en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张舒,E-mail:zhangshu@tongji.edu.cn

中图分类号:O313.7

文献标识码:A

文章编号:1672-6553-2023-21(12)-107-007

DOI:10.6052/1672-6553-2023-139

参考文献 1
杨康华.柔性机械臂的振动控制与实验研究 [D].北京:北京邮电大学,2011.YANG K H.Vibration control and experimental research of flexible manipulator [D].Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)
参考文献 2
田志程,古华光,宋汉文.基于视觉测量与神经网络的工业机器人位姿补偿 [J].力学季刊,2022,43(2):281-288.TIAN Z C,GU H G,SONG H W.Industrial robot pose compensation based on vision-based measurement and neural network [J].Chinese Quarterly of Mechanics,2022,43(2):281-288.(in Chinese)
参考文献 3
李婧瑜,杨简宁,张笑宇,等.基于多点动态捕捉的机器人关节位移与几何参数标定 [J].力学季刊,2022,43(1):34-45.LI J Y,YANG J N,ZHANG X Y,et al.A calibration method of robot joint displacement and geometric parameters based on multi-point motion capture system [J].Chinese Quarterly of Mechanics,2022,43(1):34-45.(in Chinese)
参考文献 4
CHEN Y L,SUN Q,GUO Q,et al.Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved newton-euler iterative method [J].Micromachines,2022,13(1):130.
参考文献 5
李伟.全方位移动机械臂的轨迹追踪控制研究 [D].天津:天津大学,2019.LI W.Trajectory tracking control of an omnidirectional mobile manipulator [D].Tianjin:Tianjin University,2019.(in Chinese)
参考文献 6
MALVEZZI F,ORSINO R M M,COELHO T A H.Lagrange’s,maggi’s and kane’s equations applied to the dynamic modelling of serial manipulator[C]//International Symposium on Dynamic Problems of Mechanics.Cham,Switzerland:Springer,2019:291-304.
参考文献 7
张港玲,张舒.基于动力学模型的仿蠕虫移动机器人驱动协调 [J].力学季刊,2022,43(4):791-802.ZHANG G L,ZHANG S.Actuation coordination of the earthworm-like locomotion robot based on dynamic model [J].Chinese Quarterly of Mechanics,2022,43(4):791-802.(in Chinese)
参考文献 8
ENFERADI J,JAFARI K.A Kane’s based algorithm for closed-form dynamic analysis of a new design of a 3RSS-S spherical parallel manipulator [J].Multibody System Dynamics,2020,49(4):377-394.
参考文献 9
KORAYEM M H,DEHKORDI S F.Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation [J].Applied Mathematical Modelling,2019,65:443-463.
参考文献 10
DONG F F,YU B,ZHAO X M.Dynamic modeling of spatial cooperation of dual mobile manipulators system through evenly partition [C]//2022 International Conference on Advanced Robotics and Mechatronics(ICARM),Guilin,China.[S.l.]:IEEE,2022:921-928.
参考文献 11
UNSEREN M A,KOIVO A J.Reduced order model and decoupled control architecture for two manipulators holding an object [C]//Proceedings of 1989 International Conference on Robotics and Automation,Scottsdale,USA.[S.l.]:IEEE,1989:1240-1245.
参考文献 12
KREUTZ K,LOKSHIN A.Load balancing and closed chain multiple arm control [C]//1988 American Control Conference,Atlanta,USA.[S.l.]:IEEE,1988:2148-2155.
参考文献 13
TANNER H G,KYRIAKOPOULOS K J,KRIK-ELIS N J.Modeling of multiple mobile manipulators handling a common deformable object [J].Journal of Robotic Systems,1998,15(11):599-623.
参考文献 14
HAYATI S.Hybrid position/Force control of multi-arm cooperating robots [C]//Proceedings of 1986 IEEE International Conference on Robotics and Automation,San Francisco,USA.Los Alamitos,USA:IEEE Computer Society,1986:82-89.
参考文献 15
ZHAO J,ZHAO Y P,WANG W X,et al.Coach-assisted multi-agent reinforcement learning framework for unexpected crashed agents [J].Frontiers of Information Technology & Electronic Engineering,2022,23(7):1032-1042.
参考文献 16
张少辉,赵志刚,丁旺才,等.轮式移动多机协调吊运系统倾覆稳定性仿真与分析 [J].机械强度,2021,43(5):1239-1244.ZHANG S H,ZHAO Z G,DING W C,et al.Simulation and analysis of tipover stability of wheeled mobile multi-robot coordinated towing system [J].Journal of Mechanical Strength,2021,43(5):1239-1244.(in Chinese)
参考文献 17
段斌.仿人移动服务机器人结构设计及稳定性分析 [D].哈尔滨:哈尔滨工业大学,2015.DUAN B.Structure design and stability analysis of mobile humanoid service robot [D].Harbin:Harbin Institute of Technology,2015.(in Chinese)
参考文献 18
龙运佳.Lagrange原著与广义动能原理 [J].动力学与控制学报,2019,17(5):478-481.LONG Y J.Lagrange original & generalized principle of kinetic energy [J].Journal of Dynamics and Control,2019,17(5):478-481.(in Chinese)
参考文献 19
ABB Robotics.Articulated Robots Portfolio.2022[2023-01-01].https://new.abb.com/products/robotics/robots/articulated-robots/irb-1600
参考文献 20
张晓宇,刘晓峰,蔡国平,等.柔性关节柔性连杆机械臂的动力学建模 [J].动力学与控制学报,2022,20(3):25-39.ZHANG X Y,LIU X F,CAI G P,et al.Dynamic modeling of a flexible-link flexible-joint manipulator [J].Journal of Dynamics and Control,2022,20(3):25-39.(in Chinese)
目录contents

