en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李博,E-mail:liboxjtu@xjtu.edu.cn

中图分类号:TP242

文献标识码:A

文章编号:1672-6553-2023-21(12)-037-016

DOI:10.6052/1672-6553-2023-133

参考文献 1
柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现 [J].机器人,2014,36(4):385-391.CHAI H,MENG J,RONG X W,et al.Design and implementation of SCalf,an advanced hydraulic quadruped robot [J].Robot,2014,36(4):385-391.(in Chinese)
参考文献 2
朱磊磊,陈军.轮式移动机器人研究综述 [J].机床与液压,2009,37(8):242-247.ZHU L L,CHEN J.A review of wheeled mobile robots [J].Machine Tool & Hydraulics,2009,37(8):242-247.(in Chinese)
参考文献 3
ZHANG Q W,FANG H B,XU J.Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability [J].Frontiers in Robotics and AI,2021,8:738214.
参考文献 4
TANG C,DU B Y,JIANG S W,et al.A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale [J].Science Robotics,2022,7(66):eabm8597.
参考文献 5
ZHANG Y F,YANG D Z,YAN P N,et al.Inchworm inspired multimodal soft robots with crawling,climbing,and transitioning locomotion [J].IEEE Transactions on Robotics,2022,38(3):1806-1819.
参考文献 6
ROMANISHIN J W,GILPIN K,RUS D.M-blocks:momentum-driven,magnetic modular robots [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:4288-4295.
参考文献 7
SHAH D S,BOOTH J W,BAINES R L,et al.Tensegrity robotics [J].Soft Robotics,2022,9(4):639-656.
参考文献 8
HEITLER W J.The locust jump [J].Journal of Comparative Physiology,1974,89:93-104.
参考文献 9
BENNET-CLARK H C.The energetics of the jump of the locust Schistocerca gregaria [J].Journal of Experimental Biology,1975,63(1):53-83.
参考文献 10
BENNET-CLARK H C,LUCEY E C.The jump of the flea:a study of the energetics and a model of the mechanism [J].The Journal of Experimental Biology,1967,47(1):59-67.
参考文献 11
SUTTON G P,BURROWS M.Biomechanics of jumping in the flea [J].The Journal of Experimental Biology,2011,214(5):836-847.
参考文献 12
ILTON M,BHAMLA M S,MA X T,et al.The principles of cascading power limits in small,fast biological and engineered systems [J].Science,2018,360(6387):eaao1082.
参考文献 13
BURROWS M.Froghopper insects leap to new heights [J].Nature,2003,424:509.
参考文献 14
BURROWS M.Jumping performance of froghopper insects [J].The Journal of Experimental Biology,2006,209(23):4607-4621.
参考文献 15
BURROWS M,SHAW S R,SUTTON G P.Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects [J].BMC Biology,2008,6(1):41.
参考文献 16
EVANS M E G.The jump of the click beetle(Coleoptera:Elateridae)—energetics and mechanics [J].Journal of Zoology,1973,169(2):181-194.
参考文献 17
BOLMIN O,WEI L H,HAZEL A M,et al.Latching of the click beetle(Coleoptera:Elateridae)thoracic hinge enabled by the morphology and mechanics of conformal structures [J].The Journal of Experimental Biology,2019,222(12):jeb196683.
参考文献 18
RUAN Y Y,KONSTANTINOV A S,SHI G Y,et al.The jumping mechanism of flea beetles(Coleoptera,Chrysomelidae,Alticini),its application to bionics and preliminary design for a robotic jumping leg [J].ZooKeys,2020,915:87-105.
参考文献 19
BRACKENBURY J,HUNT H.Jumping in springtails:mechanism and dynamics [J].Journal of Zoology,1993,229(2):217-236.
参考文献 20
DE LIMA OLIVEIRA F G.On springtails(Hexapoda:Collembola):a morphofunctional study of the jumping apparatus [J].Frontiers in Zoology,2022,19(1):21.
参考文献 21
ORTEGA-JIMENEZ V M,CHALLITA E J,KIM B,et al.Directional takeoff,aerial righting,and adhesion landing of semiaquatic springtails [J].PNAS,2022,119(46):e2211283119.
参考文献 22
ROBERTS T J,MARSH R L.Probing the limits to muscle-powered accelerations:lessons from jumping bullfrogs [J].The Journal of Experimental Biology,2003,206(15):2567-2580.
参考文献 23
ASTLEY H C,ROBERTS T J.The mechanics of elastic loading and recoil in anuran jumping [J].The Journal of Experimental Biology,2014,217(24):4372-4378.
参考文献 24
HAWKES E W,XIAO C,PELOQUIN R A,et al.Engineered jumpers overcome biological limits via work multiplication [J].Nature,2022,604:657-661.
参考文献 25
HALDANE D W,PLECNIK M M,YIM J K,et al.Robotic vertical jumping agility via series-elastic power modulation [J].Science Robotics,2016,1(1):eaag2048.
参考文献 26
KOH J S,YANG E,JUNG G P,et al.Jumping on water:surface tension-dominated jumping of water striders and robotic insects [J].Science,2015,349(6247):517-521.
参考文献 27
ALVAREZ A V,DEVLIN M R,NACLERIO N D,et al.Jumping on air:design and modeling of latch-mediated,spring-actuated air-jumpers [C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems,Kyoto,Japan.[S.l.]:IEEE,2022:13220-13226.
参考文献 28
KOVAC M.Bioinspired jumping locomotion for miniature robotics[D].Lausanne,Switzerland:Swiss Federal Institute of Technology in Lausanne,2010.
参考文献 29
SUTTON G P,MENDOZA E,AZIZI E,et al.Why do large animals never actuate their jumps with latch-mediated springs?because they can jump higher without them [J].Integrative and Comparative Biology,2019,59(6):1609-1618.
参考文献 30
DIVI S,MA X T,ILTON M,et al.Latch-based control of energy output in spring actuated systems [J].Journal of the Royal Society,Interface,2020,17(168):20200070.
参考文献 31
MAITLAND D P.Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata [J].Nature,1992,355:159-161.
参考文献 32
FARLEY G M,WISE M J,HARRISON J S,et al.Adhesive latching and legless leaping in small,worm-like insect larvae [J].The Journal of Experimental Biology,2019,222(15):jeb201129.
参考文献 33
KOH J S,JUNG S P,NOH M,et al.Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot [C]//2013 IEEE International Conference on Robotics and Automation,Karlsruhe,Germany.Piscataway,USA:IEEE,2013:26-31.
参考文献 34
BURROWS M,MORRIS O.Jumping and kicking in bush crickets [J].The Journal of Experimental Biology,2003,206(6):1035-1049.
参考文献 35
WEIHMANN T,KARNER M,FULL R J,et al.Jumping kinematics in the wandering spider Cupienniuss alei [J].Journal of Comparative Physiology A,2010,196(6):421-438.
参考文献 36
ZENTNER L.Modelling and application of the hydraulic spider leg mechanism [M]//Wolfhang N,Spider ecophysiology.Berlin,Heidelberg:Springer,2013:451-462.
参考文献 37
NABAWY M R A,SIVALINGAM G,GARWOOD R J,et al.Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius [J].Scientific Reports,2018,8:7142.
参考文献 38
BRANDT E E,SASIHARAN Y,ELIAS D O,et al.Jump takeoff in a small jumping spider [J].Journal of Comparative Physiology A,2021,207(2):153-164.
参考文献 39
GÖTTLER C,ELFLEIN K,SIEGWART R,et al.Spider origami:folding principle of jumping spider leg joints for bioinspired fluidic actuators [J].Advanced Science,2021,8(5):2003890.
参考文献 40
CHEN R,YUAN Z A,GUO J L,et al.Legless soft robots capable of rapid,continuous,and steered jumping [J].Nature Communications,2021,12(1):7028.
参考文献 41
ZONG L,WU J N,YANG P P,et al.Jumping of flea beetles onto inclined platforms [J].Journal of Comparative Physiology A,2023,209(2):253-263.
参考文献 42
RIBAK G,GISH M,WEIHS D,et al.Adaptive aerial righting during the escape dropping of wingless pea aphids [J].Current Biology,2013,23(3):R102-R103.
参考文献 43
RIBAK G,DAFNI E,GERLING D.Whiteflies stabilize their take-off with closed wings [J].The Journal of Experimental Biology,2016,219(11):1639-1648.
参考文献 44
JUSUFI A,GOLDMAN D I,REVZEN S,et al.Active tails enhance arboreal acrobatics in geckos [J].PNAS,2008,105(11):4215-4219.
参考文献 45
MCCAY M G.Aerodynamic stability and maneuverability of the gliding frog Polypedates dennysi [J].The Journal of Experimental Biology,2001,204(16):2817-2826.
参考文献 46
SOCHA J J,JAFARI F,MUNK Y,et al.How animals glide:from trajectory to morphology [J].Canadian Journal of Zoology,2015,93(12):901-924.
参考文献 47
ROBERTS W E.Explosive breeding aggregations and parachuting in a neotropical frog,agalychnis saltator(hylidae)[J].Journal of Herpetology,1994,28(2):193.
参考文献 48
NAUWELAERTS S,AERTS P.Take-off and landing forces in jumping frogs [J].The Journal of Experimental Biology,2006,209(1):66-77.
参考文献 49
ZHANG J,YUAN Q F,JIANG Y L,et al.Elytra coupling of the ladybird Coccinella septempunctata functions as an energy absorber in intentional falls [J].Bioinspiration & Biomimetics,2021,16(5):056018.
参考文献 50
BURROWS M,SUTTON G.Interacting gears synchronize propulsive leg movements in a jumping insect [J].Science,2013,341(6151):1254-1256.
参考文献 51
LI C,KESSENS C C,FEARING R S,et al.Mechanical principles of dynamic terrestrial self-righting using wings [J].Advanced Robotics,2017,31(17):881-900.
参考文献 52
LI C,WÖHRL T,LAM H K,et al.Cockroaches use diverse strategies to self-right on the ground [J].The Journal of Experimental Biology,2019,222(Pt 15):jeb186080.
参考文献 53
ZHANG J,LI J,LI C J,et al.Self-righting physiology of the ladybird beetle Coccinella septempunctata on surfaces with variable roughness [J].Journal of Insect Physiology,2021,130:104202.
参考文献 54
KARGO W J,NELSON F,ROME L C.Jumping in frogs:assessing the design of the skeletal system by anatomically realistic modeling and forward dynamic simulation [J].The Journal of Experimental Biology,2002,205(Pt 12):1683-1702.
参考文献 55
RICHARDS C T,PORRO L B,COLLINGS A J.Kinematic control of extreme jump angles in the red-legged running frog,Kassina maculata [J].The Journal of Experimental Biology,2017,220(Pt 10):1894-1904.
参考文献 56
莫小娟,葛文杰,赵东来,等.微小型跳跃机器人研究现状综述 [J].机械工程学报,2019,55(15):109-123.MO X J,GE W J,ZHAO D L,et al.Review:research status of miniature jumping robot [J].Journal of Mechanical Engineering,2019,55(15):109-123.(in Chinese)
参考文献 57
ZHAKYPOV Z,MORI K,HOSODA K,et al.Designing minimal and scalable insect-inspired multi-locomotion millirobots [J].Nature,2019,571(7765):381-386.
参考文献 58
LAMBRECHT B G A,Horchler A D,Quinn R D.A small,insect-inspired robot that runs and jump [C]//2005 IEEE International Conference on Robotics and Automation,Barcelona,Spain.New York:IEEE,2005:1240-1245.
参考文献 59
MORREY J M,LAMBRECHT B,HORCHLER A D,et al.Highly mobile and robust small quadruped robots [C]//2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,USA.Piscataway,USA:IEEE,2003:82-87.
参考文献 60
YAMADA A,WATARI M,MOCHIYAMA H,et al.A Jumping Robot based on the Closed Elastica [C]//2007 International Symposium on Micro-NanoMechatronics and Human Science,Nagoya,Japan.IEEE,2007:604-609.
参考文献 61
YAMADA A,WATARI M,MOCHIYAMA H,et al.An asymmetric robotic catapult based on the closed elastica for jumping robot [C]//2008 IEEE International Conference on Robotics and Automation,Pasadena,USA.Piscataway,USA:IEEE,2008:232-237.
参考文献 62
JUNG G P,CASAREZ C S,LEE J,et al.JumpRoACH:a trajectory-adjustable integrated jumping-crawling robot [J].IEEE/ASME Transactions on Mechatronics,2019,24(3):947-958.
参考文献 63
ASHBY M F.Materials selection in mechanical design,3rd ed [M].Oxford,UK:Butterworth-Heinemann,2005.
参考文献 64
LONGO S J,COX S M,AZIZI E,et al.Beyond power amplification:latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems [J].The Journal of Experimental Biology,2019,222(15):jeb197889.
参考文献 65
OLBERDING J P,DEBAN S M,ROSARIO M V,et al.Modeling the determinants of mechanical advantage during jumping:consequences for spring and muscle-driven movement [J].Integrative and Comparative Biology,2019,59(6):1515-1524.
参考文献 66
NOH M,KIM S W,AN S,et al.Flea-inspired catapult mechanism for miniature jumping robots [J].IEEE Transactions on Robotics,2012,28(5):1007-1018.
参考文献 67
QIU J,LANG J H,SLOCUM A H.A curved-beam bistable mechanism [J].Journal of Microelectromechanical Systems,2004,13(2):137-146.
参考文献 68
LI B,JIANG L,MA W T,et al.A switchable dual-mode actuator enabled by bistable structure [J].Advanced Intelligent Systems,2022,4(5):2100188.
参考文献 69
CHI Y D,LI Y B,ZHAO Y,et al.Bistable and multistable actuators for soft robots:structures,materials,and functionalities [J].Advanced Materials,2022,34(19):2110384.
参考文献 70
HU N,LI B,BAI R Y,et al.A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots [J].Research,2023,6:0116.
参考文献 71
HAN J S,MÜLLER C,WALLRABE U,et al.Design,simulation,and fabrication of a quadstable monolithic mechanism with X-and Y-directional bistable curved beams [J].Journal of Mechanical Design,2007,129(11):1198-1203.
参考文献 72
KOVAC M,FUCHS M,GUIGNARD A,et al.A miniature 7g jumping robot [C]//2008 IEEE International Conference on Robotics and Automation,Pasadena,USA.Piscataway,USA:IEEE,2008:373-378.
参考文献 73
ZAITSEV V,GVIRSMAN O,BEN HANAN U,et al.A locust-inspired miniature jumping robot [J].Bioinspiration & Biomimetics,2015,10(6):066012.
参考文献 74
BEN HANAN U,WEISS A,ZAITSEV V.Jumping efficiency of small creatures and its applicability in robotics [J].Procedia Manufacturing,2018,21:243-250.
参考文献 75
MA Y Q,WEI Y L,KONG D Y.A biologically inspired height-adjustable jumping robot [J].Applied Sciences,2021,11(11):5167.
参考文献 76
JUNG G P,CHOI H C,CHO K J.The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism.Bioinspiration & Biomimetics,2017,12(2):026006.
参考文献 77
PAL A,RESTREPO V,GOSWAMI D,et al.Exploiting mechanical instabilities in soft robotics:control,sensing,and actuation [J].Advanced Materials,2021,33(19):2006939.
参考文献 78
KOH J S,JUNG S P,WOOD R J,et al.A jumping robotic insect based on a torque reversal catapult mechanism [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:3796-3801.
参考文献 79
JUNG S P,JUNG G P,KOH J S,et al.Fabrication of composite and sheet metal laminated bistable jumping mechanism [J].Journal of Mechanisms and Robotics,2015,7(2):021010.
参考文献 80
ZHAKYPOV Z,PAIK J.Design methodology for constructing multimaterial origami robots and machines [J].IEEE Transactions on Robotics,2018,34(1):151-165.
参考文献 81
HALDANE D W,YIM J K,FEARING R S.Repetitive extreme-acceleration(14-g)spatial jumping with Salto-1P [C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,Vancouver,Canada.Piscataway,USA:IEEE,2017:3345-3351.
参考文献 82
LI B,SUN W J,JIANG L,et al.Research progress of electroactive bistable mechanism and its application in soft robots [J].Journal of Mechanical Engineering,2020,56(19):43.
参考文献 83
MENG L D,KANG R J,GAN D M,et al.A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism [J].Journal of Mechanisms and Robotics,2020,12(6):061005.
参考文献 84
CHEN G M.Research on multistable compliant mechanisms:the state of the art [C]//Proceedings of the 9th International Conference on Frontiers of Design and Manufacturing,9th International Conference on Frontiers of Design and Manufacturing,Changsha,China.2010 [2022-12-29].https://web.xidian.edu.cn/gmchen/files/20110919_164310.pdf.
参考文献 85
WOODWARD M A,SITTI M.MultiMo-Bat:a biologically inspired integrated jumping-gliding robot [J].International Journal of Robotics Research,2014,33(12):1511-1529.
参考文献 86
WOODWARD M A,SITTI M.Morphological intelligence counters foot slipping in the desert locust and dynamic robots [J].PNAS,2018,115(36):E8358-E8367.
参考文献 87
WOODWARD M A,SITTI M.Tailored magnetic springs for shape-memory alloy actuated mechanisms in miniature robots [J].IEEE Transactions on Robotics,2019,35(3):589-601.
参考文献 88
ARMOUR R,PASKINS K,BOWYER A,et al.Jumping robots:a biomimetic solution to locomotion across rough terrain [J].Bioinspiration & Biomimetics,2007,2(3):S65-S82.
参考文献 89
HU J,NIE Z Z,WANG M,et al.Springtail-inspired light-driven soft jumping robots based on liquid crystal elastomers with monolithic three-leaf panel fold structure [J].Angewandte Chemie International Edition,2023,62(9):e202218227.
参考文献 90
KOVAĈM,SCHLEGEL M,ZUFFEREY J C,et al.A miniature jumping robot with self-recovery capabilities [C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.St.Louis,USA.Piscataway,USA:IEEE,2009:583-588.
参考文献 91
TANG L Q,LI Y,LI B.Moobot:a miniature origami omnidirectional jumping robot with high trajectory accuracy [J].IEEE Transactions on Industrial Electronics,2023,99:1-9.
目录contents

