得:

  • HT-HtNσ(T,0)+tNσ(T,0)T φehtdt,ω~HtNσ(T,0)-1+tNσ(T,0)-1tσ(T,0) φehtdt+ω~-1tNσ(T,0)T φehtdt,ω~Nσ(T,0)H(0)+j=0Nσ(T,0)-1 ω~-jtjtj+1 φehtdt+ω~-Nσ(T,0)tNσ(T,0)T φehtdt.
    (55)
  • 对于任意l0h-lnω~τa,由τa>lnω~hτa>lnω~h-l

  • Nσ(T,t)N0+(h-l)(T-t)lnω~,Tt0.
    (56)
  • NσT,0)-q≤1+NσTtq+1),q=0,1,···,NσT,0)可得:

  • ω~Nσ(T,0)-jω~1+N0e(h-l)T-tq+1,
    (57)
  • 由于lh,可得:

  • tjtj+1 φehtdte(h-l)tj+1tjtj+1 φeltdt.
    (58)
  • 结合式(57)和(58),式(55)可变为:

  • HT-ω~Nσ(T,0)H(0)+ω~1+N0e(h-l)T0T φeltdt.
    (59)
  • 进一步有:

  • Vσ(T-)XT-eN0lnω~elnω~τa-hTVσ(0)[X(0)]+ω~1+N0φl1-e-lT.
    (60)
  • 根据式(60),若τa>lnω~/h,由初始有界值可得e,ziθ~ii=1,···,n是有界的.由式(7)得ξ^ii=1,···,n是有界的,由定义ei=ξi-ξ^i可得ξii=1,···,n是有界的,总结得闭环系统的所有状态,在平均驻留时间τa>lnω~/h约束下,是半全局一致最终有界的,证毕.

  • 为排除Zeno现象,由εt=ϑt-ut,对于ttptp+1有:

  • ddt|ε(t)|=sign(ε(t))ε˙(t)|ϑ˙(t)|.
    (61)
  • 由式(44),存在常数ψ>0,满足|ϑ˙t|ψ.有:

  • |ϑ(t)|=tptp+1 |ε˙(t)|dttptp+1 ψdt,ψtp+1-tp.
    (62)
  • 由l可得当limttp+1 |εt|=β0utp+γ0γ*γ*>0是常数,因此可得区间下限总是满足(tp+1-tp)≥γ*/ψ>0,其中β0=minkM{βk},γ0=minkM{γ2,k}且切换信号满足平均驻留时间约束的条件下,可排除Zeno现象.

  • 3 仿真算例

  • 在本节中,将通过仿真算例验证所提出方案有效性.

  • 例1  考虑如下切换非线性系统:

  • x˙1(t)=x2+f~1,σ(t)x1+d~1,σ(t)(t),x˙2(t)=u(t)+f~2,σ(t)x1,x2+d~2,σ(t)(t),y=x1.
    (63)
  • 其中σt:[0M={1,2}f~1,1x1=0.25sinx12f~1,2x1=0.15x12f~2,1x1x2=0.2x1cosx2f~2,2x1x2=0.15x1sinx2 d~1,1t=0.05sintd~1,2t=0.03sintd~2,1t=0.025costd~2,2t=0.05cost.本例考虑υt)=0.5ut)+0.8sin(t).

  • 根据式(5)设计状态观测器,根据式(16),(31),(38)和(39)设计虚拟控制律和自适应律,根据式(41)~(43)事件触发控制器.跟踪信号设置为yd=0.2sin2t,针对系统(63),选取初始值及参数如下:

  • x1 (0) =-0.05, x2 (0) =0.2, ξ^1 (0) =-0.1, ξ^2 (0) =0.3; θ^1 (0) =θ^2 (0) =0.c1=80, c2=0.1; r1=12, r2=10; b1, 1=0.8, b1, 2=0.8, b2, 1=0.2, b2, 2=0.3; l1=10, l2=15; β1=0.2, β2=0.1, γ1, 1=0.5, γ1, 2=0.4, γ2, 1=γ2, 2=0.2; η1=40, η2=50.