    摘要

    随着社会生产力的发展和发展需求的提高,移动机械臂凭借着自身优势,受到学术界和工业界的广泛关注.但在许多工作场景下,单个移动机械臂有着自由度数以及载荷的限制,无法顺利完成任务.为了更好地满足任务需求,多移动机械臂系统应运而生.在上述工业背景下,本文建立了多移动机械臂系统的动力学模型,并针对该动力学方程进行了稳定性分析.首先通过拉格朗日方程建立单个移动机械臂的动力学方程,将多体动力学软件仿真结果同动力学模型数值计算结果进行对比,验证了模型的正确性.随后联立多个移动机械臂的动力学方程和操作对象的动力学方程,得到封闭形式的多移动机械臂系统的动力学方程.再利用关节位置误差和速度误差设计李雅普诺夫函数,通过反步法获得了关节力矩的控制律.最后在多体动力学软件仿真中,察看轨迹是否能跟踪上期望信号来检验控制律的有效性.

    Abstract

    With the development of social productivity and the increasing demands of society, mobile manipulators have attracted extensive attention from academia and industry due to their advantages. However, in many work scenarios, a single mobile manipulator has limited degrees of freedom and payload capacity, leading to the emergence of multi-mobile manipulator systems. This paper establishes the dynamic model of a multi-mobile manipulator system and conducts stability analysis on the dynamic equations. Firstly, the dynamic equation of a single mobile manipulator is established using the Lagrange equations. The correctness of the model is verified by comparing the result obtained from multi-body dynamics software with the numerical calculation result of the dynamics model. Subsequently, the dynamic equations of multiple mobile manipulators and the dynamic equations of the manipulated object are combined to obtain the closed-form dynamic equations of the multi-mobile manipulator system. Then, a Lyapunov function is designed based on joint position error and velocity error, and a control law for joint torques is obtained using the backstepping method. Finally, in the simulation using multi-body dynamics software, the effectiveness of the control law is examined by checking whether the trajectory can track the desired signal.

  • 引言

  • 随着人类社会的进步与科学技术的发展,机器人越来越广泛地被应用到工业、医疗、军事等领域.近年来,机械臂在工业领域中代替人类完成了大量重复性工作,提高了工作效率与质量的同时还降低了成本[1]. 传统的固定机械臂目前存在着工作范围有限、灵活性差等缺点,不能适应日益复杂的工作环境,工作效果也越来越难以满足一些特殊的任务需求.因此,灵活性更强的移动机械臂得到了行业越来越多的关注.

  • 移动机械臂凭借其灵活性[23]可以满足多样化的任务需求:不仅可以在制造业工厂、物流和仓储环境中大显身手,还可以在农业生产、医疗保健以及建筑和施工等等环境中发挥一定的作用,另外在一些危险、恶劣等人类无法参与行动的环境中也能够顺利完成作业,充分说明了这种同时具备移动能力和作业能力的机器人系统的应用价值.因此移动机械臂技术近年来受到了学术界和工业界的广泛关注,其研究属于多学科交叉的前沿课题.随着科学技术的发展,移动机械臂逐渐向智能化方向靠拢,越来越多地出现在非制造业领域中[4-6],同时也为在更多领域中满足更多需求而不断地发展[7].