    摘要

    高爆发性的跳跃是生物亿万年进化演变中赖以生存的关键之一,帮助生物实现在各种非结构化环境下的灵活运动功能.通过对生物跳跃机制的深入理解,微小型跳跃机器人在功能及性能上取得长足进步.本文以生物跳跃运动四个阶段(准备、起跳、腾空和着陆)为主线,剖析了生物的行为原理,介绍了对应的微小型跳跃机器人的动力学特征与技术,归纳了现有研究的挑战,最后讨论了跳跃机器人的未来发展趋势和潜在研究价值.

    Abstract

    Highly explosive jumping is one of the survival keys to the organism evolution over the course of billions of years. This movement helps organisms to achieve flexible movement functions under various unstructured conditions. Through an in-depth understanding of biological jumping mechanism, the small-scale jumping robot has made great progress in function and performance. Taking the four stages of biological jumping movement (preparation for take-off, take-off, flight and landing) as the main line, this paper reviews the behavioral principle of organisms, introduces the dynamic characteristics and technology of the corresponding small-scale jumping robots, summarizes the challenges of existing research, and finally discusses the future development and potential of jumping robots.

  • 引言

  • 随着现代社会中机器人作业任务难度的提高,机器人在运动模式上也进入了全面发展的阶段,已经形成足式[1]、轮式[2]、蠕动式[3-5]、翻滚式[67]等多元化的研究体系,在生产协作、社会服务、医疗康复等场景下发挥着越来越重要的作用.但是一些非结构化的场景如星球探索、抢险救灾、环境监测,对机器人的运动性能提出了更高的要求.机器人需要以更小的体积适应狭小空间环境,快速翻越数倍于自身尺寸的障碍,还需要携带一定负载来完成通讯、检测、运输等功能,因此机器人在小体积、大负载、高能量密度、高爆发性、高灵活性等功能的发展有待提升.作为生物界一种独特的运动模式,跳跃运动在蝗虫[89]、跳蚤[1011]等昆虫中经历了万亿年的演变,可与奔跑、飞行、游泳等运动模式相结合,帮助动物以极快的速度逃避天敌、捕食猎物,增强了生物的越障能力,使其更好的适应丛林、山地等复杂多变的地形.

  • 为了探寻生物产生爆发性跳跃运动的原因,科学家对各类具有出色跳跃性能的生物进行研究,发现生物体内弹性储能与闩锁结构的组合是解决微小型动物在爆发驱动中功率受限的关键[12].像沫蝉(Froghoppers)[13-15]、跳蚤(Fleas)[1011]、叩头虫(Click beetles)[16-18]、蝗虫(Grasshoppers或Locusts)[89]、弹尾虫(Springtails)[19-21]等节肢动物,通过弹性蛋白、角质层等进行储能,利用身体中闩锁机构控制能量的锁定和释放,能够完成其自身尺寸的几十倍甚至上百倍的跳跃运动;青蛙(Frogs)[2223]等生物虽然没有特定的闩锁机构,但是具有可变的有效机械效益(EMA,Effective mechanical advantage)的腿部,利用腿部肌肉所串联的肌腱进行功率放大,增强了自身的跳跃性能.

  • 根据仿生学原理,以微小型生物跳跃机理为灵感的跳跃机器人近些年得到了快速发展,其跳跃性能取得长足进步.到目前为止,机器人可实现单次约33m的跳跃高度[24],是其自身特征尺寸的百倍以上,也可以实现像夜猴一般敏捷的连续跳跃[25];不仅能像蝗虫一般在路上跳跃,也如水黾一般从水面跳跃[26],甚至有望实现在半空中跳跃[27].现如今,跳跃机器人的研究向集成化、多功能方向发展,在对大自然的学习中获得了各类生物跳跃相关的各类技能,逐步实现对生物的超越.

  • 综合考虑机器人的灵活性与负载能力,本文将集中讨论微小型的跳跃机器人(特征尺寸在30厘米以内),从跳跃运动的起跳、腾空、着陆、准备四个基本阶段[28]出发,对微小型生物跳跃及相关行为的机理进行综述,分析不同生物在储能与释放、腾空姿态、着陆缓冲、方向调整等方面的优势;在此基础上,对比现有的跳跃机器人各阶段功能的实现方式,结合生物特点分析仿生跳跃机器人的未来发展趋势以及面临的挑战,为其实现广泛应用提供设计参考.

