en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

蔡国平,E-mail:caigp@sjtu.edu.cn

中图分类号:O32

文献标识码:A

文章编号:1672-6553-2023-21(12)-022-015

DOI:10.6052/1672-6553-2023-132

参考文献 1
DAN K.Space Servicing:past,present and future [C/OL]//Proceedings of the 6th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2001 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2001/papers/Paper_AM082.pdf.
参考文献 2
XU Y,TAKEO K.Space robotics:dynamics and control [M].Berlin,German:Springer,1992.
参考文献 3
林益明,李大明,王耀兵,等.空间机器人发展现状与思考 [J].航天器工程,2015,24(5):1-7.LIN Y M,LI D M,WANG Y B,et al.Current status and analysis of space robot [J].Spacecraft Engineering,2015,24(5):1-7.(in Chinese)
参考文献 4
张文辉,叶晓平,季晓明,等.国内外空间机器人技术发展综述 [J].飞行力学,2013,31(3):198-202.ZHANG W H,YE X P,JI X M,et al.Development summarizing of space robot technology national and outside [J].Flight Dynamics,2013,31(3):198-202.(in Chinese)
参考文献 5
FLORES-ABAD A,MA O,PHAM K,et al.A review of space robotics technologies for on-orbit servicing [J].Progress in Aerospace Sciences,2014,68:1-26.
参考文献 6
AKIN D,SULLIVAN B.A survey of serviceable spacecraft failures [C]//Proceedings of the AIAA Space 2001 Conference and Exposition,Albuquerque,USA.Reston,USA:AIAA,2001.
参考文献 7
LIOU J C,JOHNSON N L,HILL N M.Controlling the growth of future LEO debris populations with active debris removal [J].Acta Astronautica,2010,66(5/6):648-653.
参考文献 8
LIOU J C,SHOOTS D.The 2006 Geosynchronous(GEO)environment for ORDEM2010 [J].Orbital Debris Quarterly News,2009,13(4):4-6.
参考文献 9
TAFAZOLI M.A study of on-orbit spacecraft failures [J].Acta Astronautica,2009,64(2/3):195-205.
参考文献 10
ELLERY A,KREISEL J,SOMMER B.The case for robotic on-orbit servicing of spacecraft:Spacecraft reliability is a myth [J].Acta Astronautica,2008,63(5-6):632-648.
参考文献 11
SETTELMEYER E,HARTMANN R,LANDZETTEL K.The experimental servicing satellite-ESS [C/OL]//21st International Symposium on Space Technology and Science Conference,1998 [2022-12-29].https://www.esa.int/esapub/pff/pffv7n2/settv7n2.htm.
参考文献 12
徐文福.空间机器人目标捕获的路径规划与实验研究 [D].哈尔滨:哈尔滨工业大学,2007.XU W F.Path planning and experiment study of space robot for target capturing [D].Harbin:Harbin Institute of Technology,2007.(in Chinese)
参考文献 13
梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展 [J].机器人,2012,34(2):242-256.LIANG B,DU X D,LI C,et al.Advances in space robot on-orbit servicing for non-cooperative spacecraft [J].Robot,2012,34(2):242-256.(in Chinese)
参考文献 14
ANDARY J F,SPIDALIERE P D.The development test flight of the flight telerobotic servicer:design description and lessons learned [J].IEEE Transactions on Robotics and Automation,1993,9(5):664-674.
参考文献 15
DAVID L A.Flight-ready robotic servicing for Hubble Space Telescope:a white paper [D].Washington,USA:University of Maryland College Park,2004.
参考文献 16
PARRISH J C.Ranger Telerobotic Flight Experiment:a teleservicing system for on-orbit spacecraft [C]//Proceedings of SPIE-Telemanipulator and Telepresence Technologies III.[S.l.]:SPIE,1996,2901:177-185.
参考文献 17
STARITZ P J,SKAFF S,URMSON C,et al.Skyworker:a robot for assembly,inspection and maintenance of large scale orbital facilities [C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2003:4180-4185.
参考文献 18
ALENIUS L,GUPTA V.Modeling an AERCam:a case study in modeling with concurrent constraint languages [C]//Proceedings of the CP’97 Workshop on Modeling and Computation in the Concurrent Constraint Languages,1998.
参考文献 19
WILLIAMS T,TANYGIN S.On-orbit engineering test of the AERCam sprint robotic camera vehicle [C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting,Monterey,USA,Reston,USA:AIAA,1998.
