en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王琦少,E-mail:wangqishao@buaa.edu.cn

中图分类号:TP13

文献标识码:A

文章编号:1672-6553-2023-21(12)-079-010

DOI:10.6052/1672-6553-2023-136

参考文献 1
NIGAM N,BIENIAWSKI S,KROO I,et al.Control of multiple UAVs for persistent surveillance:algorithm and flight test results [J].IEEE Transactions on Control Systems Technology,2012,20(5):1236-1251.
参考文献 2
ALMURIB H A F,NATHAN P T,KUMAR T N.Control and path planning of quadrotor aerial vehicles for search and rescue [C]//SICE Annual Conference,Tokyo,Japan.Piscataway,USA:IEEE,2011:700-705.
参考文献 3
WANG Z F,YU J G,LIN S J,et al.Distributed robust adaptive fault-tolerant mechanism for quadrotor UAV real-time wireless network systems with random delay and packet loss [J].IEEE Access,2019,7:134055-134062.
参考文献 4
MAHMOOD A,KIM Y.Leader-following formation control of quadcopters with heading synchronization [J].Aerospace Science and Technology,2015,47:68-74.
参考文献 5
ROLDÀO V,CUNHA R,CABECINHAS D,et al.A leader-following trajectory generator with application to quadrotor formation flight [J].Robotics and Autonomous Systems,2014,62(10):1597-1609.
参考文献 6
HUA C C,CHEN J N,LI Y F.Leader-follower finite-time formation control of multiple quadrotors with prescribed performance [J].International Journal of Systems Science,2017,48(12):2499-2508.
参考文献 7
JASIM W,GU D B.Robust team formation control for quadrotors [J].IEEE Transactions on Control Systems Technology,2018,26(4):1516-1523.
参考文献 8
SARLETTE A,BONNABEL S,SEPULCHRE R.Coordinated motion design on lie groups [J].IEEE Transactions on Automatic Control,2010,55(5):1047-1058.
参考文献 9
PENG X H,SUN J Y,GENG Z Y.The geometric convexity on SE(3)and its application to the formation tracking in multi-vehicle systems [J].International Journal of Control,2019,92(3):528-539.
参考文献 10
DU H B,ZHU W W,WEN G H,et al.Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms [J].IEEE Transactions on Cybernetics,2019,49(1):342-353.
参考文献 11
LIU H,WANG Y H,XI J X.Completely distributed formation control for networked quadrotors under switching communication topologies [J].Systems & Control Letters,2021,147:104841.
参考文献 12
YONG K N,CHEN M,WU Q X.Anti-disturbance control for nonlinear systems based on interval observer [J].IEEE Transactions on Industrial Electronics,2020,67(2):1261-1269.
参考文献 13
都海波,李世华.多智能体系统的非光滑二阶一致性协议 [J].复杂系统与复杂性科学,2012,9(1):64-71.DU H B,LI S H.Nonsmooth second-order consensus protocol for multi-agent systems [J].Complex Systems and Complexity Science,2012,9(1):64-71.(in Chinese)
参考文献 14
LI Z K,REN W,LIU X D,et al.Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols [J].IEEE Transactions on Automatic Control,2013,58(7):1786-1791.
参考文献 15
FLIESS M,LÉVINE J,MARTIN P,et al.Flatness and defect of non-linear systems:introductory theory and examples [J].International Journal of Control,1995,61(6):1327-1361.
参考文献 16
MELLINGER D,KUMAR V.minimum snap trajectory generation and control for quadrotors [C]//2011 IEEE International Conference on Robotics and Automation,Shanghai,China.Piscataway,USA:IEEE,2011:2520-2525.
参考文献 17
LEE T,LEOK M,MCCLAMROCH N H.Geometric tracking control of a quadrotor UAV on SE(3)[C]//49th IEEE Conference on Decision and Control(CDC),Atlanta,USA.Piscataway,USA:IEEE,2010:5420-5425.
参考文献 18
ZHOU D J,WANG Z J,SCHWAGER M.Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures [J].IEEE Transactions on Robotics,2018,34(4):916-923.
参考文献 19
ZHOU X,ZHU J C,ZHOU H Y,et al.EGO-swarm:a fully autonomous and decentralized quadrotor swarm system in cluttered environments [C]//2021 IEEE International Conference on Robotics and Automation(ICRA),Xi'an,China.[S.l.]:IEEE,2021:4101-4107.
参考文献 20
MEI J,REN W,MA G F.Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements [J].Automatica,2013,49(5):1419-1427.
参考文献 21
FAESSLER M,FRANCHI A,SCARAMUZZA D.Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories [J].IEEE Robotics and Automation Letters,2018,3(2):620-626.
参考文献 22
WANG Z P,ZHOU X,XU C,et al.Geometrically constrained trajectory optimization for multicopters [J].IEEE Transactions on Robotics,2022,38(5):3259-3278.
参考文献 23
ZHOU X,WEN X Y,WANG Z P,et al.Swarm of micro flying robots in the wild [J].Science Robotics,2022,7(66):eabm5954.
参考文献 24
YU Y S,DING X L.A global tracking controller for underactuated aerial vehicles:design,analysis,and experimental tests on quadrotor [J].IEEE/ASME Transactions on Mechatronics,2016,21(5):2499-2511.
参考文献 25
MORRELL B,RIGTER M,MEREWETHER G,et al.Differential flatness transformations for aggressive quadrotor flight [C]//2018 IEEE International Conference on Robotics and Automation(ICRA).Brisbane,Australia.Washington,USA:IEEE,2018:5204-5210.
目录contents

    摘要

    本文研究了无人机集群的微分平坦性,给出了相对运动的微分平坦映射,并以此为基础设计了分布式编队控制器.运动规划方面,通过求解受约束的优化问题,实时生成期望编队轨迹和编队构型.运动控制方面,采用微分平坦映射将运动指令映射为每架无人机的期望状态和控制输入,而后利用局部误差反馈设计分布式编队控制器跟踪期望运动轨迹.针对群体运动的稳定性问题,本文运用李雅普诺夫稳定性理论证明了闭环系统的稳定性,给出了控制参数的选取条件.最后仿真验证了编队控制方法在未知环境下的运动控制效果.