  • 1 微小型动物的跳跃运动原理

  • 同其他具有跳跃功能的物种一样,微小型生物的跳跃行为可按照运动的状态的不同分为四个阶段,包括跳跃前的准备阶段、加速起跳阶段、腾空滑行阶段和落地缓冲阶段,如图1所示.在各个阶段,不同的生物根据自身生存条件的不同,进化出与各自所处环境相适应的跳跃特点,而受生物启发的跳跃机器人正是基于这些特点在高爆发、高集成、高灵活性等方面实现突破.

  • 图1 跳跃运动的四个阶段

  • Fig.1 The four phases of a jumping motion

  • 1.1 起跳阶段

  • 在起跳阶段,生物体从肌肉、弹性元件等驱动单元内获得能量,完成从静止状态至脱离地面的加速运动过程.在驱动方式方面,微小型生物由于四肢短小且无法形成高主动应变率的肌肉[29],因此多以机械储能的方式增大起跳功率,同时与闩锁结构的控制相配合,完成能量在短时间内的可控释放.此方式尤其体现在主要依靠弹性储能产生跳跃的生物中,如叩头虫[16-18]利用骨骼结构之间物理接触的作为闩锁来锁定弹性能[如图2(a)所示],该类型被称为接触式闩锁[30];瘿蚊幼虫(the Mediterranean fruit-fly larva)[3132]利用首尾钩状结构或微纳结构等摩擦接触将身体连接成环状,从而限制自身的形变,进而通过肌肉挤压内部液体来储存跳跃所需的弹性能[图2(b)];跳蚤[101133]、蝗虫[89]、沫蝉[13-15]等生物则利用跳跃机构的几何构型作为闩锁,而并非通过接触的方式实现弹性能量存储[图2(c)],该类型也被称为几何式闩锁.

  • 青蛙[2223]、蟋蟀(Crickets)[34]等生物由于具有较长的后肢而具有较长的驱动行程,而可以通过肌肉直接驱动的方式获得优异的跳跃性能.但是由于肌腱与肌肉的串联,青蛙同时也借助弹性元件来增强跳跃的驱动功率,其运动过程中同样存在几何闩锁[12],锁定效果可通过“有效机械效益”(EMA)来衡量.对于跳跃运动而言,EMA是地面对生物的支反力(GRF)和肌肉驱动力(F)的比值(EMA=GRF/F),可以表示串联弹性系统中肌肉所做的功流向弹性储能的大小,如图2(d)所示.EMA较小表示肌肉做功转化为串联弹性元件中储能,而不是直接驱动肢体加速跳跃;反之,表示肌肉做功大部分用于直接驱动,而非利用弹性元件储能.因此,如果EMA可以随肌肉收缩产生“阶跃”式的由小增大过程,则可以将其视为具有动力学“闩锁”,前期储存的机械能也将在高EMA水平期间释放,从而达到增强跳跃瞬间功率的目的.

  • 此外,同样采取直接驱动方式的跳蛛(Jumping spiders)[35-39]可以利用肌肉驱动“液压”关节完成腿部的快速伸展,从而完成跳跃运动[图2(e)],为跳跃运动的驱动实现提供了新的灵感[40].

  • 图2 起跳阶段生物行为与机理.a. 叩头虫利用骨骼作为接触式闩锁储能[16-18];b. 瘿蚊幼虫利用嘴钩作为闩锁而锁定自身形状[3132]; c.跳蚤采用几何式闩锁(扭矩反转机构)锁定机械能[101133];d.青蛙利用串联弹性元件增大跳跃功率[2223];e.蜘蛛采用液压直驱的方式跳跃[35-39]

  • Fig.2 Biological behavior and mechanisms during takeoff. a. Click beetle uses skeleton as contact latch to store energy[16-18]; b. The Mediterranean fruit-fly larvas use mouth hooks as latches to lock body shape[31, 32]; c. Fleas use geometric latch (torque reversal mechanism) to store mechanical energy[10, 11, 33]; d. Frogs use series elastic elements to increase jumping power [22, 23]; e. Spiders jumping driven by hydraulic force [35-39]

  • 1.2 腾空阶段

  • 在腾空阶段,生物体完成受空气阻力和自重影响下的斜抛运动,直至其身体与地面接触.许多生物虽然拥有相对自身尺寸数十倍的跳跃能力,但是在腾空之后不具备姿态调整功能,因此无法控制滑行时的轨迹和着陆时的姿态.在半空中姿态重新定位被称为适应性行为矫正,分为被动方式和主动方式[41].被动方式如豌豆蚜虫(Acyrthosiphon pisum)在高空坠落过程中不需要来自神经系统的动态控制或持续反馈,只是通过空气动力学稳定的姿势来被动地纠正自己[42];其他跳跃生物则通过翅膀[43]、肢体[21]、尾巴[44]等部位主动调整身体姿态.相对而言,被动方式需要的控制单元少,但是对环境依赖程度更高,而主动方式则更多见.

  • 为了适应不同的着陆角度,跳甲(Flea bettles)根据所感知到的着陆点角度等信息,通过翅膀的主动运动来调整自身姿态,有效提高正面着陆的概率(如图3(a)所示),同时却并不影响其跳跃的高度.白粉虱(Whiteflies)[43]也采取相同的策略,仅仅通过翅膀的伸展即可完成空中的稳定飞行,以防止翻筋斗,如图3(b)所示.

  • 图3 腾空阶段生物行为与机理.a.跳甲利用翅膀调整腾空姿态[41]; b. 白粉虱利用翅膀防止翻筋斗[43]; c.弹尾虫利用腹管和“U”型姿势调整腾空状态[21]

  • Fig.3 Biological behavior and mechanisms during flight. a. Flea bettles adjust aerial posture with wings[41]; b. Whiteflies prevent somersaults with wings[43]; c. Springtail adjust airborne states with collophore and "U" shape body[21]

  • 除了以上具有飞行能力的生物,半水生的弹尾虫[21]虽然没有翅膀却同样可以实现姿态矫正的功能.弹尾虫在起跳之前将腹部紧贴水面,通过具有亲水性的腹管收集水滴来改变自身的质量分布,在起跳之后将整个身体弯曲成U型,这两种行为都有助于矫正倾斜的姿态,并且避免了着陆前的翻转,如图3(c)所示.

  • 1.3 着陆阶段

  • 在着陆阶段,生物体依靠阻尼损耗、弹性储能等方式把自身的运动减速至静止状态.跳跃生物的缓冲方式也分为主动型和被动型,包括利用空气阻力的滑翔运动、变角度着陆足、吸收冲击的保护壳、变刚度肢体等.如生活在热带雨林中的飞蛙(Gliding frogs)[4546],依靠宽大的脚掌和趾间的蹼膜完成滑翔运动,并且具有较强的被动空气动力学稳定性,可以从树干高处快速降落来捕捉猎物或逃避天敌.滑翔运动有效改变着陆时的速度方向并通过较大的空气阻力降低速度大小,从而明显降低着陆时对地的冲击速度[47],如图4(a)所示.

  • 无论是否具有滑翔功能,青蛙均利用前肢进行主动着陆缓冲,前肢接触地面并形成一个支点,身体围绕这个支点旋转,直至完成后肢落地[48].在着陆过程中,青蛙根据跳跃高度、水平速度的不同调整前肢的着陆角度,从而获得最小的冲击,如图4(b)所示.

  • 图4 着陆阶段生物行为与机理.a.飞蛙利用脚蹼实现滑翔运动[45-47]; b.青蛙前肢着陆过程中最小冲击角度调整[48];c. 瓢虫利用相互耦合的鞘翅进行缓冲,耦合面形状如图中红蓝曲线所示[49]

  • Fig.4 Biological behavior and mechanisms during flight. a.Frogs gliding with flippers[45-47]; b. Adjusting of frog forelimb angle for minimum impact during landing[48]; c. Elytra coupling of ladybids for buffering, and the shape of the coupled surface is highlighted in the red and blue curves [49]

  • 瓢虫(Ladybirds)、甲虫等昆虫大多利用壳体减小冲击对自身的冲击,其中瓢虫除了采用由甲壳素微纤维和蛋白质组成的具有空腔的壳体来吸收能量,还利用成一定角度、相互耦合的翅鞘增强缓冲功能,以提供更多的能量吸收并减少碰撞后的反弹[49],如图4(c)所示.

  • 如1.1节所述的瘿蚊幼虫,依靠柔软的身体进行储能跳跃的同时,也能利用身体足够柔软的特点吸收着陆冲击,使其无需采用专用的缓冲结构.与有足动物类似,相较于起跳阶段肌肉运动产生的高刚度,着陆时其身体刚度显然有所降低,有利于增大着陆冲击力的作用时间,从而降低冲击力的大小.

  • 1.4 准备阶段

  • 在准备阶段,生物体完成姿态恢复、跳跃能量储备、跳跃目标位置确定、跳跃方向和角度调整等工作.对于利用双足来进行跳跃的生物而言,其跳跃方向大多朝自身的正前方,依靠双足的同步运动来完成.像伊苏斯飞虱(Issus coleoptratus)在幼虫阶段时,由于其起跳所用时长为毫秒级,而神经信号同样为毫秒级,因此在双腿同步性控制方面具有很大难度.为了保证跳跃方向准确性,避免跳跃之后身体旋转和方向偏离,伊苏斯虫利用带有齿轮状的肢体保证了起跳时双腿的同步性[50],如图5(a)所示.

  • 为了从倾倒之后的“四脚朝天”姿态中恢复,常见的昆虫如蟑螂(Cockroaches)、瓢虫等均可根据不同的地形,利用鞘翅、腿足的配合可以通过不同的策略完成翻身运动.其中,蟑螂可以采取腹部弯曲侧滚、鞘翅翻滚、腿部侧滚等策略[5152],如图5(b1)~(b3)所示.相较于蟑螂,瓢虫[53]的腿部较短,在粗糙表面多依靠足部勾住隆起物而翻转扶正,在光滑表面则依靠鞘翅来辅助翻滚.

  • 图5 准备阶段生物行为与机理.a.伊苏斯虫利用齿轮状肢体保证了双腿起跳同步性[50];b.蟑螂利用腹部、鞘翅和腿部实现翻身[5152]; c.弹尾虫通过不同初始角度调整跳高、跳远两种模式[21]

  • Fig.5 Biological behavior and mechanisms during preparation of takeoff. a. Isusia ensuring the synchronization of both legs in jumping with geared limbs[50]. b. Cockroaches turning over by abdomen, elytra and legs [51, 52]; c. Springtail switches between jump and long jump mode by adjusting different initial angles[21]

  • 在跳跃角度控制方面,青蛙等常利用腿部不同关节的协调运动来实现[5455].对于半水生的弹尾虫而言,除了利用跳跃尾部的不同作用力,还可以通过调整跳跃前的初始角度并利用腹管的亲水性,实现跳高、跳远两种模式的切换[21],如图5(c1)和图5(c2)所示.

  • 2 跳跃机器人的设计与驱动方法

  • 从上世纪八十年代开始,结合对跳跃生物能量存储机制等问题的研究,科学家们开始致力于跳跃机器人的研究[56],各类仿生跳跃机器人不断涌现并逐渐成为热点[24-2657].

  • 2.1 跳跃机器人储能结构与能量调控

  • 类比于生物所采用的弹性蛋白、角质层、肌腱、体液等储能元件,跳跃机器人多采用人造弹性元件,包括螺旋弹簧、扭簧、形状记忆合金弹簧、柔性梁、弹性绳等,不同类型的弹性元件具有不同的储能密度和变形形式,其特点直接影响机器人的跳跃能力和运动形式.