参考文献 20
PEDERSEN L,KORTENKAMP D,WETTERGREEN D,et al.A survey of space robotics [C/OL]//Proceeding of the 7th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2003 [2022-12-29].https://ntrs.nasa.gov/citations/20030054507.
参考文献 21
LOVCHIK C S,DIFTLER M A.The Robonaut hand:a dexterous robot hand for space [C]//Proceedings 1999 IEEE International Conference on Robotics and Automation,Detroit,USA.Piscataway,USA:IEEE,2002:907-912.
参考文献 22
AKIN D,BOWDEN M.Human-robotic hybrids for deep space EVA:the SCOUT concept [C]//Proceedings of the AIAA Space 2003 Conference & Exposition,Long Beach,California.Reston,USA:AIAA,2003.
参考文献 23
林来兴.美国“轨道快车” 计划中的自主空间交会对接技术 [J].国际太空,2005(2):23-27.
参考文献 24
WHELAN D A,ADLER E A,et al.DARPA Orbital Express program:effecting a revolution in space-based systems [C]//Proceedings of SPIE-Small Payloads in Space.[S.l.]:SPIE,2000.
参考文献 25
FRIEND R B.Orbital Express program summary and mission overview [C]//Proceedings of SPIE-Sensors and Systems for Space Applications II.[S.l.]:SPIE,2008.
参考文献 26
闫海江,范庆玲,康志宇,等.DARPA地球静止轨道机器人项目综述 [J].机器人,2016,38(5):632-640.YAN H J,FAN Q L,KANG Z Y,et al.Review of DARPA’s geostationary earth orbit robotic programs [J].Robot,2016,38(5):632-640.(in Chinese)
参考文献 27
BRANNAN J C,CARIGNAN C R,ROBERTS B J.Hybrid strategy for evaluating on-orbit servicing,assembly,and manufacturing technologies [C]//Proceedings of the ASCEND 2020.Reston,USA:AIAA,2020.
参考文献 28
WU E C,HWANG J C,CHLADEK J T.Fault-tolerant joint development for the Space Shuttle remote manipulator system:analysis and experiment [J].IEEE Transactions on Robotics and Automation,1993,9(5):675-684.
参考文献 29
GIBBS G,SACHDEV S.Canada and the International Space Station program:overview and status [J].Acta Astronautica,2002,51(1-9):591-600.
参考文献 30
STIEBER M E,HUNTER D G,ABRAMOVICI A.Overview of the mobile servicing system for the international space station [C/OL]//Proceedings of the 55th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1999 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas1999/s02-01.pdf.
参考文献 31
COLESHILL E,OSHINOWO L,REMBALA R,et al.Dextre:improving maintenance operations on the International Space Station [J].Acta Astronautica,2009,64(9-10):869-874.
参考文献 32
NOKLEBY S B.Singularity analysis of the Canadarm2 [J].Mechanism and Machine Theory,2007,42(4):442-454.
参考文献 33
XU W F,ZHANG J T,QIAN H H,et al.Identifying the singularity conditions of Canadarm2 based on elementary Jacobian transformation [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:795-800.
参考文献 34
MA O,WANG J G,MISRA S,et al.On the validation of SPDM task verification facility [J].Journal of Robotic Systems,2004,21(5):219-235.
参考文献 35
HWANG J,WU E,BELL A,et al.Design of a SPDM-like robotic manipulator system for Space Station on orbit replaceable unit ground testing-an overview of the system architecture [C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation,San Diego,USA.Los Alamitos,USA:IEEE Computer Society,1994:1286-1291.
参考文献 36
BASSETT D,ABRAMOVICI A.Special purpose dexterous manipulator(SPDM)requirements verification [C/OL]//Proceedings of the 55th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1999 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas1999/s02-02.pdf.
参考文献 37
REIM G.Axiom first commercial customer for canadarm [J].Aerospace Daily & Defense Report,2022,280:6-8.
参考文献 38
HIRZINGER G,BRUNNER B,DIETRICH J,et al.ROTEX-the first remotely controlled robot in space [C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation,San Diego,USA.Los Alamitos,USA:IEEE Computer Society,1994:2604-2611.
参考文献 39
LANDZETTEL K,BRUNNER B,HIRZINGER G.The telerobotic concepts for ESS [C/OL]//IARP Workshop on Space Robotics,1994 [2022-12-29].https://api.semanticscholar.org/CorpusID:17608316.
参考文献 40
LANDZETTEL K,ALBU-SCHÄFFER A,BRUNNER B,et al.ROKVISS verification of advanced light weight robotic joints and telepresence concepts for future space missions [C]//In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation.Noordwijk,The Netherlands:ESTEC,2006.