  • 目前的工业环境中,单个机械臂可能由于自身载荷以及自由度的限制无法顺利完成一些难度较大的工作任务.这类情况下需要用到多个移动机械臂协同合作,于是多移动机械臂协作系统便应运而生.多个机械臂之间相互协调相互配合,可以合力完成搬运大型物体等单个移动机械臂所无法完成的任务[8],另外值得注意的是:虽然多个机械臂之间的协调与竞争、分工与合作使得系统更加复杂[9],但相比于单机械臂系统,多机械臂系统的冗余性和平行性可以提高系统的容错和鲁棒性[10].

  • 自上世纪以来,多移动机械臂系统的建模与控制研究逐渐成为全球机器人研究领域的热点问题之一.Unseren等[11]在三维工作空间中,建立了两个有n个关节的机械臂夹持刚性物体的链式运动动力学模型和控制体系,确定了动力学约束和运动学约束,并结合机械臂的运动方程,得到整个系统在关节空间的动力学模型.Kreutz等[12]给出了多个刚性连杆机械臂刚性抓取刚体的动力学方程.Tanner等[13]基于Kane方法建立了多移动机械臂携带同一可变形物体系统的动力学方程,并将移动平台的非完整约束纳入到动力学方程中.Hayati[14]将位置与力混合控制理论推广到了多臂协作机器人中,对运动约束下的多臂系统动力学进行了开创性的研究;稳定性分析是设计机械臂必不可少的一环,可以在保证机械臂的安全性、提高工作效率、优化设计、提高可靠性等方面带来很多优势[15].张少辉等[16]针对多机械臂在共同吊运的工作环境下,利用力-角稳定性判据对多臂系统的倾覆稳定性进行了分析.段斌[17]自行研制了一款移动服务机器人,并对机械结构静态和动态稳定性进行了分析,使设计的机器人能够安全稳定的运行.

  • 针对上述问题,本文希望建立多移动机械臂系统的动力学建模,并对其进行稳定性分析与控制律设计.本文首先建立单个移动机械臂的动力学方程,再利用仿真软件以及数值软件的结果对比,对模型的正确性进行验证.随后联立多个移动机械臂动力学方程以及操作对象方程得到操作对象空间下的封闭形式多移动机械臂系统的微分方程组.设计李雅普诺夫函数,利用反步法设计控制律,最后验证控制律的有效性完成稳定性分析.

  • 1 多移动机械臂系统动力学建模

  • 1.1 单移动机械臂动力学建模

  • 对于单个拥有ni个关节的固定机械臂,利用改良D-H参数法建立每一根连杆的坐标系,从而得到连杆坐标系的坐标变换矩阵01T12T23T.忽略关节摩擦,利用坐标变换矩阵以及每根连杆的伪惯性矩阵求得机械臂动能,并与势能一起代入拉格朗日方程[18]

  • ddtLq˙-Lq=τ
    (1)
  • 其中L为机械臂总动能与总势能之差,qRn1为机械臂各关节旋转角度, τRn1为关节力矩.可以得到机械臂的动力学方程:

  • M(q)q¨+C(q,q˙)q˙+G(q)=τ
    (2)
  • 其中,MqRn1×n1Cqq˙Rn1×n1为科氏力与速度相关阵,GqRn1为重力阵.

  • 单个移动机械臂的建模需在固定机械臂的基础上,在世界坐标系和第一根连杆的坐标系间的坐标变换中引入移动平台的坐标变换,使得:

  • 01T=0BT*B1T
    (3)
  • 那么,移动平台的3个自由度可以等效虚拟为机械臂的自由度.在上述等效后,移动机械臂可以视为相对移动平台固定的广义固定机械臂.此时,移动机械臂的自由度数为关节数加上移动平台的自由度数,即n1+3,故此时q=[q1,···,qnxyθ]T,这里依然使用q表示机械臂升维后的广义坐标.根据上述的思想,单个移动机械臂可以沿用单个固定机械臂的动力学建模过程.此时,质量阵MqRn1+3×n1+3,科氏力和离心力相关阵Cqq˙Rn1+3×n1+3,重力阵 GqRn1+3.