    Abstract

    The article investigates the differential flatness of a swarm of unmanned aerial vehicles (UAVs), provides the differential flatness mapping for relative motion, and uses this as a foundation to design a distributed formation controller. In terms of motion planning, it generates real-time desired formation trajectories and configurations by solving constrained optimization problems. In terms of motion control, it utilizes the differential flatness mapping to map motion commands into desired states and control inputs for each UAV. Subsequently, it designs a distributed formation controller based on local error feedback to track the desired motion trajectories. To address the stability of collective motion, this article employs Lyapunov stability theory to prove the stability of the closed-loop system and provides conditions for selecting control parameters. Finally, simulations validate the effectiveness of the formation control method in an unknown obstacle environment.

  • 引言

  • 当下,无人机集群的应用发展迅速,涉及到物资运输、集群搜救、通信中继、立体侦察等民用与军用领域[1-3].无人机集群的编队控制问题作为集群研究中的一个典型问题,受到了学界的广泛关注[4-7].

  • 目前应用较为广泛的无人机集群编队控制方法主要包括两类,即基于分布式控制的方法和基于分散式规划的方法.基于分布式控制的方法仅采用邻居交互来实现整体的编队行为,而基于分散式规划的方法则在规划层面采用多机交互来实现编队行为.

  • 基于分布式控制的编队方法是以发展成熟的一致性控制理论为基础的网络化控制方法,研究编队构型设计、编队控制协议设计以及网络信息交互等问题,已逐渐成为研究无人机集群编队控制问题的主流方法.将SE(3)群运算与网络化控制方法相结合,Sarelette在李代数结构及系统的对称性基础上,研究了全驱动运动体在无向图下的协调控制问题[8].Peng等提出了SE(N)几何凸包的概念,揭示了欧氏空间中多运动体协调控制的本质是将运动体的状态驱动到多个邻居状态的线性凸包中,并解决了有向无环图下全驱动运动体的协调编队控制问题[9].Du等针对一致性编队控制问题,提出了非光滑反步法[10].Liu等考虑了无人机集群存在切换拓扑的情形,并据此设计了完全分布式的控制协议实现编队[11].针对实际应用中出现的未知干扰及模型不确定性问题,抗扰控制[12]、滑模控制[13]和自适应控制[14]等诸多经典控制方法被用于设计鲁棒编队控制器.以上分布式控制方法的优点在于可以从理论上保证稳定性.同时,分布式编队可通过局部信息交换实现,具有很的集群扩展能力.

  • 基于分散式规划的方法依赖于无人机的微分平坦性.微分平坦性是指欠驱动动力学可以通过内源反馈线性化[15],即无人机的状态和输入可以由平坦输出及其导数代数表出.Mellinger和Kumar证明了四旋翼无人机动力学的微分平坦性[16],并据此给出了一种多项式样条规划与微分平坦跟踪控制相结合的设计框架.该方法的优点在于降低了规划的求解维度,使在线计算成为了可能,同时控制器拥有较大的吸引域[17].该框架最初用于单个无人机的规划与控制,最近的一些研究已将其推广到无人机集群的协同规划与控制中.Lee等利用虚拟结构的概念,通过运动规划的协调来解决编队控制问题[18].在其基础上,后续的一些研究[19-20]对运动规划部分进行了改进,减少了计算时间的消耗,提升了在线规划能力.以上基于分散式规划的方法可以使无人机在复杂环境中实现自主飞行,以队形的轻微违背为代价避免与障碍物发生碰撞,具有有较好的灵活性.

  • 本文受以上两类方法的启发,针对无人机集群的编队控制问题,提出分散式规划与分布式控制相结合的协调设计方法.在轨迹规划过程实时生成期望的编队轨迹和编队构型,并采用微分平坦映射将运动指令映射为每架无人机的期望状态和控制输入.分布式编队控制器则采用邻居误差反馈跟踪期望运动轨迹.本文的主要创新点包括:

  • (1)论证了无人机集群动力学的微分平坦性.针对编队控制目标,构造了微分平坦输出,给出了微分平坦映射,进而提出了分布式编队控制器的设计方法.该方法结合了现有编队控制方法的优势,同时可以保证环境适应性.

  • (2)给出了严格的稳定性分析和参数选取条件.针对无人机集群的非线性动力学模型,理论证明了基于微分平坦的分布式编队控制的稳定性,给出了显示的控制参数选取条件以及吸引域与系统参数的依赖关系.

  • 1 预备知识

  • 1.1 符号定义

  • x‖表示向量x的2-范数.Hat算子用:R3 so 3表示,具体定义如下:

  • x^=0-x3x2x30-x1-x2x10so3x=x1x2x3T R3.Vee算子V:so3R3是Hat算子的逆算子. CmRRn表示 RRnm阶连续映射的集合.