  • Lambrecht等人设计了一种仿蟑螂轮腿式机器人[5859],该机器人利用差齿齿轮旋转拉伸螺旋弹簧而实现能量的加载和释放,当作用齿轮达到差齿位置时,平行四连杆跳跃机构随弹簧释放而弹出,推动机器人产生向前的跳跃,而“Y”形三脚架模拟昆虫足部来实现爬行和小型障碍的跨越,如图6(a)所示.由于集成跑、跳运动模式,其质量达到190克,因此跳跃能力只能达到18厘米,如图6(b)所示.

  • 图6 Mini-Whegs机器人[5859]

  • Fig.6 Robot Mini-Whegs[58, 59]

  • Yamada等人利用细长悬臂梁在末端压弯载荷下屈曲失稳现象设计了一种跳跃机器人,定义为“封闭式弹性弹射器”[6061],如图7(a)所示.该机器人采用柔性梁的屈曲进行储能并可在末端旋转电机的带动下实现能量可控释放,既可以利用单电机实现二阶屈曲到一阶屈曲的能量释放,也可以采用对称布置的双电机实现三阶屈曲到一阶屈曲的能量释放,达到一定跳跃方向改变.储能和释放结构的集成使其结构简单,梁的形状及其两端角度变化对释放能量的大小和快慢起决定性的影响,梁变形过程如图7(b)所示.该机器人在单电机驱动下可跳跃20厘米高、70厘米远.

  • 图7 封闭弹性弹射机器人[6061]

  • Fig.7 A jumping robot based on the closed elastica[60, 61]

  • Jung等人提出一种仿甲虫爬跳结合的机器人JumpRoACH[62],如图8(a)所示.通过对线弹簧和扭簧的组合,机器人储能元件力位移特性近乎于恒力机构,最大程度的利用电机的负载能力从而扩大了其储能能量,如图8(b)所示.机器人通过电机卷绳方式加载,采用行星轮系作为能量锁定和释放机构,能够起到控制能量加载大小的作用.除此之外,该机器人结合了跳跃和爬行两种运动模式,具备完整的重复跳跃能力.在测试中,无爬行部分的机构可以实现2.75米的跳跃,而结合爬行和复位壳体部分之后体重增加一倍,仍然能实现1.5米高的跳跃,越障过程如图8(c)所示.

  • 图8 JumpRoACH跳跃机器人[62]

  • Fig.8 Robot JumpRoACH[62]

  • 在此基础上,Hawks等人利用柔性梁和线弹簧的组合方式达到了类似的恒力效果,在不超过电机最大功率条件下,牺牲加载速度而能够以最大恒力进行弹性能量加载,如图9(a)所示.根据其理论,弹簧-连杆质量比越大的机器人其最终能量密度越高,因此以柔性梁作为弹簧和腿部的集成,可以很大程度增加跳跃高度;借助Ashby图[63]对材料进行优化,选择碳纤维复合材料和乳胶组合构成储能元件,最终使重量30.4克的机器人[图9(b)]实现了32.9米的跳跃高度,这也是目前最高的机器人绝对跳跃高度[24].

  • 图9 目前跳得最高的机器人[24]

  • Fig.9 The highest jumping robot so far[24]

  • 除了储能大小和变形方式上的差异,不同的储能元件在跳跃运动中其动力学模型复杂度也不同,如通过柔性梁的大变形进行储能的模式比线性弹簧结合刚性连杆的方式更为复杂.起跳过程的动力学分析主要用于预测机器人起跳速度和高度,因此对于难以建立动力学模型的间歇型跳跃机器人(落地后无需立即起跳)一般直接利用弹簧的弹性变形能来估计跳跃高度;对于连续型跳跃机器人由于涉及到机器人的姿态、方向等控制,触地瞬间至起跳离地过程的动力学模型更为关键.

  • 2.2 跳跃机器人闩锁结构与能量动态释放

  • 在依靠弹性储能进行跳跃的机器人中,闩锁机构控制能量的释放过程,不同的结构不仅影响能量的存储量,而且对释放过程的动力学特征(势能转化为动能的时间、空间和速率等)起到决定性作用[12].闩锁结构除了前文所述的接触式、几何式闩锁,还包括流体式锁闩[64],其中流体式闩锁是指由系统内流体的运动和性质(包括凝聚力、聚结性和压力)对弹性元件进行调节;而接触式闩锁是指通过摩擦和机械限位的作用来阻挡弹性元件运动[30],如图10(a)所示;几何式闩锁则是基于几何构型、力、力矩臂、质心位置等的状态相关行为的锁闩,包括像青蛙、夜猴等体内的可变机械效益机构[65][图10(b)]、跳蚤体内的扭矩反转机构[66][图10(c)]、失稳突跳机构和其他具有双稳态特点的系统[67-71][图10(d)].

  • Kovac等人设计的“7g”的跳跃机器人如图11所示,采用凸轮和扭簧作为释放和储能机构,其跳跃高度由凸轮的形状和弹簧刚度所决定,跳跃方向与凸轮形状和腿部尺寸相关,一旦装配完成则无法调整,其运动灵活性因此受到一定限制.约5厘米高的机器人可以跳跃自身高度的27倍,达到1.4米[72],如图11(b)所示;携带3克负载后跳跃高度仍能达到1米,如图11(c)所示.

  • 图10 常见的闩锁结构.a.接触式闩锁简化模型[30]; b.青蛙等生物体内的可变机械效益结构[65]; c.跳蚤体内的扭矩反转机构[66];d.屈曲梁双稳态机构[67-71]

  • Fig.10 Common latch structures. a. Simplified model of contact latch [30]; b. Variable mechanical advantage structure in frogs and other organisms [65]; c. Torque reversal mechanism in fleas [66]; d. Bistable mechanism and energy curve of buckling beam[67-71]

  • 图11 “7g”机器人[72]

  • Fig.11 Robot “7g”[72]

  • Zaitsev等人模拟蝗虫跳跃过程设计了一种仿蝗虫跳跃机器人[7374],如图12(a)所示.通过单个电机的正反转,利用丝杠螺母在轴向运动以及绳在卷轴上的卷绕运动,巧妙的实现了锁扣作用下能量加载和释放的循环,如图12(b)中(ⅰ)~(ⅵ)所示.显然,这种机器人跳跃的实现十分依赖于对绳长、螺母移动距离、锁钩和足部杆几何关系等进行精确设计和装配.同样,该机器人无法进行跳跃角度、高度的调整,且两条绳子无约束地释放可能会造成打结、干涉等不稳定现象.该机器人实现了25倍自身体长的跳跃,达到3.35米的高度.

  • 图12 仿蝗虫机器人[7374]

  • Fig.12 Locust-inspired robot[73, 74]

  • 图13 高度可调的仿生跳跃机器人[75]

  • Fig.13 Bionic jumping robot with adjustable height[75]

  • Ma等人提出一种综合软体动物、硬壳跳虫弹跳机理的跳跃机器人[75],如图13(a)所示.该机器人采用屈曲镍钛合金板和扭簧作为储能元件,释放机构采用了与JumpRoACH机器人(图8)相似的行星轮系结构,并加入了单向轴承来加强能量释放过程的稳定性,如图13(c)中右图所示.当电机沿顺时针方向正转时,动力经三个齿轮传递至卷绳齿轮轴,通过卷绕刚性绳拉动机构变形进行储能,整个过程单向轴承处于内外圈滑动状态而不产生阻力;相反,当电机沿逆时针方向反转时,单向轴承锁紧并使行星架与卷绳齿轮轴脱开,卷绳瞬间释放.由于加载量随电机正转圈数而定,因此机器人具备跳跃高度可调的特点.该机器人可以在无壳体状态下达到最高1.51米的跳跃高度,如图13(b)所示.

  • 对于上述各种接触式闩锁,一般具有简单的结构,常采用挡块、凸轮、差齿齿轮等方式实现能量的锁定,除了上述行星轮系结构,其它锁定方式下的能量值多为固定不可调整的,同时意味着其控制难度低,常采用开环或者位移闭环进行控制其释放.此外,接触式闩锁存在摩擦损失大、释放瞬间冲击大等缺点.

  • 图14 仿跳蚤系列机器人. a. FleaV1机器人[3366]; b. FleaV2 机器人[33]; c~d. FleaV3机器人[78]; e~f. 水面跳跃机器人[26]

  • Fig.14 Flea-inspired robots. a. FleaV1 Robot[33, 66]; b. FleaV2 Robot [33]; c~d. FleaV3 Robot [78]; e~f. Robot jumping on water[26]

  • 基于跳蚤体内的扭矩反转机构[10],Noh等人提出一种具有非接触式闩锁的仿跳蚤跳跃机器人FleaV1[336676],如图14(a)所示.利用三根形状记忆合金弹簧来模拟图10(c)所示的伸肌、触发肌和屈肌,当受拉弹性元件(伸肌)与所连杠杆处于重合位置时能量存在极值,利用负刚度特性可以产生越过重合点后的爆发式运动,实现了快速“突跳(Snap-through)”的特征[77].

  • 基于此原理该团队还设计了其他形式的跳跃机器人FleaV2、Flea V3[263378],如图14(b)~(d)所示,通过简化SMA的数量来实现更高的跳跃高度(40倍自身高度),并通过结合超疏水喷涂工艺来模拟水黾在水面起跳的现象[图14(e)-(f)],在陆地和水面分别可以实现30和18厘米高的跳跃能力.较轻的机器人也存在一定缺点,如引入电池等额外负载时其跳跃高度将受到严重影响[79];同样,由于结构过于简单,此类机器人在连续跳跃、改变方向和高度等方面还具有挑战性,这些问题均会对机器人的实际应用产生限制.

  • 采用同样原理的还有Zhakypov等人提出的仿陷阱颚蚁跳跃机器人[5780],该机器人可实现爬行、翻滚、垂直跳跃、定向跳跃等多运动模式,最高跳跃14厘米,达到自身高度的2.5倍,结构如图15所示.三足的设计不仅增强了机器人的跳跃能力,还帮助机器人实现跳跃方向的选择.此外,通过将电路设计、柔顺机构设计与电路板进行集成,完成了机器人的快速、轻量化制造.

  • 图15 仿陷阱颚蚁多模式运动微型机器人[5780]

  • Fig.15 Trap-jaw-ant-inspired multi-locomotion millirobot[57, 80]

  • 为了提高机器人的敏捷性,Haldane等人模仿了夜猴、青蛙的跳跃机制,提出一种仿夜猴跳跃的机器人Salto[2581].该机器人采用串联驱动器和EMA结合的方式,以增大机械效益在跳跃后与跳跃前的比值为目标,对机器人几何构型和重量分布进行优化,增大了串联弹性元件在跳跃初期能量存储[63].机器人不仅实现了稳定的连续跳跃运动,还具备跳跃高度可调、空中姿态调整的能力,可以完成类似于跑酷运动中“蹬墙跳”的高难度动作,这也进一步扩大了自身运动范围,最终使Salto实现了夜猴跳跃敏捷度的78%,成为目前垂直跳跃敏捷程度最高的机器人[25].