  • 1.2 动力学模型验证

  • 为了确保建模过程的正确性,本文参考如图1所示的机械臂,利用多体动力学仿真软件对与图1相同构型与参数[19]的机械臂进行仿真[20].

  • 图1 ABB IRB1600机械臂构型

  • Fig.1 ABB IRB1600 Robot arm configuration

  • 对每个广义坐标设定初始值、初始速度、终止速度,以及关节与移动平台所要到达的最终位置,采用多项式给出参考轨迹,其中关节角度与移动平台旋转角度最终值为π/2,xy方向上位移最终值为1米:

  • q1=325π2t2-2125π2t3q2=325π2t2-2125π2t3q3=325π2t2-2125π2t3
    (4)
  • x=15ty=325t2-2125t3θ=325π2t2-2125π2t3
    (5)
  • 在多体动力学仿真软件中对关节力矩添加PD控制,设定Kp=75000*IKd=7500*I,其中IKp=75000*IKd=7500*I,其中I为六维单位阵.另外,在数值计算软件中建立机械臂模型,同样对力矩施加PD控制.最终将动力学模型数值计算的结果与多体动力学软件仿真结果进行对比,如图所示,其中横坐标为时间,单位为秒(s),纵坐标为力矩,单位为牛顿米(N·m).

  • 图2(a)关节2力矩对比(b)关节3力矩对比

  • Fig.2 (a) Comparison of torque of joint 2 (b) Comparison of torque of joint 3

  • 综上所述,可见1.1节中建立的单移动机械臂模型正确.

  • 1.3 多移动机械臂系统动力学建模

  • i个移动机械臂动力学方程:

  • Miq¨i+Ciq˙i+Gi=τi-JemiTFei
    (6)
  • 其中,质量阵MiRn×nqi相关,科氏力和离心力相关阵CiRn×nqiq˙i相关,重力阵GiRnqi相关,qi是第i个移动机械臂的广义坐标, τi是关节空间下输入到关节的力矩,JemiR6×n是末端执行器坐标系到关节空间的速度雅可比矩阵,n=n1+n2n1是机械臂关节数,n2是移动平台的自由度数;Fei为移动机械臂末端执行器在末端执行器坐标系下所受到的力.

  • 设系统共有l个移动机械臂.现作出以下假设:

  • (1)每一个机械臂构型、几何与物理参数完全相同;

  • (2)机械臂末端执行器与操作对象刚性连接;

  • (3)操作对象为单刚体.

  • 将所有单个移动机械臂动力学方程整合为以下动力学方程组:

  • M¯q¨+C¯q˙+G¯=τ-JTFe
    (7)
  • 式中:

  • M¯=digM1,,MlRnl×nl
    (8)
  • C¯=digC1,,ClRnl×nl
    (9)
  • G¯=G1T,,GlTTRnl
    (10)
  • τ=τ1T,,τlTTRnl
    (11)
  • q=q1T,,qlTTRnl
    (12)
  • Fe=Fe1T,,FelTTR6l
    (13)
  • J=digJem1,,JemlR6l×nl
    (14)
  • 再由拉格朗日方程得到操作对象动力学方程:

  • Mtq¨t+Ctq˙t+Gt=ATFe=Ft
    (15)
  • 其中:

  • A=Jew1T,,JewlTTR6l×6
    (16)
  • Ft=i=1l JewiTFeiR6
    (17)
  • Ft为操作对象所受到机械臂末端执行器施加的合力.Jewi为第i个机械臂末端执行器坐标系到操作对象坐标系的速度雅可比矩阵.MtCtGtqt分别为操作对象的质量阵、科氏力与离心力相关阵、重力阵以及广义坐标.