  • 1.2 图论

  • 利用图论描述由N+1个无人机组成的集群的通信拓扑结构.考虑由G={Vε}表示的加权图,其中V={v0v1,···,vN}表示节点集,vi表示无人机i的节点,ε={eij}∈V×V表示边集,即无人机之间的通信通道.将加权邻接矩阵记为A=[aij],其中aij≥0为eij上的权值,aij>0当且仅当eijε,表示第i个无人机可以接收到第j个无人机的信息.无人机i的邻居集合为Ni={vjV:eijε}.图G的拉普拉斯矩阵定义为L=D-A,其中D=diagdidi=jNi aij为入度矩阵.节点vivj之间的有向路径由边的序列eik1ek1k2ek2k3ekmj定义,其中eijV.如果一个节点可以通过有向路径连接到G中的任何其他节点,则称G具有有向生成树,该节点称为根节点.本文中,我们考虑领导者-跟随者编队问题,将跟随者集合定义为F={1,2,···,N},将领导者集合定义为H={0},从而L可写作

  • (1)
  • 假设1:跟随者的子图是无向的,且领导者到所有的跟随者都存在有向路径,即图G包含有向生成树,其根节点为领导者节点.

  • 引理1[20]:若假设1满足,则L1的所有特征值都具有正实部,且向量-L-11L2的每个元素都为1.

  • 1.3 无人机动力学模型

  • 无人机位姿由图1 所示的世界坐标系和无人机的机体坐标系描述.为了避免奇异性,利用旋转矩阵描述无人机的姿态:

  • (2)
  • 其中cs分别表示cos(·)和sin(·),偏航角ψ,滚转角φ和俯仰角θ采用Z-X-Y欧拉角定义.第i个无人机的动力学可表示为[11]

  • p¨i=-gzW+cizBiR˙i=Riω^iJiω˙i+ωi×Jiωi=Mi,iFH
    (3)
  • 其中piR3vi=p˙iR3分别表示坐标系W下的位置和速度,RiSO(3)为旋转矩阵,ωiR3为坐标系B下定义的机体角速度,ciR是单位质量的总推力,MiR3为坐标系B中的力矩,zBi为坐标系W中机体的z轴方向向量,zW为世界坐标系的z轴方向向量.g代表重力加速度大小.piviRiωi为无人机的状态,ciMi为无人机的控制输入.

  • 图1 无人机位姿

  • Fig.1 The pose of a UAV

  • 2 问题描述

  • 定义第i个跟随者的轨迹误差为hit)= pit)-p0t),跟随者整体的轨迹误差表示为h=h1Th2ThNTT.本文的控制目标如下:

  • 控制目标一:领导者自主规划期望运动轨迹p0*t并实现跟踪,其数学描述为:

  • limt p0(t)=p0*(t), s.t. p0*(t)C,Gp0*(t),,p0*(s)(t)0.
    (4)
  • 控制目标二:跟随者对期望编队构型hi*t实现跟踪,其数学描述为:

  • limt pi(t)-p0(t)=hi*(t),iF
    (5)
  • 本文对期望编队轨迹p0*t和期望编队构型hi*t有如下假设:

  • 假设2:p0*thi*tC4RR3.

  • 注:公式中,CG为期望轨迹需要满足的约束条件. p0*tC为凸的构型空间约束(即飞行走廊),其目的是把期望轨迹约束在无碰撞空间内.依据编队构型hi*对飞行走廊C进行设计,可以在仅优化p0*t的情况下实现集群整体的避障.G为连续时间约束,指无人机在飞行过程中,其位置、速度、加速度等运动量需满足的饱和约束.控制目标式(5)为典型的编队控制目标.

  • 3 集群运动规划

  • 本章针对控制目标一设计集群运动规划算法.在给出运动规划算法之前,作以下假设:

  • 假设3:满足假设2的期望编队轨迹p0*t=p0x*tp0y*tp0z*tT和期望编队构型hi*t=hix*thiy*thiz*tT是分段多项式,且每段持续时间下限Tmin>0.

  • 3.1 领导者轨迹规划

  • 领导者的轨迹规划问题可描述为如下受约束的优化问题:

  • minp0*(t),T 0T p0*(s)(t)TWp0*(s)(t)+w(T) s.t. p0*(t)C,t[0,T],Gp0*(t),,p0*(s)(t)0,t[0,T],p0*[s-1](0)=p0 init *,p0*[s-1](T)=p0end *
    (6)
  • 其中W是一个元素为正的对角矩阵.w(·)是关于到达时间的加权函数,用以实现轨迹平滑度和总时间消耗之间的权衡.CG分别为空间构型约束与连续时间约束. p0*[s-1]=p0*Tp0*Tp0*s-1TT,其中p0*[s-1]p0*s-1阶导数. p0 init *p0end *是初始和终端约束.根据假设3,轨迹优化问题式(6)可以由现有的规划器在线求解[22].