  • 图16 Salto系列机器人[2581].a. Salto;b. Salto-1P

  • Fig.16 Salto series robots[25, 81] . a. Salto; b. Salto-1P

  • 在以上非接触式闩锁中,通过与柔顺机构相结合的方式(图14和图15)完成“运动-储能-体化”,进而实现轻量化设计,同时具有无摩擦、释放瞬间冲击小等优点[82-84];由于依靠几何上的临界位置进行释放,该类型机器人往往采用开环的方式控制,同时也带来结构相对复杂的问题.此外,该类型机构在释放阶段的行程占比高于接触式闩锁,限制了释放的瞬时功率,同时也获得更小的冲击.

  • 对于可变机械效益机构结合串联弹性元件构成的非接触式闩锁(图16),驱动器直接做功在跳跃运动过程中起重要作用,适用于跳跃周期小的连续型跳跃机器人,也因此更依赖动力学模型来计算机器人的能量释放效果,如对于Salto机器人而言,一定范围内提高其驱动器运动加速度可获得更高弹性储能以提高其跳跃高度.

  • 表1 接触式与非接触式闩锁性能对比

  • Table1 Performance comparison between contact and non-contact latches

  • 2.3 跳跃机器人着陆缓冲功能

  • 跳跃机器人在追求较高跳跃目标的同时,着陆时来自地面的冲击也随之增大.在着陆缓冲的设计中,空气动力学、结构缓冲、材料缓冲等动力学的经典方法被广泛应用.其中,通过设计滑翔伞翼,机器人不但可以降低着陆速度,还能增大跳跃的距离;通过增加类似球壳、昆虫甲壳等外形的轻质柔性结构,可以有效吸收着陆冲击;此外,像瘿蚊幼虫那样采用全软体材料制作的机器人本身具备良好的抗冲击能力.

  • Woodward等人设计了一种结合跳跃、滑翔功能的机器人MultiMo-Bat[85-87],该机器人以蝙蝠为灵感,利用跳跃肌群与滑翔肌群具有相似性的特点,将机器人两个功能的部件共用程度提高至70%.滑翔伞翼改变了机器人降落时的加速方向,有效避免了垂直下坠的情况出现,同时增大了空气的阻力而减小了降落的动能.最终其跳跃高度超过3米,同时滑翔范围扩大至2.3米,如图17所示.

  • 图17 MultiMo-Bat机器人[85-87]

  • Fig.17 Robot MultiMo-Bat[85-87]

  • 图18 Jollbot机器人[88]

  • Fig.18 Robot Jollbot[88]

  • Armour等人设计了一种球形跳跃机器人Jollbot[88],将储能部分和缓冲外壳集成到球形的外壳上,无需额外增加缓冲部分,如图18所示.前文所提到的仿甲虫机器人JumpRoACH[62](图8)和高度可调的仿生跳跃机器人[75](图13)也采用类似的抗冲击方案,不同的是,Jollbot机器人完全隐藏在保护壳内部,因此无需考虑着陆时机器人的角度和姿态.

  • 在利用材料缓冲方面,东南大学研究团队提出一种基于液晶弹性体材料的跳跃机器人[89],由于本身全部采用智能的软材料构成和外场驱动模式,因此无需额外的缓冲设计.该机器人利用可逆光热驱动效应来使自身产生弹性形变储能,最外层的折痕在弹性储能过程中起到闩锁的作用,当达到一定驱动力后机器人完成跳跃,达到了87倍体长的跳跃高度,如图19所示.

  • 图19 基于液晶弹性体材料的跳跃机器人[89]

  • Fig.19 Jumping robot based on liquid crystal elastomer materials[89]

  • 不同于间歇型跳跃机器人,Salto等机器人(图16)由于其着陆和再起跳是连续且相关的,对着陆的角度和姿态的控制有更高的要求,其结果也直接影响着跳跃是否能连续、稳定的进行.

  • 2.4 跳跃机器人姿态恢复和起跳角度调整技术

  • 间歇型跳跃机器人在落地后,需要经历准备阶段将自身姿态调整至可再次起跳的状态.在恢复直立方面,扶正方式可分为利用扶正机构[图20(a)]和最小势能原理(同“不倒翁”原理)[图20(b)、(c)]两种[28].前者通过独立的运动部件帮助机器人抬升直立,后者则利用重心位置自发趋向于最低点实现直立动作.

  • 根据是否具备独立驱动单元,扶正机构可以分为两种.一种是如JumpRoACH跳跃机器人[62]一样(图21),类似甲虫翅膀的扶正机构具备独立的运动能力,因而可以根据不同的侧翻情况来调整扶正运动;另一种如图22所示的跳跃机器人[24],其扶正机构不具备独立的驱动功能,侧翻后的机器人只能依赖储能变形过程来同步进行扶正运动,虽灵活性不如JumpRoACH,但可以节省独立驱动部件的重量.

  • 图20 常见的直立恢复方式[28]

  • Fig.20 Common self-righting methods[28]

  • 图21 具有独立驱动单元的扶正机构[62]

  • Fig.21 Self-righting mechanism with the independent driving element[62]

  • 图22 不具有独立驱动单元的扶正机构[24]

  • Fig.22 Self-righting mechanism without the independent driving element[24]

  • 同理,根据是否具有独立驱动单元,利用最小势能原理的扶正方式也分为两种.若能通过内部驱动主动改变重心配置则称其为主动调整型,如图23所示的Jollbot机器人[88],在落地后外壳随储能加载变形以达到具有直立能力的重心配置;若重心位置相对整体结构无法调整则称其为被动调整型,如图24所示的机器人[90],落地之后仅依靠固定的重心配置完成直立运动.主动型结构因可改变重心配置,因此具备潜在的前后滚动能力,在非平坦地形上比被动型有相对更大的调整空间,但在可靠性方面二者均不如独立扶正机构.

  • 图23 利用最小势能原理的主动调整型直立方式[88]

  • Fig.23 Active self-righting method based on the principle of minimum potential energy[88]

  • 图24 利用最小势能原理的被动调整型直立方式[90]

  • Fig.24 Passive self-righting method based on the principle of minimum potential energy[90]

  • 图25 通过颈关节调节机器人跳跃方向[28]

  • Fig.25 Active neck joint adjustment for direction changing of jumping robot[28]

  • 为了实现跳跃机器人偏转角的调节,Kovac等人结合最小势能原理,通过在机器人颈部加入偏转电机的方式实现了对机器人跳跃方向的调整[28],如图25所示.落地之后的机器人在重力作用下会处于左图的状态,随着储能部件的加载,机器人的腿部完全缩进保护框架内并使足部离开地面,此时利用右图中黄色位置的偏转电机,可以实现内部跳跃机构绕中心杆旋转的效果,相当于通过颈部的关节来改变跳跃的方向.但是对于俯仰角,该机器人只能在装配阶段进行调整,一旦装好则无法改变跳跃角度.

  • Tang等人通过在跳跃机器人足踝部添加形状记忆合金驱动器的方式,实现了对机器人俯仰角、跳跃轨迹的精确控制[91],智能材料的加入使其集成度更高、质量更轻,如图26所示.通过在结构中布置偏心振动电机,机器人可以完成偏转角的改变,因此具备高度、角度、方向的均可调的特点.相较于图26(a)中双驱动器构成的拮抗结构,图26(b)中单驱动器和弹簧的组合具有更高的鲁棒性,有利于控制精度的提高.

  • 图26 全向跳跃机器人[91]

  • Fig.26 Omnidirectional jumping robot[91]

  • 间隙型跳跃机器人在准备阶段有充足的时间进行方向调整,因此对驱动器的响应速度要求较低,对于连续型跳跃机器人而言则有更高的要求.为实现Salto-1P机器人[81]沿三个轴的转动,研究人员采用了动量轮与双螺旋桨结合的方式,通过动量轮并利用动量守恒原理来调整机器人落地前后的俯仰角(pitch),通过双螺旋桨的同向、反向转动来实现滚动角(roll)、偏转角(yaw)的改变,如图27所示.

  • 图27 通过动量轮-双螺旋桨组合调节机器人姿态[81]

  • Fig.27 The combination of thrusters and tail adjustment for attitude changing of jumping robot[81]

  • 3 结论

  • 本文以跳跃运动的四个阶段为出发点,总结了微小型生物在不同阶段内各自具有的运动优势及其原理,进一步总结仿生跳跃机器人相关技术,包括从储能结构、闩锁机构、着陆缓冲方式、姿态恢复和起跳角度调整等方面对微小型跳跃机器人的研究进行了阐述,归纳了现有机器人所采取的结构类型和驱动控制策略.

  • 跳跃机器人作为一个具有高运动要求的系统,其运动过程融合了多种运动模式,其中存在复杂、多样的动力学问题,包括高能释放瞬间大变形结构的受力特征,机器人着陆的多体碰撞,跳跃机器人在滑行中的空气动力学与轨迹评估等等.

  • 在储能及释放过程中,受制于现有的材料与制造的研究水平,机器人储能部件类型多以橡胶、碳纤维片、螺旋弹簧等简单结构为主,如何更好的利用材料的强度极限、学习生物对不同材料的高效集成是当前提高弹性储能的挑战之一.

  • 跳跃功能的出现可以弥补传统移动方式在非结构化地形下越障能力差的缺点,在与其他运动模式集成后可以为机器人提供更高效、快速、节能的运动方案,更好的服务于灾后救援、战场侦查、环境巡查等复杂场景.特别是在空气稀薄的星球探测场景下,不仅能够取代无人机进行环境侦查,探测轮腿式机器人无法达到的复杂区域,而且由于引力较低而具备比地球上更强的能力.但是在目前的研究仍处于实验室研究阶段,仍无法满足现实应用需求,与传统运动模式相比,不足主要体现在运动精确性和鲁棒性差、续航时间和越障能力矛盾、复杂地形下多模式集成控制缺乏以及自主轨迹规划能力不够先进等.

  • 在未来,需要对生物跳跃机理与机器人进行更高层次的融合,如仿照生物多源、分布式驱动的特点来提高机器人的驱动性能,结合柔顺机构的储能-运动一致性、智能材料高能量密度等优势,利用拓扑优化等设计方法,可为能量密度的提升提供新的思考方式;对机器人跳跃轨迹规划、碰撞姿态及落点精度控制、多模式越障集成等内容进行深入研究,帮助跳跃机器人实现高爆发、高精度、高灵活性、高集成度、高智能化等目标,更好的面向现实需求、服务人类社会.

  • 参考文献

    • [1] 柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现 [J].机器人,2014,36(4):385-391.CHAI H,MENG J,RONG X W,et al.Design and implementation of SCalf,an advanced hydraulic quadruped robot [J].Robot,2014,36(4):385-391.(in Chinese)

    • [2] 朱磊磊,陈军.轮式移动机器人研究综述 [J].机床与液压,2009,37(8):242-247.ZHU L L,CHEN J.A review of wheeled mobile robots [J].Machine Tool & Hydraulics,2009,37(8):242-247.(in Chinese)

    • [3] ZHANG Q W,FANG H B,XU J.Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability [J].Frontiers in Robotics and AI,2021,8:738214.

    • [4] TANG C,DU B Y,JIANG S W,et al.A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale [J].Science Robotics,2022,7(66):eabm8597.

    • [5] ZHANG Y F,YANG D Z,YAN P N,et al.Inchworm inspired multimodal soft robots with crawling,climbing,and transitioning locomotion [J].IEEE Transactions on Robotics,2022,38(3):1806-1819.

    • [6] ROMANISHIN J W,GILPIN K,RUS D.M-blocks:momentum-driven,magnetic modular robots [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:4288-4295.

    • [7] SHAH D S,BOOTH J W,BAINES R L,et al.Tensegrity robotics [J].Soft Robotics,2022,9(4):639-656.