  • 式(37)等式两边左乘(AT#,(AT#AT的伪逆阵:

  • Fe=AT#Mtq¨t+Ctq˙t+Gt
    (18)
  • 通过末端速度分别与关节速度、操作对象质心速度的变换:

  • q˙e=Jq˙=Aq˙t
    (19)
  • 可得:

  • q˙=J#Aq˙t
    (20)
  • 在本文中研究的移动机械臂为三轴机械臂,故n1=3,并假设没有任何一个机械臂处于运动学奇异的状态,所以雅可比矩阵J总是列满秩,所以J#=JTJ-1JTJ的左伪逆阵.再让等式(20)左右两边对时间求导得到:

  • q¨=J#Aq¨t+J˙#A+J#A˙q˙t
    (21)
  • 将式(18)、(20)、(21)回代式(7)整理得到封闭形式的微分方程组:

  • M~q¨t+C~q˙t+G~=τ
    (22)
  • 式(22)中M~=M¯J#A+JTAT#MtC~=M¯J#A˙+J#A˙+C¯J#A+JTAT#Ct,以及G~=G¯+JTAT#Gt.因此可以将一些适用于单机械臂的控制方法应用于多移动机械臂系统.

  • 2 多移动机械臂系统稳定性分析

  • 2.1 稳定性分析及控制律设计

  • 针对式(22)动力学方程:

  • M~q¨t+C~q˙t+G~=τ
    (23)
  • 令:

  • x1=qtx2=x˙1
    (24)
  • 设计李雅普诺夫函数:

  • V1=12eTe
    (25)
  • 式中e=x1d-x1x1d为期望轨迹,等式(25)两边对时间求导:

  • V˙1=eTe˙=eTx˙1d-x2
    (26)
  • 为令V˙1保持负定,可以令:

  • V˙1=eTe˙=eTx˙1d-x2
    (27)
  • 其中Kp正定.则:V˙1=-eTKpe0,其中等号只在位置误差为0时成立.

  • 为使得式(27)成立,设

  • x2d=x˙1d+Kpe
    (28)
  • 式中,x2dx2的期望值.

  • 令:

  • δ=x2d-x2
    (29)
  • 将式(28)、(29)代入式(26)得到:

  • V˙1=eTx˙1d-x2d+δ=-eTKpe+eTδ
    (30)
  • 进一步设计李雅普诺夫函数:

  • V2=12eTe+12δTδ
    (31)
  • 等式(31)两边对时间求导:

  • V˙2=eTe˙+δTδ˙
    (32)
  • 将式(30)代入式(32):

  • V˙2=-eTKpe+δT(e+δ˙)
    (33)
  • 为使得V˙2负定,可以令:

  • e+δ˙=-Kdδ
    (34)
  • 只要Kd正定,则:

  • V˙2=-eTKpe-δTKdδ0
    (35)
  • 等号只在位置误差与速度误差为0时成立.由式(23)、(28)、(29)可得:

  • δ˙=x˙2d-x˙2=x˙1d+Kpe˙-M~-1τ-G~-C~x2
    (36)
  • 将式(36)回代入式(34):

  • e+x˙1d+Kpx˙1d-x2-M~-1τ-G~-C~x2=-Kdδ
    (37)
  • 整理得到控制律:

  • τ=M~e+q¨d+Kpq˙d-q˙t+Kdq˙d-q˙t+Kpe+G~+C~q˙t
    (38)
  • 2.2 控制律验证

  • 现在有一工作场景为两个机械臂协同搬运一个物体.本文依然沿用与1.2节中相同构型的两个机械臂,工作情形如图:

  • 两个机械臂沿着y轴正方向以0.5m/s的速度移动,关节2按照规划的三次多项式函数形式的轨迹运行,同时仿真中保持第三根连杆的水平姿态不变化,对关节3轨迹也进行三次函数插值:

  • q1=0q2=325π4t2-2125π4t3q3=-325π4t2+2125π4t3
    (39)
  • x=0y=0.5tθ=0
    (40)
  • 图3 移动机械臂协同搬运物体

  • Fig.3 Two manipulators carry the object in coordination

  • 图4 机械臂系统工作姿态

  • Fig.4 Working attitudes of manipulators

  • 图5 1号机械臂关节2、2号机械臂关节3轨迹跟踪情况

  • Fig.5 Trajectory tracking of joint 2 of No.1 manipulator and joint 3 of No.2 manipulator

  • 利用在多体动力学软件中给图3所示的两个机械臂的关节2与关节3施加2.1节中设计的控制律.设定Kp=1000*IKd=1000*I,其中,I为六维单位阵.得到仿真结果如图5、图6所示,图4为工作结束后机械臂的姿态;图5展示的是联合仿真得到的1号机械臂关节2和2号机械臂关节3的实际轨迹;针对1号机械臂关节2和2号机械臂关节3,图6(a)和图6(b)分别为这两个关节力矩仿真结果与数值计算结果的对比.由于在多体动力学软件中引入的控制律的重力阵、科氏阵以及质量阵比较复杂,所以出现力矩在初始小段时间内未收敛的现象.