  • 仿真结果如图1~图6所示:

  • 图1 yyd轨迹

  • Fig.1 Trajectories of y and yd

  • 图2 状态ξ1ξ2ξ1ξ2的轨迹

  • Fig.2 Trajectories of ξ1, ξ2 and ξ1, ξ2

  • 图3 系统状态x2的轨迹

  • Fig.3 Trajectory of x2

  • 图4 切换信号σt

  • Fig.4 Switching signal σ (t)

  • 图5 事件触发时刻

  • Fig.5 Event-triggered instants

  • 图6 控制信号u

  • Fig.6 Control signal u

  • 图1显示系统输出信号和跟踪信号,图2,3显示系统的状态轨迹,切换信号显示在图4,控制信号和事件触发时刻分别显示在图5和图6.从仿真结果可以看出,闭环系统所有状态有界,从而验证本文提出的方案是有效的.

  • 4 结论

  • 本文针对一类具有执行器故障的切换非线性系统,解决了模糊自适应事件触发输出反馈容错控制问题.通过设计状态观测器,估计了不可测量状态.设计了事件触发控制策略能减轻传输负担,最后利用多Lyapunov函数和平均驻留时间方法,证明了所设计的方法使闭环系统所有状态半全局一致最终有界并排除Zeno现象.未来将进一步研究随机切换非线性系统的事件触发控制问题.

  • 参考文献

    • [1] KRSTIC M,KOKOTOVIC P V,KANELLAKOPOULOS I.Nonlinear and adaptive control design[M].New York,USA:John Wiley & Sons,Inc.,1995.

    • [2] MA Z Y,MA H J.Improved adaptive fuzzy output-feedback dynamic surface control of nonlinear systems with unknown dead-zone output [J].IEEE Transactions on Fuzzy Systems,2021,29(8):2122-2131.

    • [3] CHANG X H,JIN X.Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization [J].Applied Mathematics and Computation,2022,414:126657.

    • [4] CUI D,XIANG Z R.Nonsingular fixed-time fault-tolerant fuzzy control for switched uncertain nonlinear systems [J].IEEE Transactions on Fuzzy Systems,2023,31(1):174-183.

    • [5] 王贵元,杨卓琴.非线性时滞奇异系统的严格实用稳定性研究 [J].动力学与控制学报,2018,16(4):317-323.WANG G Y,YANG Z Q.Strict practical stability of nonlinear singular systems with time delay [J].Journal of Dynamics and Control,2018,16(4):317-323.(in Chinese)

    • [6] 向伟铭,向峥嵘.一类非线性切换系统输出与扰动的解耦 [J].动力学与控制学报,2007,5(2):165-168.XIANG W M,XIANG Z R.Output and disturbance decoupling of switched nonlinear systems [J].Journal of Dynamics and Control,2007,5(2):165-168.(in Chinese)

    • [7] 向伟铭,向峥嵘.一类非线性切换系统的观测器设计 [J].动力学与控制学报,2008,6(3):239-242.XIANG W M,XIANG Z R.Observer design for a class of switched nonlinear systems [J].Journal of Dynamics and Control,2008,6(3):239-242.(in Chinese)

    • [8] 周正.Lurie广义系统基于观测器的控制器设计 [J].动力学与控制学报,2013,11(3):284-288.ZHOU Z.Observer based controller design for lurie descriptor systems [J].Journal of Dynamics and Control,2013,11(3):284-288.(in Chinese)

    • [9] LI H F,ZHANG X F,FENG G.Event-triggered output feedback control of switched nonlinear systems with input saturation [J].IEEE Transactions on Cybernetics,2021,51(5):2319-2326.