    • [8] HEITLER W J.The locust jump [J].Journal of Comparative Physiology,1974,89:93-104.

    • [9] BENNET-CLARK H C.The energetics of the jump of the locust Schistocerca gregaria [J].Journal of Experimental Biology,1975,63(1):53-83.

    • [10] BENNET-CLARK H C,LUCEY E C.The jump of the flea:a study of the energetics and a model of the mechanism [J].The Journal of Experimental Biology,1967,47(1):59-67.

    • [11] SUTTON G P,BURROWS M.Biomechanics of jumping in the flea [J].The Journal of Experimental Biology,2011,214(5):836-847.

    • [12] ILTON M,BHAMLA M S,MA X T,et al.The principles of cascading power limits in small,fast biological and engineered systems [J].Science,2018,360(6387):eaao1082.

    • [13] BURROWS M.Froghopper insects leap to new heights [J].Nature,2003,424:509.

    • [14] BURROWS M.Jumping performance of froghopper insects [J].The Journal of Experimental Biology,2006,209(23):4607-4621.

    • [15] BURROWS M,SHAW S R,SUTTON G P.Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects [J].BMC Biology,2008,6(1):41.

    • [16] EVANS M E G.The jump of the click beetle(Coleoptera:Elateridae)—energetics and mechanics [J].Journal of Zoology,1973,169(2):181-194.

    • [17] BOLMIN O,WEI L H,HAZEL A M,et al.Latching of the click beetle(Coleoptera:Elateridae)thoracic hinge enabled by the morphology and mechanics of conformal structures [J].The Journal of Experimental Biology,2019,222(12):jeb196683.

    • [18] RUAN Y Y,KONSTANTINOV A S,SHI G Y,et al.The jumping mechanism of flea beetles(Coleoptera,Chrysomelidae,Alticini),its application to bionics and preliminary design for a robotic jumping leg [J].ZooKeys,2020,915:87-105.

    • [19] BRACKENBURY J,HUNT H.Jumping in springtails:mechanism and dynamics [J].Journal of Zoology,1993,229(2):217-236.

    • [20] DE LIMA OLIVEIRA F G.On springtails(Hexapoda:Collembola):a morphofunctional study of the jumping apparatus [J].Frontiers in Zoology,2022,19(1):21.

    • [21] ORTEGA-JIMENEZ V M,CHALLITA E J,KIM B,et al.Directional takeoff,aerial righting,and adhesion landing of semiaquatic springtails [J].PNAS,2022,119(46):e2211283119.

    • [22] ROBERTS T J,MARSH R L.Probing the limits to muscle-powered accelerations:lessons from jumping bullfrogs [J].The Journal of Experimental Biology,2003,206(15):2567-2580.

    • [23] ASTLEY H C,ROBERTS T J.The mechanics of elastic loading and recoil in anuran jumping [J].The Journal of Experimental Biology,2014,217(24):4372-4378.

    • [24] HAWKES E W,XIAO C,PELOQUIN R A,et al.Engineered jumpers overcome biological limits via work multiplication [J].Nature,2022,604:657-661.

    • [25] HALDANE D W,PLECNIK M M,YIM J K,et al.Robotic vertical jumping agility via series-elastic power modulation [J].Science Robotics,2016,1(1):eaag2048.

    • [26] KOH J S,YANG E,JUNG G P,et al.Jumping on water:surface tension-dominated jumping of water striders and robotic insects [J].Science,2015,349(6247):517-521.

    • [27] ALVAREZ A V,DEVLIN M R,NACLERIO N D,et al.Jumping on air:design and modeling of latch-mediated,spring-actuated air-jumpers [C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems,Kyoto,Japan.[S.l.]:IEEE,2022:13220-13226.

    • [28] KOVAC M.Bioinspired jumping locomotion for miniature robotics[D].Lausanne,Switzerland:Swiss Federal Institute of Technology in Lausanne,2010.

    • [29] SUTTON G P,MENDOZA E,AZIZI E,et al.Why do large animals never actuate their jumps with latch-mediated springs?because they can jump higher without them [J].Integrative and Comparative Biology,2019,59(6):1609-1618.

    • [30] DIVI S,MA X T,ILTON M,et al.Latch-based control of energy output in spring actuated systems [J].Journal of the Royal Society,Interface,2020,17(168):20200070.

    • [31] MAITLAND D P.Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata [J].Nature,1992,355:159-161.

    • [32] FARLEY G M,WISE M J,HARRISON J S,et al.Adhesive latching and legless leaping in small,worm-like insect larvae [J].The Journal of Experimental Biology,2019,222(15):jeb201129.

    • [33] KOH J S,JUNG S P,NOH M,et al.Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot [C]//2013 IEEE International Conference on Robotics and Automation,Karlsruhe,Germany.Piscataway,USA:IEEE,2013:26-31.

    • [34] BURROWS M,MORRIS O.Jumping and kicking in bush crickets [J].The Journal of Experimental Biology,2003,206(6):1035-1049.

    • [35] WEIHMANN T,KARNER M,FULL R J,et al.Jumping kinematics in the wandering spider Cupienniuss alei [J].Journal of Comparative Physiology A,2010,196(6):421-438.

    • [36] ZENTNER L.Modelling and application of the hydraulic spider leg mechanism [M]//Wolfhang N,Spider ecophysiology.Berlin,Heidelberg:Springer,2013:451-462.

    • [37] NABAWY M R A,SIVALINGAM G,GARWOOD R J,et al.Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius [J].Scientific Reports,2018,8:7142.

    • [38] BRANDT E E,SASIHARAN Y,ELIAS D O,et al.Jump takeoff in a small jumping spider [J].Journal of Comparative Physiology A,2021,207(2):153-164.

    • [39] GÖTTLER C,ELFLEIN K,SIEGWART R,et al.Spider origami:folding principle of jumping spider leg joints for bioinspired fluidic actuators [J].Advanced Science,2021,8(5):2003890.

    • [40] CHEN R,YUAN Z A,GUO J L,et al.Legless soft robots capable of rapid,continuous,and steered jumping [J].Nature Communications,2021,12(1):7028.

    • [41] ZONG L,WU J N,YANG P P,et al.Jumping of flea beetles onto inclined platforms [J].Journal of Comparative Physiology A,2023,209(2):253-263.

    • [42] RIBAK G,GISH M,WEIHS D,et al.Adaptive aerial righting during the escape dropping of wingless pea aphids [J].Current Biology,2013,23(3):R102-R103.

    • [43] RIBAK G,DAFNI E,GERLING D.Whiteflies stabilize their take-off with closed wings [J].The Journal of Experimental Biology,2016,219(11):1639-1648.

    • [44] JUSUFI A,GOLDMAN D I,REVZEN S,et al.Active tails enhance arboreal acrobatics in geckos [J].PNAS,2008,105(11):4215-4219.

    • [45] MCCAY M G.Aerodynamic stability and maneuverability of the gliding frog Polypedates dennysi [J].The Journal of Experimental Biology,2001,204(16):2817-2826.

    • [46] SOCHA J J,JAFARI F,MUNK Y,et al.How animals glide:from trajectory to morphology [J].Canadian Journal of Zoology,2015,93(12):901-924.

    • [47] ROBERTS W E.Explosive breeding aggregations and parachuting in a neotropical frog,agalychnis saltator(hylidae)[J].Journal of Herpetology,1994,28(2):193.

    • [48] NAUWELAERTS S,AERTS P.Take-off and landing forces in jumping frogs [J].The Journal of Experimental Biology,2006,209(1):66-77.

    • [49] ZHANG J,YUAN Q F,JIANG Y L,et al.Elytra coupling of the ladybird Coccinella septempunctata functions as an energy absorber in intentional falls [J].Bioinspiration & Biomimetics,2021,16(5):056018.

    • [50] BURROWS M,SUTTON G.Interacting gears synchronize propulsive leg movements in a jumping insect [J].Science,2013,341(6151):1254-1256.

    • [51] LI C,KESSENS C C,FEARING R S,et al.Mechanical principles of dynamic terrestrial self-righting using wings [J].Advanced Robotics,2017,31(17):881-900.

    • [52] LI C,WÖHRL T,LAM H K,et al.Cockroaches use diverse strategies to self-right on the ground [J].The Journal of Experimental Biology,2019,222(Pt 15):jeb186080.

    • [53] ZHANG J,LI J,LI C J,et al.Self-righting physiology of the ladybird beetle Coccinella septempunctata on surfaces with variable roughness [J].Journal of Insect Physiology,2021,130:104202.

    • [54] KARGO W J,NELSON F,ROME L C.Jumping in frogs:assessing the design of the skeletal system by anatomically realistic modeling and forward dynamic simulation [J].The Journal of Experimental Biology,2002,205(Pt 12):1683-1702.

    • [55] RICHARDS C T,PORRO L B,COLLINGS A J.Kinematic control of extreme jump angles in the red-legged running frog,Kassina maculata [J].The Journal of Experimental Biology,2017,220(Pt 10):1894-1904.

    • [56] 莫小娟,葛文杰,赵东来,等.微小型跳跃机器人研究现状综述 [J].机械工程学报,2019,55(15):109-123.MO X J,GE W J,ZHAO D L,et al.Review:research status of miniature jumping robot [J].Journal of Mechanical Engineering,2019,55(15):109-123.(in Chinese)

    • [57] ZHAKYPOV Z,MORI K,HOSODA K,et al.Designing minimal and scalable insect-inspired multi-locomotion millirobots [J].Nature,2019,571(7765):381-386.

    • [58] LAMBRECHT B G A,Horchler A D,Quinn R D.A small,insect-inspired robot that runs and jump [C]//2005 IEEE International Conference on Robotics and Automation,Barcelona,Spain.New York:IEEE,2005:1240-1245.

    • [59] MORREY J M,LAMBRECHT B,HORCHLER A D,et al.Highly mobile and robust small quadruped robots [C]//2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,USA.Piscataway,USA:IEEE,2003:82-87.

    • [60] YAMADA A,WATARI M,MOCHIYAMA H,et al.A Jumping Robot based on the Closed Elastica [C]//2007 International Symposium on Micro-NanoMechatronics and Human Science,Nagoya,Japan.IEEE,2007:604-609.

    • [61] YAMADA A,WATARI M,MOCHIYAMA H,et al.An asymmetric robotic catapult based on the closed elastica for jumping robot [C]//2008 IEEE International Conference on Robotics and Automation,Pasadena,USA.Piscataway,USA:IEEE,2008:232-237.

    • [62] JUNG G P,CASAREZ C S,LEE J,et al.JumpRoACH:a trajectory-adjustable integrated jumping-crawling robot [J].IEEE/ASME Transactions on Mechatronics,2019,24(3):947-958.

    • [63] ASHBY M F.Materials selection in mechanical design,3rd ed [M].Oxford,UK:Butterworth-Heinemann,2005.

    • [64] LONGO S J,COX S M,AZIZI E,et al.Beyond power amplification:latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems [J].The Journal of Experimental Biology,2019,222(15):jeb197889.

    • [65] OLBERDING J P,DEBAN S M,ROSARIO M V,et al.Modeling the determinants of mechanical advantage during jumping:consequences for spring and muscle-driven movement [J].Integrative and Comparative Biology,2019,59(6):1515-1524.