  • 图6(a)1号机械臂关节2力矩对比;(b)2号机械臂关节3力矩对比

  • Fig.6 (a) Comparison of torque of joint 2 of No.1 manipulator; (b) Comparison of torque of joint 3 of No.2 manipulator

  • 图7 1号机械臂关节2、2号机械臂关节3轨迹跟踪情况

  • Fig.7 Trajectory tracking of joint 2 of No.1 manipulator and joint 3 of No.2 manipulator

  • 另外,设定Kp=1000*IKd=-5*I,其中,I为六维单位阵.根据2.1节控制律的推导过程中得到的结论:只有当KpKd正定时才能保证系统是渐进稳定的.结合得到的仿真结果如图7所示,可以看出当Kp正定而Kd负定时,两个关节并没有跟踪上关节轨迹甚至产生了在t=1.428s时发散而导致计算崩溃的后果.此时,我们认为系统与受到负阻尼作用的系统类似,其响应不会收敛于平衡状态.

  • 综合以上计算结果验证了2.1节所设计的控制律的有效性.

  • 3 总结与展望

  • 本文利用动力学建模和李雅普诺夫直接法对多移动机械臂系统的稳定性进行了分析.首先建立单个移动机械臂的动力学模型并利用了多体动力学仿真软件与数值计算软件对模型进行验证,随后利用速度变换整合了多个移动机械臂和操作对象的动力学方程,得到了在操作对象坐标系下的封闭形式的微分方程,在此基础上通过反步法设计了控制律.最后再次利用仿真软件和数值软件验证了控制律的有效性.

  • 在后续工作中,将会引入关节摩擦继续进行研究,并且在本文基础上增加系统中移动机械臂的数量、改进机械臂与操作对象交互的方式以方便研究的推进.另外,在工业领域中移动机械臂往往需要舍弃一定的质量与刚度,所以移动机械臂的柔性问题同样是一个值得探索的领域.

  • 参考文献

    • [1] 杨康华.柔性机械臂的振动控制与实验研究 [D].北京:北京邮电大学,2011.YANG K H.Vibration control and experimental research of flexible manipulator [D].Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)

    • [2] 田志程,古华光,宋汉文.基于视觉测量与神经网络的工业机器人位姿补偿 [J].力学季刊,2022,43(2):281-288.TIAN Z C,GU H G,SONG H W.Industrial robot pose compensation based on vision-based measurement and neural network [J].Chinese Quarterly of Mechanics,2022,43(2):281-288.(in Chinese)

    • [3] 李婧瑜,杨简宁,张笑宇,等.基于多点动态捕捉的机器人关节位移与几何参数标定 [J].力学季刊,2022,43(1):34-45.LI J Y,YANG J N,ZHANG X Y,et al.A calibration method of robot joint displacement and geometric parameters based on multi-point motion capture system [J].Chinese Quarterly of Mechanics,2022,43(1):34-45.(in Chinese)

    • [4] CHEN Y L,SUN Q,GUO Q,et al.Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved newton-euler iterative method [J].Micromachines,2022,13(1):130.

    • [5] 李伟.全方位移动机械臂的轨迹追踪控制研究 [D].天津:天津大学,2019.LI W.Trajectory tracking control of an omnidirectional mobile manipulator [D].Tianjin:Tianjin University,2019.(in Chinese)

    • [6] MALVEZZI F,ORSINO R M M,COELHO T A H.Lagrange’s,maggi’s and kane’s equations applied to the dynamic modelling of serial manipulator[C]//International Symposium on Dynamic Problems of Mechanics.Cham,Switzerland:Springer,2019:291-304.

    • [7] 张港玲,张舒.基于动力学模型的仿蠕虫移动机器人驱动协调 [J].力学季刊,2022,43(4):791-802.ZHANG G L,ZHANG S.Actuation coordination of the earthworm-like locomotion robot based on dynamic model [J].Chinese Quarterly of Mechanics,2022,43(4):791-802.(in Chinese)

    • [8] ENFERADI J,JAFARI K.A Kane’s based algorithm for closed-form dynamic analysis of a new design of a 3RSS-S spherical parallel manipulator [J].Multibody System Dynamics,2020,49(4):377-394.