参考文献 41
ALBU-SCHAFFER A,BERTLEFF W,REBELE B,et al.ROKVISS-robotics component verification on ISS current experimental results on parameter identification [C]//2006 IEEE International Conference on Robotics and Automation,Orlando,USA.Piscataway,USA:IEEE,2006:3879-3885.
参考文献 42
SCHÄFER B,LANDZETTEL K,ALBUSCHÄF-FER A,et al.ROKVISS:orbital testbed for teleoresence experiments,novel robotic components and dynamics models verification [C]//In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation.Noordwijk,The Netherlands:ESTEC,2004.
参考文献 43
CUSUMANO F,LAMPARIELLO R,HIRZING-ER G.Development of tele-operation control for a free-floating robot during the grasping of a tumbling target [C]//IMG04,Intelligent Manipulation and Grasping.Bradford,UK:Emerald Publishing,2004.
参考文献 44
MARTIN E,DUPUIS E,Piedboeuf JC,Doyon M.The TECSAS mission from a Canadian perspective [C]//In Proceedings of the 8th International Symposium on Artificial Intelligence and Robotics and Automation in Space,2005 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2005/session_02b/1_martin_2b.pdf.
参考文献 45
RUPP T,BOGE T,KIEHLING R,SELLMAINER F.Flight dynamics challenges of the german on-orbit servicing mission DEOS [C]//The 21st International Symposium on Space Flight Dynamics.Cologne,Germany:German Aerospace Agency,2009.
参考文献 46
VISENTIN G,BROWN D L.Robotics for geostationary satellite servicing [J].Robotics and Autonomous Systems,1998,23(1/2):45-51.
参考文献 47
BOUMANS R,HEEMSKERK C.The European robotic arm for the international space station [J].Robotics and Autonomous Systems,1998,23(1-2):17-27.
参考文献 48
MENNENGA G.European Robotic Arm:Europe’s grip on the International Space Station [J].Air & Space Europe,1999,1(4):62-63.
参考文献 49
MUGNUOLO R,DI PIPPO S,MAGNANI P G,et al.The SPIDER manipulation system(SMS)The Italian approach to space automation [J].Robotics and Autonomous Systems,1998,23(1-2):79-88.
参考文献 50
BIESBROEK R,AZIZ S,Wolahan A,et al.The ClearSpace-1 mission:ESA and ClearSpace team up to remove debris [C]//8th European Conference on Space Debris.Darmstadt,Germany:ESA Space Debris Office,2021.
参考文献 51
王平.空间自主在轨服务航天器近距离操作运动规划研究 [D].哈尔滨:哈尔滨工业大学,2010.WANG P.Research on short distance motion planning of on-orbit autonomous servicing spacecraft [D].Harbin:Harbin Institute of Technology,2010.(in Chinese)
参考文献 52
NAGATOMO M,WADA K.On the results of the manipulator flight demonstration(MFD)project [R],National Space Development Agency of Japan,1998 [2022-12-29].https://iss.jaxa.jp/shuttle/flight/mfd/pdf/mfdpro_e.pdf.
参考文献 53
KIMURA S,MINENO H,YAMAMOTO H,et al.Preliminary experiments on technologies for satellite orbital maintenance using Micro-LabSat 1 [J].Advanced Robotics,2004,18(2):117-138.
参考文献 54
YOSHIDA K.Engineering test satellite VII flight experiments for space robot dynamics and control:theories on laboratory test beds ten years ago,now in orbit [J].The International Journal of Robotics Research,2003,22(5):321-335.
参考文献 55
ODA M,KIBE K,YAMAGATA F.ETS-VII,space robot in-orbit experiment satellite [C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2002:739-744.
参考文献 56
YOSHIDA K,HASHIZUME K,ABIKO S.Zero reaction maneuver:flight validation with ETS-VII space robot and extension to kinematically redundant arm [C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2006:441-446.
参考文献 57
ODA M.Experiences and lessons learned from the ETS-VII robot satellite [C]//Proceeding of 2000 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2000:914-919.
参考文献 58
MATSUEDA T,KURAOKA K,GOMA K,et al.JEMRMS system design and development status [C]//NTC′91-National Telesystems Conference,Atlanta,USA.Piscataway,USA:IEEE,2002:391-395.
参考文献 59
ABIKO S,YOSHIDA K,SATO Y,et al.Performance improvement of JEMRMS in light of vibration dynamics [C/OL]//The 8th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2005 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2005/session_08b/3_abiko_8b.pdf.