    • [66] NOH M,KIM S W,AN S,et al.Flea-inspired catapult mechanism for miniature jumping robots [J].IEEE Transactions on Robotics,2012,28(5):1007-1018.

    • [67] QIU J,LANG J H,SLOCUM A H.A curved-beam bistable mechanism [J].Journal of Microelectromechanical Systems,2004,13(2):137-146.

    • [68] LI B,JIANG L,MA W T,et al.A switchable dual-mode actuator enabled by bistable structure [J].Advanced Intelligent Systems,2022,4(5):2100188.

    • [69] CHI Y D,LI Y B,ZHAO Y,et al.Bistable and multistable actuators for soft robots:structures,materials,and functionalities [J].Advanced Materials,2022,34(19):2110384.

    • [70] HU N,LI B,BAI R Y,et al.A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots [J].Research,2023,6:0116.

    • [71] HAN J S,MÜLLER C,WALLRABE U,et al.Design,simulation,and fabrication of a quadstable monolithic mechanism with X-and Y-directional bistable curved beams [J].Journal of Mechanical Design,2007,129(11):1198-1203.

    • [72] KOVAC M,FUCHS M,GUIGNARD A,et al.A miniature 7g jumping robot [C]//2008 IEEE International Conference on Robotics and Automation,Pasadena,USA.Piscataway,USA:IEEE,2008:373-378.

    • [73] ZAITSEV V,GVIRSMAN O,BEN HANAN U,et al.A locust-inspired miniature jumping robot [J].Bioinspiration & Biomimetics,2015,10(6):066012.

    • [74] BEN HANAN U,WEISS A,ZAITSEV V.Jumping efficiency of small creatures and its applicability in robotics [J].Procedia Manufacturing,2018,21:243-250.

    • [75] MA Y Q,WEI Y L,KONG D Y.A biologically inspired height-adjustable jumping robot [J].Applied Sciences,2021,11(11):5167.

    • [76] JUNG G P,CHOI H C,CHO K J.The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism.Bioinspiration & Biomimetics,2017,12(2):026006.

    • [77] PAL A,RESTREPO V,GOSWAMI D,et al.Exploiting mechanical instabilities in soft robotics:control,sensing,and actuation [J].Advanced Materials,2021,33(19):2006939.

    • [78] KOH J S,JUNG S P,WOOD R J,et al.A jumping robotic insect based on a torque reversal catapult mechanism [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:3796-3801.

    • [79] JUNG S P,JUNG G P,KOH J S,et al.Fabrication of composite and sheet metal laminated bistable jumping mechanism [J].Journal of Mechanisms and Robotics,2015,7(2):021010.

    • [80] ZHAKYPOV Z,PAIK J.Design methodology for constructing multimaterial origami robots and machines [J].IEEE Transactions on Robotics,2018,34(1):151-165.

    • [81] HALDANE D W,YIM J K,FEARING R S.Repetitive extreme-acceleration(14-g)spatial jumping with Salto-1P [C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,Vancouver,Canada.Piscataway,USA:IEEE,2017:3345-3351.

    • [82] LI B,SUN W J,JIANG L,et al.Research progress of electroactive bistable mechanism and its application in soft robots [J].Journal of Mechanical Engineering,2020,56(19):43.

    • [83] MENG L D,KANG R J,GAN D M,et al.A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism [J].Journal of Mechanisms and Robotics,2020,12(6):061005.

    • [84] CHEN G M.Research on multistable compliant mechanisms:the state of the art [C]//Proceedings of the 9th International Conference on Frontiers of Design and Manufacturing,9th International Conference on Frontiers of Design and Manufacturing,Changsha,China.2010 [2022-12-29].https://web.xidian.edu.cn/gmchen/files/20110919_164310.pdf.

    • [85] WOODWARD M A,SITTI M.MultiMo-Bat:a biologically inspired integrated jumping-gliding robot [J].International Journal of Robotics Research,2014,33(12):1511-1529.

    • [86] WOODWARD M A,SITTI M.Morphological intelligence counters foot slipping in the desert locust and dynamic robots [J].PNAS,2018,115(36):E8358-E8367.

    • [87] WOODWARD M A,SITTI M.Tailored magnetic springs for shape-memory alloy actuated mechanisms in miniature robots [J].IEEE Transactions on Robotics,2019,35(3):589-601.

    • [88] ARMOUR R,PASKINS K,BOWYER A,et al.Jumping robots:a biomimetic solution to locomotion across rough terrain [J].Bioinspiration & Biomimetics,2007,2(3):S65-S82.

    • [89] HU J,NIE Z Z,WANG M,et al.Springtail-inspired light-driven soft jumping robots based on liquid crystal elastomers with monolithic three-leaf panel fold structure [J].Angewandte Chemie International Edition,2023,62(9):e202218227.

    • [90] KOVAĈM,SCHLEGEL M,ZUFFEREY J C,et al.A miniature jumping robot with self-recovery capabilities [C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.St.Louis,USA.Piscataway,USA:IEEE,2009:583-588.

    • [91] TANG L Q,LI Y,LI B.Moobot:a miniature origami omnidirectional jumping robot with high trajectory accuracy [J].IEEE Transactions on Industrial Electronics,2023,99:1-9.

  • 参考文献

    • [1] 柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现 [J].机器人,2014,36(4):385-391.CHAI H,MENG J,RONG X W,et al.Design and implementation of SCalf,an advanced hydraulic quadruped robot [J].Robot,2014,36(4):385-391.(in Chinese)

    • [2] 朱磊磊,陈军.轮式移动机器人研究综述 [J].机床与液压,2009,37(8):242-247.ZHU L L,CHEN J.A review of wheeled mobile robots [J].Machine Tool & Hydraulics,2009,37(8):242-247.(in Chinese)

    • [3] ZHANG Q W,FANG H B,XU J.Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability [J].Frontiers in Robotics and AI,2021,8:738214.

    • [4] TANG C,DU B Y,JIANG S W,et al.A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale [J].Science Robotics,2022,7(66):eabm8597.

    • [5] ZHANG Y F,YANG D Z,YAN P N,et al.Inchworm inspired multimodal soft robots with crawling,climbing,and transitioning locomotion [J].IEEE Transactions on Robotics,2022,38(3):1806-1819.

    • [6] ROMANISHIN J W,GILPIN K,RUS D.M-blocks:momentum-driven,magnetic modular robots [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:4288-4295.

    • [7] SHAH D S,BOOTH J W,BAINES R L,et al.Tensegrity robotics [J].Soft Robotics,2022,9(4):639-656.

    • [8] HEITLER W J.The locust jump [J].Journal of Comparative Physiology,1974,89:93-104.

    • [9] BENNET-CLARK H C.The energetics of the jump of the locust Schistocerca gregaria [J].Journal of Experimental Biology,1975,63(1):53-83.

    • [10] BENNET-CLARK H C,LUCEY E C.The jump of the flea:a study of the energetics and a model of the mechanism [J].The Journal of Experimental Biology,1967,47(1):59-67.

    • [11] SUTTON G P,BURROWS M.Biomechanics of jumping in the flea [J].The Journal of Experimental Biology,2011,214(5):836-847.

    • [12] ILTON M,BHAMLA M S,MA X T,et al.The principles of cascading power limits in small,fast biological and engineered systems [J].Science,2018,360(6387):eaao1082.

    • [13] BURROWS M.Froghopper insects leap to new heights [J].Nature,2003,424:509.

    • [14] BURROWS M.Jumping performance of froghopper insects [J].The Journal of Experimental Biology,2006,209(23):4607-4621.

    • [15] BURROWS M,SHAW S R,SUTTON G P.Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects [J].BMC Biology,2008,6(1):41.

    • [16] EVANS M E G.The jump of the click beetle(Coleoptera:Elateridae)—energetics and mechanics [J].Journal of Zoology,1973,169(2):181-194.

    • [17] BOLMIN O,WEI L H,HAZEL A M,et al.Latching of the click beetle(Coleoptera:Elateridae)thoracic hinge enabled by the morphology and mechanics of conformal structures [J].The Journal of Experimental Biology,2019,222(12):jeb196683.

    • [18] RUAN Y Y,KONSTANTINOV A S,SHI G Y,et al.The jumping mechanism of flea beetles(Coleoptera,Chrysomelidae,Alticini),its application to bionics and preliminary design for a robotic jumping leg [J].ZooKeys,2020,915:87-105.

    • [19] BRACKENBURY J,HUNT H.Jumping in springtails:mechanism and dynamics [J].Journal of Zoology,1993,229(2):217-236.

    • [20] DE LIMA OLIVEIRA F G.On springtails(Hexapoda:Collembola):a morphofunctional study of the jumping apparatus [J].Frontiers in Zoology,2022,19(1):21.

    • [21] ORTEGA-JIMENEZ V M,CHALLITA E J,KIM B,et al.Directional takeoff,aerial righting,and adhesion landing of semiaquatic springtails [J].PNAS,2022,119(46):e2211283119.

    • [22] ROBERTS T J,MARSH R L.Probing the limits to muscle-powered accelerations:lessons from jumping bullfrogs [J].The Journal of Experimental Biology,2003,206(15):2567-2580.

    • [23] ASTLEY H C,ROBERTS T J.The mechanics of elastic loading and recoil in anuran jumping [J].The Journal of Experimental Biology,2014,217(24):4372-4378.

    • [24] HAWKES E W,XIAO C,PELOQUIN R A,et al.Engineered jumpers overcome biological limits via work multiplication [J].Nature,2022,604:657-661.

    • [25] HALDANE D W,PLECNIK M M,YIM J K,et al.Robotic vertical jumping agility via series-elastic power modulation [J].Science Robotics,2016,1(1):eaag2048.

    • [26] KOH J S,YANG E,JUNG G P,et al.Jumping on water:surface tension-dominated jumping of water striders and robotic insects [J].Science,2015,349(6247):517-521.

    • [27] ALVAREZ A V,DEVLIN M R,NACLERIO N D,et al.Jumping on air:design and modeling of latch-mediated,spring-actuated air-jumpers [C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems,Kyoto,Japan.[S.l.]:IEEE,2022:13220-13226.

    • [28] KOVAC M.Bioinspired jumping locomotion for miniature robotics[D].Lausanne,Switzerland:Swiss Federal Institute of Technology in Lausanne,2010.

    • [29] SUTTON G P,MENDOZA E,AZIZI E,et al.Why do large animals never actuate their jumps with latch-mediated springs?because they can jump higher without them [J].Integrative and Comparative Biology,2019,59(6):1609-1618.

    • [30] DIVI S,MA X T,ILTON M,et al.Latch-based control of energy output in spring actuated systems [J].Journal of the Royal Society,Interface,2020,17(168):20200070.

    • [31] MAITLAND D P.Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata [J].Nature,1992,355:159-161.

    • [32] FARLEY G M,WISE M J,HARRISON J S,et al.Adhesive latching and legless leaping in small,worm-like insect larvae [J].The Journal of Experimental Biology,2019,222(15):jeb201129.

    • [33] KOH J S,JUNG S P,NOH M,et al.Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot [C]//2013 IEEE International Conference on Robotics and Automation,Karlsruhe,Germany.Piscataway,USA:IEEE,2013:26-31.

    • [34] BURROWS M,MORRIS O.Jumping and kicking in bush crickets [J].The Journal of Experimental Biology,2003,206(6):1035-1049.

    • [35] WEIHMANN T,KARNER M,FULL R J,et al.Jumping kinematics in the wandering spider Cupienniuss alei [J].Journal of Comparative Physiology A,2010,196(6):421-438.