    • [9] KORAYEM M H,DEHKORDI S F.Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation [J].Applied Mathematical Modelling,2019,65:443-463.

    • [10] DONG F F,YU B,ZHAO X M.Dynamic modeling of spatial cooperation of dual mobile manipulators system through evenly partition [C]//2022 International Conference on Advanced Robotics and Mechatronics(ICARM),Guilin,China.[S.l.]:IEEE,2022:921-928.

    • [11] UNSEREN M A,KOIVO A J.Reduced order model and decoupled control architecture for two manipulators holding an object [C]//Proceedings of 1989 International Conference on Robotics and Automation,Scottsdale,USA.[S.l.]:IEEE,1989:1240-1245.

    • [12] KREUTZ K,LOKSHIN A.Load balancing and closed chain multiple arm control [C]//1988 American Control Conference,Atlanta,USA.[S.l.]:IEEE,1988:2148-2155.

    • [13] TANNER H G,KYRIAKOPOULOS K J,KRIK-ELIS N J.Modeling of multiple mobile manipulators handling a common deformable object [J].Journal of Robotic Systems,1998,15(11):599-623.

    • [14] HAYATI S.Hybrid position/Force control of multi-arm cooperating robots [C]//Proceedings of 1986 IEEE International Conference on Robotics and Automation,San Francisco,USA.Los Alamitos,USA:IEEE Computer Society,1986:82-89.

    • [15] ZHAO J,ZHAO Y P,WANG W X,et al.Coach-assisted multi-agent reinforcement learning framework for unexpected crashed agents [J].Frontiers of Information Technology & Electronic Engineering,2022,23(7):1032-1042.

    • [16] 张少辉,赵志刚,丁旺才,等.轮式移动多机协调吊运系统倾覆稳定性仿真与分析 [J].机械强度,2021,43(5):1239-1244.ZHANG S H,ZHAO Z G,DING W C,et al.Simulation and analysis of tipover stability of wheeled mobile multi-robot coordinated towing system [J].Journal of Mechanical Strength,2021,43(5):1239-1244.(in Chinese)

    • [17] 段斌.仿人移动服务机器人结构设计及稳定性分析 [D].哈尔滨:哈尔滨工业大学,2015.DUAN B.Structure design and stability analysis of mobile humanoid service robot [D].Harbin:Harbin Institute of Technology,2015.(in Chinese)

    • [18] 龙运佳.Lagrange原著与广义动能原理 [J].动力学与控制学报,2019,17(5):478-481.LONG Y J.Lagrange original & generalized principle of kinetic energy [J].Journal of Dynamics and Control,2019,17(5):478-481.(in Chinese)

    • [19] ABB Robotics.Articulated Robots Portfolio.2022[2023-01-01].https://new.abb.com/products/robotics/robots/articulated-robots/irb-1600

    • [20] 张晓宇,刘晓峰,蔡国平,等.柔性关节柔性连杆机械臂的动力学建模 [J].动力学与控制学报,2022,20(3):25-39.ZHANG X Y,LIU X F,CAI G P,et al.Dynamic modeling of a flexible-link flexible-joint manipulator [J].Journal of Dynamics and Control,2022,20(3):25-39.(in Chinese)

  • 参考文献

    • [1] 杨康华.柔性机械臂的振动控制与实验研究 [D].北京:北京邮电大学,2011.YANG K H.Vibration control and experimental research of flexible manipulator [D].Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)

    • [2] 田志程,古华光,宋汉文.基于视觉测量与神经网络的工业机器人位姿补偿 [J].力学季刊,2022,43(2):281-288.TIAN Z C,GU H G,SONG H W.Industrial robot pose compensation based on vision-based measurement and neural network [J].Chinese Quarterly of Mechanics,2022,43(2):281-288.(in Chinese)

    • [3] 李婧瑜,杨简宁,张笑宇,等.基于多点动态捕捉的机器人关节位移与几何参数标定 [J].力学季刊,2022,43(1):34-45.LI J Y,YANG J N,ZHANG X Y,et al.A calibration method of robot joint displacement and geometric parameters based on multi-point motion capture system [J].Chinese Quarterly of Mechanics,2022,43(1):34-45.(in Chinese)

    • [4] CHEN Y L,SUN Q,GUO Q,et al.Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved newton-euler iterative method [J].Micromachines,2022,13(1):130.