  • 3.2 编队构型规划

  • 期望编队状态指期望编队构型hi*t)及其有限阶(≤m)导数需满足的约束.参考点指hi*t)需满足的空间构型约束.考虑相邻编队期望状态间的轨迹段优化问题,需满足始末态的期望编队状态约束,及过程中的参考点约束.具体建模如下:

  • minhi*(t) iF ti,0ti,K hi*(m)T(t)Qhi*(m)(t) s.t. hi*[m-1]ti,0=qi,0,hi*[m-1]ti,K=qi,Khi*ti,k=qi,k,k=1,2,,K-1
    (7)
  • 其中hi*mhi*的m阶导数,hi*[m-1]t=hi*Tthi*1Tthi*m-1TtTqi0qiKR3m为期望编队状态约束,qikR3为参考点约束,Q正定.该问题是m阶积分器链的控制输入最小化问题,通过求解该问题可以得到使轨迹m阶导数的积分最小化(即保证光滑性)的期望编队构型hi*t).由[22,定理2]可以得到如下推论:

  • 推论1:hi*t)是满足问题(7)的最优编队构型,当且仅当

  • 1)k=0,1K-1hi*tttiktik+1是2m-1阶多项式;

  • 2)hi*t)满足式(7)中的边界条件和中间条件;

  • 3)hi*t)在参考点qi,kk=1,2,···,K-1,处2m-2次连续可微.

  • 进一步,满足上述三个条件的编队构型hi*t存在且唯一.

  • 依据推论1,最优编队构型属于2m-1阶的分段多项式族,因而可以把原始的无限维轨迹优化问题转化为有限维参数优化问题,可以大幅降低计算代价.

  • 4 集群的微分平坦性与分布式编队控制

  • 本章针对控制目标二设计集群编队控制器.首先论证无人机集群的微分平坦性.

  • 4.1 无人机集群的微分平坦映射

  • 根据编队控制目标式(5),选取平坦输出为p0h=h1Th2ThNTTψ=ψ0ψ1ψNT.根据h的定义,有pi=hi+pip˙i=h˙i+p˙0iF.由质心动力学方程,可得

  • cicizBi=h¨i+c0zB0=h¨i+p¨0+gzW
    (8)
  • 即无人机的位置pi、速度p˙i和推力矢量ci可由平坦输出代数表出.采用[16,第3节]中类似的推导方法,由无人机的姿态动力学方程可得到如下微分平坦映射

  • (9)
  • 其中yBi=zBi×xCixBi×xCixCi=cosψisinψi0T

  • ωi=-hωiyBi,hωixBi,ψ˙izBiT
    (10)
  • 其中hωiωi×zBi=1cic˙i-zBic˙izBi

  • Mi=Jiω˙i+ωi×Jiωi
    (11)
  • 其中

  • ω˙i=-hωi'yBi, hωi'xBi, ψ¨izBiT, hωi'ω˙i×zBi=1cic¨i-ωi×zBic˙i+zBic¨izBi-zBic˙iωi×zBi-ciωi×ωi×zBi.

  • 综上所述,无人机集群的微分平坦映射可描述为:

  • (12)
  • 其中p0hiψi为平坦输出,piviRiωiciMi分别为无人机i分别为无人机的状态和输入.

  • 4.2 基于微分平坦映射的分布式编队控制器

  • 本文采用局部误差反馈设计分布式编队控制器.首先,定义局部姿态误差函数[17]

  • ΨRi,Ri*=12trI3-Ri*TRi
    (13)
  • 其中RiRi*分别为第i个无人机的实际旋转矩阵和期望旋转矩阵.令R=diagR1R2RNR*=diagR1*R2*RN*.无人机集群的姿态误差函数可定义为

  • Ψsum R,R*=12trI3N-R*TR=iF 12trI3-Ri*TRi
    (14)
  • 无人机i的姿态跟踪误差定义为[17]

  • eRi=12Ri*TRi-RiTRi*
    (15)
  • 角速度跟踪误差定义为

  • eωi=ωi-RiTRi*ωi*
    (16)
  • 可知,式(16)满足ddtR*TR=R*TRe^ωi.所有跟随者的姿态跟踪误差和角速度跟踪误差定义为eR=eR1TeR2TeRNTTeω=eω1Teω2TeωNTT.

  • 本文提出的基于微分平坦的编队控制器结构由一个分布式编队控制器和一个姿态控制器组成.控制器的期望值为p*0t),h*t)及个体的期望偏航角轨迹ψ*it).分布式编队控制器通过邻居反馈和微分平坦前馈计算期望加速度矢量Ai,然后将Ai进行分解和到机体轴的投影,分别获得期望推力ci和期望姿态Ri*.控制器具体形式如下

  • Ai=-kpjNi aipi-hi*-pj-hj*-kvjNi aivi-h˙i*-vj-h˙j*+ci*ci=AizBiMi=-kReRi-kωeωi+ωi×Iiωi-Iiω^iRiTRi*ωi*-RiTRi*ω˙i*
    (17)
  • 其中kpkvkRkω是控制参数. ci*由微分平坦映射式(8)得到,即

  • ci*=h¨i*+p¨0*+gzW
    (18)
  • 由微分平坦映射计算期望姿态Ri*.式(17)中的期望值ωi*ω˙i*也根据微分平坦映射得到.

  • 假设4:Ai0zBi*×xCi*0iF.

  • 注:假设4的物理意义是无人机在运动过程中不到达奇点位置.实际中‖Ai‖≠0可以通过在控制器中限制最小推力来实现[24],而zBi*×xCi*0,可通过判断使用yCi*替换xCi* [25]或牺牲偏航角这一维平坦输出[21]等方法来实现.

  • 假设5:存在Di使得ci*<DiiF.

  • 注:假设5可由p*0t)和h*t)的有界性保证.

  • 4.3 稳定性分析

  • 在分析无人机集群姿态动力学的稳定性之前,先给出单个无人机的姿态稳定性结论.