    • [36] ZENTNER L.Modelling and application of the hydraulic spider leg mechanism [M]//Wolfhang N,Spider ecophysiology.Berlin,Heidelberg:Springer,2013:451-462.

    • [37] NABAWY M R A,SIVALINGAM G,GARWOOD R J,et al.Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius [J].Scientific Reports,2018,8:7142.

    • [38] BRANDT E E,SASIHARAN Y,ELIAS D O,et al.Jump takeoff in a small jumping spider [J].Journal of Comparative Physiology A,2021,207(2):153-164.

    • [39] GÖTTLER C,ELFLEIN K,SIEGWART R,et al.Spider origami:folding principle of jumping spider leg joints for bioinspired fluidic actuators [J].Advanced Science,2021,8(5):2003890.

    • [40] CHEN R,YUAN Z A,GUO J L,et al.Legless soft robots capable of rapid,continuous,and steered jumping [J].Nature Communications,2021,12(1):7028.

    • [41] ZONG L,WU J N,YANG P P,et al.Jumping of flea beetles onto inclined platforms [J].Journal of Comparative Physiology A,2023,209(2):253-263.

    • [42] RIBAK G,GISH M,WEIHS D,et al.Adaptive aerial righting during the escape dropping of wingless pea aphids [J].Current Biology,2013,23(3):R102-R103.

    • [43] RIBAK G,DAFNI E,GERLING D.Whiteflies stabilize their take-off with closed wings [J].The Journal of Experimental Biology,2016,219(11):1639-1648.

    • [44] JUSUFI A,GOLDMAN D I,REVZEN S,et al.Active tails enhance arboreal acrobatics in geckos [J].PNAS,2008,105(11):4215-4219.

    • [45] MCCAY M G.Aerodynamic stability and maneuverability of the gliding frog Polypedates dennysi [J].The Journal of Experimental Biology,2001,204(16):2817-2826.

    • [46] SOCHA J J,JAFARI F,MUNK Y,et al.How animals glide:from trajectory to morphology [J].Canadian Journal of Zoology,2015,93(12):901-924.

    • [47] ROBERTS W E.Explosive breeding aggregations and parachuting in a neotropical frog,agalychnis saltator(hylidae)[J].Journal of Herpetology,1994,28(2):193.

    • [48] NAUWELAERTS S,AERTS P.Take-off and landing forces in jumping frogs [J].The Journal of Experimental Biology,2006,209(1):66-77.

    • [49] ZHANG J,YUAN Q F,JIANG Y L,et al.Elytra coupling of the ladybird Coccinella septempunctata functions as an energy absorber in intentional falls [J].Bioinspiration & Biomimetics,2021,16(5):056018.

    • [50] BURROWS M,SUTTON G.Interacting gears synchronize propulsive leg movements in a jumping insect [J].Science,2013,341(6151):1254-1256.

    • [51] LI C,KESSENS C C,FEARING R S,et al.Mechanical principles of dynamic terrestrial self-righting using wings [J].Advanced Robotics,2017,31(17):881-900.

    • [52] LI C,WÖHRL T,LAM H K,et al.Cockroaches use diverse strategies to self-right on the ground [J].The Journal of Experimental Biology,2019,222(Pt 15):jeb186080.

    • [53] ZHANG J,LI J,LI C J,et al.Self-righting physiology of the ladybird beetle Coccinella septempunctata on surfaces with variable roughness [J].Journal of Insect Physiology,2021,130:104202.

    • [54] KARGO W J,NELSON F,ROME L C.Jumping in frogs:assessing the design of the skeletal system by anatomically realistic modeling and forward dynamic simulation [J].The Journal of Experimental Biology,2002,205(Pt 12):1683-1702.

    • [55] RICHARDS C T,PORRO L B,COLLINGS A J.Kinematic control of extreme jump angles in the red-legged running frog,Kassina maculata [J].The Journal of Experimental Biology,2017,220(Pt 10):1894-1904.

    • [56] 莫小娟,葛文杰,赵东来,等.微小型跳跃机器人研究现状综述 [J].机械工程学报,2019,55(15):109-123.MO X J,GE W J,ZHAO D L,et al.Review:research status of miniature jumping robot [J].Journal of Mechanical Engineering,2019,55(15):109-123.(in Chinese)

    • [57] ZHAKYPOV Z,MORI K,HOSODA K,et al.Designing minimal and scalable insect-inspired multi-locomotion millirobots [J].Nature,2019,571(7765):381-386.

    • [58] LAMBRECHT B G A,Horchler A D,Quinn R D.A small,insect-inspired robot that runs and jump [C]//2005 IEEE International Conference on Robotics and Automation,Barcelona,Spain.New York:IEEE,2005:1240-1245.

    • [59] MORREY J M,LAMBRECHT B,HORCHLER A D,et al.Highly mobile and robust small quadruped robots [C]//2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas,USA.Piscataway,USA:IEEE,2003:82-87.

    • [60] YAMADA A,WATARI M,MOCHIYAMA H,et al.A Jumping Robot based on the Closed Elastica [C]//2007 International Symposium on Micro-NanoMechatronics and Human Science,Nagoya,Japan.IEEE,2007:604-609.

    • [61] YAMADA A,WATARI M,MOCHIYAMA H,et al.An asymmetric robotic catapult based on the closed elastica for jumping robot [C]//2008 IEEE International Conference on Robotics and Automation,Pasadena,USA.Piscataway,USA:IEEE,2008:232-237.

    • [62] JUNG G P,CASAREZ C S,LEE J,et al.JumpRoACH:a trajectory-adjustable integrated jumping-crawling robot [J].IEEE/ASME Transactions on Mechatronics,2019,24(3):947-958.

    • [63] ASHBY M F.Materials selection in mechanical design,3rd ed [M].Oxford,UK:Butterworth-Heinemann,2005.

    • [64] LONGO S J,COX S M,AZIZI E,et al.Beyond power amplification:latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems [J].The Journal of Experimental Biology,2019,222(15):jeb197889.

    • [65] OLBERDING J P,DEBAN S M,ROSARIO M V,et al.Modeling the determinants of mechanical advantage during jumping:consequences for spring and muscle-driven movement [J].Integrative and Comparative Biology,2019,59(6):1515-1524.

    • [66] NOH M,KIM S W,AN S,et al.Flea-inspired catapult mechanism for miniature jumping robots [J].IEEE Transactions on Robotics,2012,28(5):1007-1018.

    • [67] QIU J,LANG J H,SLOCUM A H.A curved-beam bistable mechanism [J].Journal of Microelectromechanical Systems,2004,13(2):137-146.

    • [68] LI B,JIANG L,MA W T,et al.A switchable dual-mode actuator enabled by bistable structure [J].Advanced Intelligent Systems,2022,4(5):2100188.

    • [69] CHI Y D,LI Y B,ZHAO Y,et al.Bistable and multistable actuators for soft robots:structures,materials,and functionalities [J].Advanced Materials,2022,34(19):2110384.

    • [70] HU N,LI B,BAI R Y,et al.A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots [J].Research,2023,6:0116.

    • [71] HAN J S,MÜLLER C,WALLRABE U,et al.Design,simulation,and fabrication of a quadstable monolithic mechanism with X-and Y-directional bistable curved beams [J].Journal of Mechanical Design,2007,129(11):1198-1203.

    • [72] KOVAC M,FUCHS M,GUIGNARD A,et al.A miniature 7g jumping robot [C]//2008 IEEE International Conference on Robotics and Automation,Pasadena,USA.Piscataway,USA:IEEE,2008:373-378.

    • [73] ZAITSEV V,GVIRSMAN O,BEN HANAN U,et al.A locust-inspired miniature jumping robot [J].Bioinspiration & Biomimetics,2015,10(6):066012.

    • [74] BEN HANAN U,WEISS A,ZAITSEV V.Jumping efficiency of small creatures and its applicability in robotics [J].Procedia Manufacturing,2018,21:243-250.

    • [75] MA Y Q,WEI Y L,KONG D Y.A biologically inspired height-adjustable jumping robot [J].Applied Sciences,2021,11(11):5167.

    • [76] JUNG G P,CHOI H C,CHO K J.The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism.Bioinspiration & Biomimetics,2017,12(2):026006.

    • [77] PAL A,RESTREPO V,GOSWAMI D,et al.Exploiting mechanical instabilities in soft robotics:control,sensing,and actuation [J].Advanced Materials,2021,33(19):2006939.

    • [78] KOH J S,JUNG S P,WOOD R J,et al.A jumping robotic insect based on a torque reversal catapult mechanism [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:3796-3801.

    • [79] JUNG S P,JUNG G P,KOH J S,et al.Fabrication of composite and sheet metal laminated bistable jumping mechanism [J].Journal of Mechanisms and Robotics,2015,7(2):021010.

    • [80] ZHAKYPOV Z,PAIK J.Design methodology for constructing multimaterial origami robots and machines [J].IEEE Transactions on Robotics,2018,34(1):151-165.

    • [81] HALDANE D W,YIM J K,FEARING R S.Repetitive extreme-acceleration(14-g)spatial jumping with Salto-1P [C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,Vancouver,Canada.Piscataway,USA:IEEE,2017:3345-3351.

    • [82] LI B,SUN W J,JIANG L,et al.Research progress of electroactive bistable mechanism and its application in soft robots [J].Journal of Mechanical Engineering,2020,56(19):43.

    • [83] MENG L D,KANG R J,GAN D M,et al.A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism [J].Journal of Mechanisms and Robotics,2020,12(6):061005.

    • [84] CHEN G M.Research on multistable compliant mechanisms:the state of the art [C]//Proceedings of the 9th International Conference on Frontiers of Design and Manufacturing,9th International Conference on Frontiers of Design and Manufacturing,Changsha,China.2010 [2022-12-29].https://web.xidian.edu.cn/gmchen/files/20110919_164310.pdf.

    • [85] WOODWARD M A,SITTI M.MultiMo-Bat:a biologically inspired integrated jumping-gliding robot [J].International Journal of Robotics Research,2014,33(12):1511-1529.

    • [86] WOODWARD M A,SITTI M.Morphological intelligence counters foot slipping in the desert locust and dynamic robots [J].PNAS,2018,115(36):E8358-E8367.

    • [87] WOODWARD M A,SITTI M.Tailored magnetic springs for shape-memory alloy actuated mechanisms in miniature robots [J].IEEE Transactions on Robotics,2019,35(3):589-601.

    • [88] ARMOUR R,PASKINS K,BOWYER A,et al.Jumping robots:a biomimetic solution to locomotion across rough terrain [J].Bioinspiration & Biomimetics,2007,2(3):S65-S82.

    • [89] HU J,NIE Z Z,WANG M,et al.Springtail-inspired light-driven soft jumping robots based on liquid crystal elastomers with monolithic three-leaf panel fold structure [J].Angewandte Chemie International Edition,2023,62(9):e202218227.

    • [90] KOVAĈM,SCHLEGEL M,ZUFFEREY J C,et al.A miniature jumping robot with self-recovery capabilities [C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.St.Louis,USA.Piscataway,USA:IEEE,2009:583-588.

    • [91] TANG L Q,LI Y,LI B.Moobot:a miniature origami omnidirectional jumping robot with high trajectory accuracy [J].IEEE Transactions on Industrial Electronics,2023,99:1-9.

  • 微信公众号二维码

    手机版网站二维码