    • [10] JEONG D M,YOO S J.Adaptive event-triggered tracking using nonlinear disturbance observer of arbitrarily switched uncertain nonlinear systems in pure-feedback form [J].Applied Mathematics and Computation,2021,407:126335.

    • [11] LIAN J,LI C.Event-triggered adaptive tracking control of uncertain switched nonlinear systems [J].International Journal of Robust and Nonlinear Control,2021,31(9):4154-4169.

    • [12] WANG F L,LONG L J.Dwell-time-based event-triggered adaptive control for switched strict-feedback nonlinear systems [J].International Journal of Robust and Nonlinear Control,2020,30(17):7052-7073.

    • [13] HUO X,MA L,ZHAO X D,et al.Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time [J].Applied Mathematics and Computation,2020,365:124665.

    • [14] LIU Y C,ZHU Q D,ZHOU X,et al.Adaptive fuzzy tracking of switched nonstrict-feedback nonlinear systems with state constraints based on event-triggered mechanism [J].ISA Transactions,2022,121:30-39.

    • [15] DONG X X,ZHANG X,SUN T.Event-triggered control of a class of cascade switched nonlinear systems [J].Nonlinear Dynamics,2021,105(2):1533-1541.

    • [16] LI S,AHN C K,GUO J,et al.Neural-network approximation-based adaptive periodic event-triggered output-feedback control of switched nonlinear systems [J].IEEE Transactions on Cybernetics,2021,51(8):4011-4020.

    • [17] 李实,向峥嵘.切换非线性系统的输出反馈周期事件触发控制[J],控制理论与应用2022,39(8):1377-1386 LI S,XIANG Z R.Output feedback periodic event-triggered control for switched nonlinear systems [J].Control Theory & Applications,2022,39(8):1377-1386.(in Chinese)

    • [18] YANG H Y,JIANG Y C,YIN S.Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults [J].IEEE Transactions on Fuzzy Systems,2021,29(4):772-785.

    • [19] LIU G L,BASIN M V,LIANG H J,et al.Adaptive bipartite tracking control of nonlinear multiagent systems with input quantization [J].IEEE Transactions on Cybernetics,2022,52(3):1891-1901.

    • [20] YU X H,WANG T,QIU J B,et al.Barrier Lyapunov function-based adaptive fault-tolerant control for a class of strict-feedback stochastic nonlinear systems [J].IEEE Transactions on Cybernetics,2021,51(2):938-946.

    • [21] ZHANG M,SHI P,SHEN C,et al.Static output feedback control of switched nonlinear systems with actuator faults [J].IEEE Transactions on Fuzzy Systems,2020,28(8):1600-1609.

    • [22] LI Y M,TONG S C.Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults [J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(11):2541-2554.

    • [23] 卢军锋,吴钟鸣,向峥嵘.一类非线性切换系统鲁棒H可靠控制 [J].动力学与控制学报,2014,12(4):353-358.LU J F,WU Z M,XIANG Z R.Robust H reliable control for a class of nonlinear switched systems [J].Journal of Dynamics and Control,2014,12(4):353-358.(in Chinese)

    • [24] ZHANG J,AHN C K,XIANG Z R.Fuzzy-approximation-based event-triggered output feedback adaptive control for nonlinear switched large-scale systems with actuator faults [J].IEEE Systems Journal,2022,16(2):2102-2109.

    • [25] LIU Y C,ZHU Q D,ZHAO N.Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints [J].Information Sciences,2021,562:28-43.

    • [26] CHEN B,LIU X P,LIU K F,et al.Direct adaptive fuzzy control of nonlinear strict-feedback systems [J].Automatica,2009,45(6):1530-1535.