  • 4.3.1 无人机集群的姿态稳定性

  • 引理2:[17,定理1]考虑无人机姿态动力学,及中给出的控制力矩输入Mi.对于任意控制参数kRkω,若初始条件满足

  • ΨRi(0),Ri*(0)<2eωi(0)2<2λmin JikR2-ΨRi(0),Ri*(0)
    (19)
  • 那么,姿态跟踪误差eRieωi的零平衡点是指数稳定的.此外,存在常数α2β2>0,使得

  • ΨRi(t),Ri*(t)min2,α2e-β2t
    (20)
  • 引理2指出在控制力矩Mi的作用下,单个无人机的姿态动力学是指数稳定的.对于无人机集群的姿态动力学也可以得到类似的结论.

  • 定理1:若初始姿态满足

  • ΨRi (0) , Ri* (0) Ω2<2

  • eωi(0)2<2λminJikR2-ΨRi(0),Ri*(0)
    (21)
  • 其中Ω2是常量.那么,对于任意的kR>0和kω>0,在控制器的作用下,eReω的零平衡点是指数稳定的.

  • 证明: 根据eω的定义,可得

  • e˙R=FR1*TR1eω1FR2*TR2eω2FRN*TRNeωN
    (22)
  • 其中FRi*TRi12trRiTRi*I-RiTRi*.对式(16)求导得

  • Je˙ω=Jω˙+Jω˙1R1TR1*ω1*-R1TR1*ω˙1*ω˙2R2TR2*ω2*-R2TR2*ω˙2*ω^NRNTRN*ωN*-RNTRN*ω˙N*
    (23)
  • 选择李雅普诺夫函数为

  • V2=12eωTJeω+kRΨsum R,R*+beRTeω
    (24)
  • 其中b是待定参数.由[17,定理1],求导可得

  • V˙2-w2TU2w2
    (25)
  • 其中w2=eReωT,矩阵W2

  • (26)
  • 令李雅普诺夫函数中的参数b满足

  • b<minkω,4kRkωλmin (J)2kω2λmax (J)+4kRλmin (J)2,kRλmin (J)
    (27)
  • 则可保证V2正定且V˙2负定.因此,‖eR‖,‖eω‖指数趋于零.得证.

  • 基于定理1的结果,可以进一步得到定理2.

  • 4.3.2 无人机集群的整体动力学稳定性

  • 定理2:若初始姿态满足

  • ΨRi(0),Ri*(0)Ω1<1,iF
    (28)
  • 其中Ω1满足

  • UλminL1-χλmaxL1αmax>0
    (29)
  • 其中χ=i=1N j=1N lijαmax=Ω12-Ω1.那么,对于算法1选取的控制参数,在控制器式(17)的作用下,控制目标二可以指数实现.

  • 证明:见附录.

  • 12 3注:根据定理2,吸引域由

  • ΨRi (0) , Ri* (0) Ω1<1, eωi (0) 2<2λminJikR1-ΨRi (0) , Ri* (0) , iF

  • 给出.

  • 算法1:控制参数选取算法

  • 第一步:选择kp>0,kv>0.

  • 第二步:选择a满足

  • 0<a<amax
    (30)
  • 其中

  • amax=minkp,Ukv,4kpkvU24Ukp+kv2V2
    (31)
  • V=λmaxL11-χαmax
    (32)
  • 第三步:选择kω满足

  • kω>2Π+2λmin(J)
    (33)
  • 其中

  • Π=4U122λminU1
    (34)
  • (35)
  • U12=λmaxL1χkpevmax+aiF Di0λmaxL1iF Di0
    (36)
  • evmax=maxev(0),λmaxL1i=1N DiUkv
    (37)
  • 第四步:选择kR满足

  • kR>maxkωλmax(J)λmin(J)-λmax(J),λmin(J),λmin2(J)2-Ω12λmax(J)
    (38)
  • 5 仿真结果

  • 本文仿真在机器人操作系统(ROS)中的Swarm Playground[23]环境下进行.领导者采用基于MINCO轨迹优化[22]的规划器.跟随者采用本文所提出的分布式微分平坦编队控制器.

  • 考虑1个领导者和3个跟随者组成的集群,通信拓扑定义为

  • (39)
  • 无人机的质量设置为m0=m1=m2=m3=0.98kg,惯性矩阵设置为J0=J1=J2=J3

  • (40)
  • 重力加速度为g=9.81m/s2,臂长为0.2m,电机的推力常数和扭矩常数为kF=8.98×10-9kM=2.5×10-9.电机时间常数为0.033s.初始状态为p0(0)=(-15,0,1)Tm,p1(0)=(-17,3,1)Tm, p2(0)=(-15,1,1)Tm,p3(0)=(-18,-4,1)Tm,v0(0)=v1(0)=v2(0)=v3(0)=(0,0,0)Tm/s,R0(0)=R1(0)=R2(0)=R3(0)=I3ω0(0)=ω1(0)=ω2(0)=ω3(0)=(0,0,0)Trad/s.期望编队轨迹p*0t)设置为5阶分段多项式,期望编队构型为h*1=[-1,0,0]Tm,h*2=[0.5,0.866,0]Tm,h*3=[0.5,-0.866,0]Tm.控制器参数依据算法1选取为kR=1,kω=0.7,kp=2.0, kv=1.8.