    • [5] 李伟.全方位移动机械臂的轨迹追踪控制研究 [D].天津:天津大学,2019.LI W.Trajectory tracking control of an omnidirectional mobile manipulator [D].Tianjin:Tianjin University,2019.(in Chinese)

    • [6] MALVEZZI F,ORSINO R M M,COELHO T A H.Lagrange’s,maggi’s and kane’s equations applied to the dynamic modelling of serial manipulator[C]//International Symposium on Dynamic Problems of Mechanics.Cham,Switzerland:Springer,2019:291-304.

    • [7] 张港玲,张舒.基于动力学模型的仿蠕虫移动机器人驱动协调 [J].力学季刊,2022,43(4):791-802.ZHANG G L,ZHANG S.Actuation coordination of the earthworm-like locomotion robot based on dynamic model [J].Chinese Quarterly of Mechanics,2022,43(4):791-802.(in Chinese)

    • [8] ENFERADI J,JAFARI K.A Kane’s based algorithm for closed-form dynamic analysis of a new design of a 3RSS-S spherical parallel manipulator [J].Multibody System Dynamics,2020,49(4):377-394.

    • [9] KORAYEM M H,DEHKORDI S F.Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation [J].Applied Mathematical Modelling,2019,65:443-463.

    • [10] DONG F F,YU B,ZHAO X M.Dynamic modeling of spatial cooperation of dual mobile manipulators system through evenly partition [C]//2022 International Conference on Advanced Robotics and Mechatronics(ICARM),Guilin,China.[S.l.]:IEEE,2022:921-928.

    • [11] UNSEREN M A,KOIVO A J.Reduced order model and decoupled control architecture for two manipulators holding an object [C]//Proceedings of 1989 International Conference on Robotics and Automation,Scottsdale,USA.[S.l.]:IEEE,1989:1240-1245.

    • [12] KREUTZ K,LOKSHIN A.Load balancing and closed chain multiple arm control [C]//1988 American Control Conference,Atlanta,USA.[S.l.]:IEEE,1988:2148-2155.

    • [13] TANNER H G,KYRIAKOPOULOS K J,KRIK-ELIS N J.Modeling of multiple mobile manipulators handling a common deformable object [J].Journal of Robotic Systems,1998,15(11):599-623.

    • [14] HAYATI S.Hybrid position/Force control of multi-arm cooperating robots [C]//Proceedings of 1986 IEEE International Conference on Robotics and Automation,San Francisco,USA.Los Alamitos,USA:IEEE Computer Society,1986:82-89.

    • [15] ZHAO J,ZHAO Y P,WANG W X,et al.Coach-assisted multi-agent reinforcement learning framework for unexpected crashed agents [J].Frontiers of Information Technology & Electronic Engineering,2022,23(7):1032-1042.

    • [16] 张少辉,赵志刚,丁旺才,等.轮式移动多机协调吊运系统倾覆稳定性仿真与分析 [J].机械强度,2021,43(5):1239-1244.ZHANG S H,ZHAO Z G,DING W C,et al.Simulation and analysis of tipover stability of wheeled mobile multi-robot coordinated towing system [J].Journal of Mechanical Strength,2021,43(5):1239-1244.(in Chinese)

    • [17] 段斌.仿人移动服务机器人结构设计及稳定性分析 [D].哈尔滨:哈尔滨工业大学,2015.DUAN B.Structure design and stability analysis of mobile humanoid service robot [D].Harbin:Harbin Institute of Technology,2015.(in Chinese)

    • [18] 龙运佳.Lagrange原著与广义动能原理 [J].动力学与控制学报,2019,17(5):478-481.LONG Y J.Lagrange original & generalized principle of kinetic energy [J].Journal of Dynamics and Control,2019,17(5):478-481.(in Chinese)

    • [19] ABB Robotics.Articulated Robots Portfolio.2022[2023-01-01].https://new.abb.com/products/robotics/robots/articulated-robots/irb-1600

    • [20] 张晓宇,刘晓峰,蔡国平,等.柔性关节柔性连杆机械臂的动力学建模 [J].动力学与控制学报,2022,20(3):25-39.ZHANG X Y,LIU X F,CAI G P,et al.Dynamic modeling of a flexible-link flexible-joint manipulator [J].Journal of Dynamics and Control,2022,20(3):25-39.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码