    • [27] WANG L X.Adaptive fuzzy systems and contro:design and stability analysis [M].Upper Saddle River,USA:Prentice-Hall,1994

    • [28] 李鹏杰,王新蕊,李小奇,等.下肢外骨骼膝关节模糊滑模位置控制器设计 [J].动力学与控制学报,2021,19(5):59-64.LI P J,WANG X R,LI X Q,et al.Design of fuzzy sliding mode position controller for exoskeleton knee joint with lower limbs [J].Journal of Dynamics and Control,2021,19(5):59-64.(in Chinese)

    • [29] XING L T,WEN C Y,LIU Z T,et al.Event-triggered adaptive control for a class of uncertain nonlinear systems [J].IEEE Transactions on Automatic Control,2017,62(4):2071-2076.

    • [30] ZHANG J,LI S,XIANG Z R.Adaptive fuzzy output feedback event-triggered control for a class of switched nonlinear systems with sensor failures [J].IEEE Transactions on Circuits and Systems I:Regular Papers,2020,67(12):5336

  • 参考文献

    • [1] KRSTIC M,KOKOTOVIC P V,KANELLAKOPOULOS I.Nonlinear and adaptive control design[M].New York,USA:John Wiley & Sons,Inc.,1995.

    • [2] MA Z Y,MA H J.Improved adaptive fuzzy output-feedback dynamic surface control of nonlinear systems with unknown dead-zone output [J].IEEE Transactions on Fuzzy Systems,2021,29(8):2122-2131.

    • [3] CHANG X H,JIN X.Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization [J].Applied Mathematics and Computation,2022,414:126657.

    • [4] CUI D,XIANG Z R.Nonsingular fixed-time fault-tolerant fuzzy control for switched uncertain nonlinear systems [J].IEEE Transactions on Fuzzy Systems,2023,31(1):174-183.

    • [5] 王贵元,杨卓琴.非线性时滞奇异系统的严格实用稳定性研究 [J].动力学与控制学报,2018,16(4):317-323.WANG G Y,YANG Z Q.Strict practical stability of nonlinear singular systems with time delay [J].Journal of Dynamics and Control,2018,16(4):317-323.(in Chinese)

    • [6] 向伟铭,向峥嵘.一类非线性切换系统输出与扰动的解耦 [J].动力学与控制学报,2007,5(2):165-168.XIANG W M,XIANG Z R.Output and disturbance decoupling of switched nonlinear systems [J].Journal of Dynamics and Control,2007,5(2):165-168.(in Chinese)

    • [7] 向伟铭,向峥嵘.一类非线性切换系统的观测器设计 [J].动力学与控制学报,2008,6(3):239-242.XIANG W M,XIANG Z R.Observer design for a class of switched nonlinear systems [J].Journal of Dynamics and Control,2008,6(3):239-242.(in Chinese)

    • [8] 周正.Lurie广义系统基于观测器的控制器设计 [J].动力学与控制学报,2013,11(3):284-288.ZHOU Z.Observer based controller design for lurie descriptor systems [J].Journal of Dynamics and Control,2013,11(3):284-288.(in Chinese)

    • [9] LI H F,ZHANG X F,FENG G.Event-triggered output feedback control of switched nonlinear systems with input saturation [J].IEEE Transactions on Cybernetics,2021,51(5):2319-2326.

    • [10] JEONG D M,YOO S J.Adaptive event-triggered tracking using nonlinear disturbance observer of arbitrarily switched uncertain nonlinear systems in pure-feedback form [J].Applied Mathematics and Computation,2021,407:126335.

    • [11] LIAN J,LI C.Event-triggered adaptive tracking control of uncertain switched nonlinear systems [J].International Journal of Robust and Nonlinear Control,2021,31(9):4154-4169.

    • [12] WANG F L,LONG L J.Dwell-time-based event-triggered adaptive control for switched strict-feedback nonlinear systems [J].International Journal of Robust and Nonlinear Control,2020,30(17):7052-7073.

    • [13] HUO X,MA L,ZHAO X D,et al.Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time [J].Applied Mathematics and Computation,2020,365:124665.