  • 图2 集群3D轨迹俯视图

  • Fig.2 Top view of 3-dimentional trajectory of UAV swarm

  • 图3 编队误差

  • Fig.3 The formation errors

  • 图2给出了无人机集群的3D轨迹俯视图.图中灰黑色为随机分布的障碍物,黑色无人机为领导者,蓝色运动轨迹为领导者实际轨迹.其余彩色无人机为跟随者.无人机从左侧出发,形成编队并绕过障碍区域到达右侧的目标位置.黄色轨迹为p1t),紫色轨迹为p2t),绿色轨迹为p3t),其中飞行时间t∈[0,35](s).图3(a)和(b)分别给出了(17)中定义的无人机集群的编队位置误差epi=jNi aipi-hi*-pj-hj*和速度误差evi=jNi aivi-h˙i*-vj-h˙j*按三轴分量的对比,可以看到误差均可收敛至零.从而验证了所提方法的有效性.

  • 6 结论

  • 本文针对无人机集群,研究了群体动力学的微分平坦性,给出了相对运动的微分平坦映射,并在此基础上设计了分布式编队控制器.运动规划方面,通过求解受约束的优化问题实时生成期望编队轨迹和编队构型.运动控制方面,采用微分平坦映射将期望运动轨迹映射为每架无人机的期望状态和控制输入,并利用局部误差反馈实现对期望运动轨迹的跟踪.证明了闭环系统的稳定性,并给出了控制参数的选取条件.最后基于ROS的仿真验证了所提方法的有效性.进一步的工作一方面将集中在采用更精确的无人机动力学模型进行集群的规划和控制设计.另一方面,该方法可以扩展到其他满足微分平坦性的对象,如无人地面车辆(UGV)集群等.

  • 附录

  • 定理2的证明

  • 证明:将无人机集群的质心运动误差定义为epep1Tep2TepNTTevev1Tev2TevNTT.将无人机i的加速度误差定义为

  • ξi=Ai-cizBi
    (41)
  • 其中Ai为期望的加速度矢量,cizBi为将Ai投影到zBi得到的矢量.无人机集群的加速度误差定义为ξξ1Tξ2TξNTT.因此,集群的质心运动误差动力学可以定义为e˙p=ev

  • e˙v=L1I3-Kpep1-Kvev1-ξ1+h¨1*-Kpep2-Kvev2-ξ2+h¨2*-KpepN-KvevN-ξN+h¨N*-L1I3h¨*=-L1Kpep-L1Kvev-L1Iξ
    (42)
  • 其中Kp=kpI3Kv=kvI3.质心运动的李雅普诺夫函数定义为

  • V1=12evTev+12epTL1Kpep+aepTev
    (43)
  • 其中a是一个待定系数.由(42)对(43)求导得

  • V˙1=-evTL1Kv-aIev-epTaL1Kpep-epTaL1Kvev-evTL1Iξ-aepTL1Iξ
    (44)
  • 式(44)的最后两项为交叉项,因此进一步求‖ξ‖的上界.具体来说,有

  • ξi=1N ξii=1N Aisin<Ai, cizBi>i=1N kpjNi aijpi-pj+kvjNi aijvi-vj+ci*maxi=1N eRiχkpep+kvev+

  • i=1N Dimaxi=1N eRi
    (45)
  • 其中lijL的第(ij)个元素,χi=1N j=1N lijL1中所有元素的绝对值之和.由maxi=1N eRiαmax<1和式(45)可得.

  • V˙1-evTL1Kv-aIev-epTaL1Kpep-epTaL1Kvev+λmaxL1ev+aepχkpep+kvev+i=1N Dimaxi=1N eRi-evTUkv-aIev-epTaUkpIep+aVkvepev+λmaxL1eRχkpepev+ai=1N Diep+i=1N Diev
    (46)
  • 式(57)中有一个三阶项,通过找到‖ev‖ 的上界将其转变成一个二阶项.定义W1=12ev2,有

  • W˙1-Ukvev2+λmaxL1i=1N Diev
    (47)
  • ev(t)maxev(0),λmaxL1i=1N DiUkv
    (48)
  • 由式(37),evtevmax.

  • 基于上述分析,无人机集群整体误差动力学的李雅普诺夫函数被定义为V=V1+V2,写作

  • V3=12evTev+12epTL1Kpep+aepTev+12eωTJeω+kRΨsum R,R*+beRTeω
    (49)
  • V3满足

  • w1TQ11z1+w2TQ21w2V3w1TQ12z1+w2TQ22w2
    (50)
  • 其中w1=epevTw2=eReωT

  • Q11=12kp-a-a1, Q12=12kpaa1, Q21=12kR-λmin (J) -λmin (J) λmin (J) ,

  • Q22=122kR2-Ω1λmin (J) λmin (J) λmax (J)

  • 由式(25)和式(46),V3的时间导数满足

  • V˙-w1TU1w1+z1TU12w2-w2TU2w2
    (51)
  • 其中U1U12U2R2×2由式(35)、式(36)和式(26)给出.

  • 根据杨氏不等式,可以得到

  • V˙3-w1TU1w1+w1TU12w2-w2TU2'w2
    (52)
  • 其中

  • (53)
  • 由式(31)的第一项,Q11Q12正定.由式(38)第二项和第三项,Q21Q22正定,因此V3正定.

  • 由式(31)的第二和第三项,U1是正定的.由和式(33),可得

  • kω2-λmin(J)>Π>0
    (54)
  • 由式(38)的第一项,可得

  • λmin(J)kRλmax(J)-kω2>kω2-λmin (I)
    (55)
  • 因此U'2是正定的.

  • 由式(34)和式(55),可得

  • λminU2'=kω2-λmin(J)>4U122λminU1
    (56)
  • U1正定,U'2正定以及式(56),可得V˙3负定.因此有epeveReω指数收敛到0,即

  • limt ep(t)=limt L1I3pf(t)-h*(t)+L2I3p0(t)=0
    (57)
  • 式(57)等价于

  • limt pf(t)-h*(t)+L1-1L2I3p0(t)=0
    (58)
  • 由引理1,可得

  • limt pi(t)-p0(t)=hi*(t),iF
    (59)
  • 即得证.

  • 参考文献

    • [1] NIGAM N,BIENIAWSKI S,KROO I,et al.Control of multiple UAVs for persistent surveillance:algorithm and flight test results [J].IEEE Transactions on Control Systems Technology,2012,20(5):1236-1251.

    • [2] ALMURIB H A F,NATHAN P T,KUMAR T N.Control and path planning of quadrotor aerial vehicles for search and rescue [C]//SICE Annual Conference,Tokyo,Japan.Piscataway,USA:IEEE,2011:700-705.

    • [3] WANG Z F,YU J G,LIN S J,et al.Distributed robust adaptive fault-tolerant mechanism for quadrotor UAV real-time wireless network systems with random delay and packet loss [J].IEEE Access,2019,7:134055-134062.

    • [4] MAHMOOD A,KIM Y.Leader-following formation control of quadcopters with heading synchronization [J].Aerospace Science and Technology,2015,47:68-74.

    • [5] ROLDÀO V,CUNHA R,CABECINHAS D,et al.A leader-following trajectory generator with application to quadrotor formation flight [J].Robotics and Autonomous Systems,2014,62(10):1597-1609.

    • [6] HUA C C,CHEN J N,LI Y F.Leader-follower finite-time formation control of multiple quadrotors with prescribed performance [J].International Journal of Systems Science,2017,48(12):2499-2508.

    • [7] JASIM W,GU D B.Robust team formation control for quadrotors [J].IEEE Transactions on Control Systems Technology,2018,26(4):1516-1523.

    • [8] SARLETTE A,BONNABEL S,SEPULCHRE R.Coordinated motion design on lie groups [J].IEEE Transactions on Automatic Control,2010,55(5):1047-1058.

    • [9] PENG X H,SUN J Y,GENG Z Y.The geometric convexity on SE(3)and its application to the formation tracking in multi-vehicle systems [J].International Journal of Control,2019,92(3):528-539.

    • [10] DU H B,ZHU W W,WEN G H,et al.Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms [J].IEEE Transactions on Cybernetics,2019,49(1):342-353.

    • [11] LIU H,WANG Y H,XI J X.Completely distributed formation control for networked quadrotors under switching communication topologies [J].Systems & Control Letters,2021,147:104841.

    • [12] YONG K N,CHEN M,WU Q X.Anti-disturbance control for nonlinear systems based on interval observer [J].IEEE Transactions on Industrial Electronics,2020,67(2):1261-1269.

    • [13] 都海波,李世华.多智能体系统的非光滑二阶一致性协议 [J].复杂系统与复杂性科学,2012,9(1):64-71.DU H B,LI S H.Nonsmooth second-order consensus protocol for multi-agent systems [J].Complex Systems and Complexity Science,2012,9(1):64-71.(in Chinese)

    • [14] LI Z K,REN W,LIU X D,et al.Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols [J].IEEE Transactions on Automatic Control,2013,58(7):1786-1791.

    • [15] FLIESS M,LÉVINE J,MARTIN P,et al.Flatness and defect of non-linear systems:introductory theory and examples [J].International Journal of Control,1995,61(6):1327-1361.

    • [16] MELLINGER D,KUMAR V.minimum snap trajectory generation and control for quadrotors [C]//2011 IEEE International Conference on Robotics and Automation,Shanghai,China.Piscataway,USA:IEEE,2011:2520-2525.

    • [17] LEE T,LEOK M,MCCLAMROCH N H.Geometric tracking control of a quadrotor UAV on SE(3)[C]//49th IEEE Conference on Decision and Control(CDC),Atlanta,USA.Piscataway,USA:IEEE,2010:5420-5425.

    • [18] ZHOU D J,WANG Z J,SCHWAGER M.Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures [J].IEEE Transactions on Robotics,2018,34(4):916-923.

    • [19] ZHOU X,ZHU J C,ZHOU H Y,et al.EGO-swarm:a fully autonomous and decentralized quadrotor swarm system in cluttered environments [C]//2021 IEEE International Conference on Robotics and Automation(ICRA),Xi'an,China.[S.l.]:IEEE,2021:4101-4107.

    • [20] MEI J,REN W,MA G F.Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements [J].Automatica,2013,49(5):1419-1427.

    • [21] FAESSLER M,FRANCHI A,SCARAMUZZA D.Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories [J].IEEE Robotics and Automation Letters,2018,3(2):620-626.

    • [22] WANG Z P,ZHOU X,XU C,et al.Geometrically constrained trajectory optimization for multicopters [J].IEEE Transactions on Robotics,2022,38(5):3259-3278.

    • [23] ZHOU X,WEN X Y,WANG Z P,et al.Swarm of micro flying robots in the wild [J].Science Robotics,2022,7(66):eabm5954.

    • [24] YU Y S,DING X L.A global tracking controller for underactuated aerial vehicles:design,analysis,and experimental tests on quadrotor [J].IEEE/ASME Transactions on Mechatronics,2016,21(5):2499-2511.