    • [14] LIU Y C,ZHU Q D,ZHOU X,et al.Adaptive fuzzy tracking of switched nonstrict-feedback nonlinear systems with state constraints based on event-triggered mechanism [J].ISA Transactions,2022,121:30-39.

    • [15] DONG X X,ZHANG X,SUN T.Event-triggered control of a class of cascade switched nonlinear systems [J].Nonlinear Dynamics,2021,105(2):1533-1541.

    • [16] LI S,AHN C K,GUO J,et al.Neural-network approximation-based adaptive periodic event-triggered output-feedback control of switched nonlinear systems [J].IEEE Transactions on Cybernetics,2021,51(8):4011-4020.

    • [17] 李实,向峥嵘.切换非线性系统的输出反馈周期事件触发控制[J],控制理论与应用2022,39(8):1377-1386 LI S,XIANG Z R.Output feedback periodic event-triggered control for switched nonlinear systems [J].Control Theory & Applications,2022,39(8):1377-1386.(in Chinese)

    • [18] YANG H Y,JIANG Y C,YIN S.Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults [J].IEEE Transactions on Fuzzy Systems,2021,29(4):772-785.

    • [19] LIU G L,BASIN M V,LIANG H J,et al.Adaptive bipartite tracking control of nonlinear multiagent systems with input quantization [J].IEEE Transactions on Cybernetics,2022,52(3):1891-1901.

    • [20] YU X H,WANG T,QIU J B,et al.Barrier Lyapunov function-based adaptive fault-tolerant control for a class of strict-feedback stochastic nonlinear systems [J].IEEE Transactions on Cybernetics,2021,51(2):938-946.

    • [21] ZHANG M,SHI P,SHEN C,et al.Static output feedback control of switched nonlinear systems with actuator faults [J].IEEE Transactions on Fuzzy Systems,2020,28(8):1600-1609.

    • [22] LI Y M,TONG S C.Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults [J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(11):2541-2554.

    • [23] 卢军锋,吴钟鸣,向峥嵘.一类非线性切换系统鲁棒H可靠控制 [J].动力学与控制学报,2014,12(4):353-358.LU J F,WU Z M,XIANG Z R.Robust H reliable control for a class of nonlinear switched systems [J].Journal of Dynamics and Control,2014,12(4):353-358.(in Chinese)

    • [24] ZHANG J,AHN C K,XIANG Z R.Fuzzy-approximation-based event-triggered output feedback adaptive control for nonlinear switched large-scale systems with actuator faults [J].IEEE Systems Journal,2022,16(2):2102-2109.

    • [25] LIU Y C,ZHU Q D,ZHAO N.Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints [J].Information Sciences,2021,562:28-43.

    • [26] CHEN B,LIU X P,LIU K F,et al.Direct adaptive fuzzy control of nonlinear strict-feedback systems [J].Automatica,2009,45(6):1530-1535.

    • [27] WANG L X.Adaptive fuzzy systems and contro:design and stability analysis [M].Upper Saddle River,USA:Prentice-Hall,1994

    • [28] 李鹏杰,王新蕊,李小奇,等.下肢外骨骼膝关节模糊滑模位置控制器设计 [J].动力学与控制学报,2021,19(5):59-64.LI P J,WANG X R,LI X Q,et al.Design of fuzzy sliding mode position controller for exoskeleton knee joint with lower limbs [J].Journal of Dynamics and Control,2021,19(5):59-64.(in Chinese)

    • [29] XING L T,WEN C Y,LIU Z T,et al.Event-triggered adaptive control for a class of uncertain nonlinear systems [J].IEEE Transactions on Automatic Control,2017,62(4):2071-2076.

    • [30] ZHANG J,LI S,XIANG Z R.Adaptive fuzzy output feedback event-triggered control for a class of switched nonlinear systems with sensor failures [J].IEEE Transactions on Circuits and Systems I:Regular Papers,2020,67(12):5336

  • 微信公众号二维码

    手机版网站二维码