    • [25] MORRELL B,RIGTER M,MEREWETHER G,et al.Differential flatness transformations for aggressive quadrotor flight [C]//2018 IEEE International Conference on Robotics and Automation(ICRA).Brisbane,Australia.Washington,USA:IEEE,2018:5204-5210.

  • 参考文献

    • [1] NIGAM N,BIENIAWSKI S,KROO I,et al.Control of multiple UAVs for persistent surveillance:algorithm and flight test results [J].IEEE Transactions on Control Systems Technology,2012,20(5):1236-1251.

    • [2] ALMURIB H A F,NATHAN P T,KUMAR T N.Control and path planning of quadrotor aerial vehicles for search and rescue [C]//SICE Annual Conference,Tokyo,Japan.Piscataway,USA:IEEE,2011:700-705.

    • [3] WANG Z F,YU J G,LIN S J,et al.Distributed robust adaptive fault-tolerant mechanism for quadrotor UAV real-time wireless network systems with random delay and packet loss [J].IEEE Access,2019,7:134055-134062.

    • [4] MAHMOOD A,KIM Y.Leader-following formation control of quadcopters with heading synchronization [J].Aerospace Science and Technology,2015,47:68-74.

    • [5] ROLDÀO V,CUNHA R,CABECINHAS D,et al.A leader-following trajectory generator with application to quadrotor formation flight [J].Robotics and Autonomous Systems,2014,62(10):1597-1609.

    • [6] HUA C C,CHEN J N,LI Y F.Leader-follower finite-time formation control of multiple quadrotors with prescribed performance [J].International Journal of Systems Science,2017,48(12):2499-2508.

    • [7] JASIM W,GU D B.Robust team formation control for quadrotors [J].IEEE Transactions on Control Systems Technology,2018,26(4):1516-1523.

    • [8] SARLETTE A,BONNABEL S,SEPULCHRE R.Coordinated motion design on lie groups [J].IEEE Transactions on Automatic Control,2010,55(5):1047-1058.

    • [9] PENG X H,SUN J Y,GENG Z Y.The geometric convexity on SE(3)and its application to the formation tracking in multi-vehicle systems [J].International Journal of Control,2019,92(3):528-539.

    • [10] DU H B,ZHU W W,WEN G H,et al.Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms [J].IEEE Transactions on Cybernetics,2019,49(1):342-353.

    • [11] LIU H,WANG Y H,XI J X.Completely distributed formation control for networked quadrotors under switching communication topologies [J].Systems & Control Letters,2021,147:104841.

    • [12] YONG K N,CHEN M,WU Q X.Anti-disturbance control for nonlinear systems based on interval observer [J].IEEE Transactions on Industrial Electronics,2020,67(2):1261-1269.

    • [13] 都海波,李世华.多智能体系统的非光滑二阶一致性协议 [J].复杂系统与复杂性科学,2012,9(1):64-71.DU H B,LI S H.Nonsmooth second-order consensus protocol for multi-agent systems [J].Complex Systems and Complexity Science,2012,9(1):64-71.(in Chinese)

    • [14] LI Z K,REN W,LIU X D,et al.Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols [J].IEEE Transactions on Automatic Control,2013,58(7):1786-1791.

    • [15] FLIESS M,LÉVINE J,MARTIN P,et al.Flatness and defect of non-linear systems:introductory theory and examples [J].International Journal of Control,1995,61(6):1327-1361.

    • [16] MELLINGER D,KUMAR V.minimum snap trajectory generation and control for quadrotors [C]//2011 IEEE International Conference on Robotics and Automation,Shanghai,China.Piscataway,USA:IEEE,2011:2520-2525.

    • [17] LEE T,LEOK M,MCCLAMROCH N H.Geometric tracking control of a quadrotor UAV on SE(3)[C]//49th IEEE Conference on Decision and Control(CDC),Atlanta,USA.Piscataway,USA:IEEE,2010:5420-5425.

    • [18] ZHOU D J,WANG Z J,SCHWAGER M.Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures [J].IEEE Transactions on Robotics,2018,34(4):916-923.

    • [19] ZHOU X,ZHU J C,ZHOU H Y,et al.EGO-swarm:a fully autonomous and decentralized quadrotor swarm system in cluttered environments [C]//2021 IEEE International Conference on Robotics and Automation(ICRA),Xi'an,China.[S.l.]:IEEE,2021:4101-4107.

    • [20] MEI J,REN W,MA G F.Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements [J].Automatica,2013,49(5):1419-1427.

    • [21] FAESSLER M,FRANCHI A,SCARAMUZZA D.Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories [J].IEEE Robotics and Automation Letters,2018,3(2):620-626.

    • [22] WANG Z P,ZHOU X,XU C,et al.Geometrically constrained trajectory optimization for multicopters [J].IEEE Transactions on Robotics,2022,38(5):3259-3278.

    • [23] ZHOU X,WEN X Y,WANG Z P,et al.Swarm of micro flying robots in the wild [J].Science Robotics,2022,7(66):eabm5954.

    • [24] YU Y S,DING X L.A global tracking controller for underactuated aerial vehicles:design,analysis,and experimental tests on quadrotor [J].IEEE/ASME Transactions on Mechatronics,2016,21(5):2499-2511.

    • [25] MORRELL B,RIGTER M,MEREWETHER G,et al.Differential flatness transformations for aggressive quadrotor flight [C]//2018 IEEE International Conference on Robotics and Automation(ICRA).Brisbane,Australia.Washington,USA:IEEE,2018:5204-5210.

  • 微信公众号二维码

    手机版网站二维码