参考文献 60
YAMAMOTO T,MATSUMOTO J,OKAMOTO H,et al.Pave the way for Active Debris Removal Realization:JAXA Commercial Removal of Debris Demonstration(CRD2)[C]//8th European Conference on Space Debris.Darmstadt,Germany:ESA Space Debris Office,2021.
参考文献 61
郭琦,洪炳镕.空间机器人运动控制方法 [M].北京:中国宇航出版社,2010.
参考文献 62
黄献龙,梁斌,陈建新等.EMR系统机器人运动学和工作空间的分析[J].控制工程,2000,(3):1-6+34.
参考文献 63
BOARD S S,BOARD A A S E,et al.Assessment of options for extending the life of the Hubble Space Telescope:final report [M].Washington,USA:National Academies Press,2005
参考文献 64
SHAN M H,GUO J,GILL E.Review and comparison of active space debris capturing and removal methods [J].Progress in Aerospace Sciences,2016,80:18-32.
参考文献 65
KAISER C,SJÖBERG F,DELCURA J M,et al.SMART-OLEV-an orbital life extension vehicle for servicing commercial spacecrafts in GEO [J].Acta Astronautica,2008,63(1-4):400-410.
参考文献 66
ESA.e.Deorbit implementation plan [R].European Space Research and Technology Centre,2015:TEC-SC-TN-2015-007.
参考文献 67
BIESBROEK R,SOARES T,HUSING J.The e.Deorbit CDF study:a design study for the safe removal of a large space debris//64th International Astronautical Congress 2013(IAC 2013).Paris,France:International Astronautical Federation,2013.
参考文献 68
Shan M,Guo J,Gill E.An analysis of critical deployment parameters for tethered-net capturing for space debris removal [C]//66th International Astronautical Congress(IAC 2015).Paris,France:International Astronautical Federation,2015.
参考文献 69
MEDINA A,CERCÓS L,STEFANESCU R M,et al.Validation results of satellite mock-up capturing experiment using nets [J].Acta Astronautica,2017,134:314-332.
参考文献 70
BENVENUTO R,LAVAGNA M.Flexible capture devices for medium to large debris active removal:simulations results to drive experiments [C/OL]//12th Symposium on Advanced Space Technologies in Automation and Robotics,2013 [2022-12-29].https://robotics.estec.esa.int/ASTRA/Astra2013/Papers/Lavagna_2824514.pdf
参考文献 71
BENVENUTO R,PESCE V,LAVAGNA M,et al.3D reconstruction of a space debris capturing net trajectory during microgravity experiments-results and lesson learnt [C]//67th International Astronautical Congress(IAC 2016).Paris,France:International Astronautical Federation,2016.
参考文献 72
FORSHAW J L,AGLIETTI G S,NAVARATHINAM N,et al.RemoveDEBRIS:an in-orbit active debris removal demonstration mission [J].Acta Astronautica,2016,127:448-463.
参考文献 73
FORSHAW J L,AGLIETTI G S,FELLOWES S,et al.The active space debris removal mission Remove Debris.Part 1:from concept to launch [J].Acta Astronautica,2020,168:293-309.
参考文献 74
AGLIETTI G S,TAYLOR B,FELLOWES S,et al.The active space debris removal mission Remove Debris.Part 2:in orbit operations [J].Acta Astronautica,2020,168:310-322.
参考文献 75
DUDZIAK R,TUTTLE S,BARRACLOUGH S.Harpoon technology development for the active removal of space debris [J].Advances in Space Research,2015,56(3):509-527.
参考文献 76
FORSHAW J,AGLIETTI G,NAVARATHINAM N,et al.An in-orbit active debris removal mission-REMOVEDEBRIS:Pre-Launch update [C]//66th International Astronautical Congress(IAC 2015).Paris,France:International Astronautical Federation,2015.
参考文献 77
FORSHAW J L,AGLIETTI G S,SALMON T,et al.Final payload test results for the RemoveDebris active debris removal mission [J].Acta Astronautica,2017,138:326-342.
参考文献 78
REED J,BARRACLOUGH S.Development of harpoon system for capturing space debris [C]//6th European Conference on Space Debris.[S.l.]:ESA,2013.
参考文献 79
WAYMAN A,RACTCLIFFE A,BARRACLOU-GH S,et al.Design and testing of a full scale harpoon capture system [C]//Proceedings of the 7th European Space Debris Conference.Darmstadt,Germany:ESA Space Debris Office,2017.
参考文献 80
孟中杰,黄攀峰.空间绳系机器人飞行控制技术[M].北京:中国宇航出版社,2018.
参考文献 81
王东科.空间绳系机器人目标抓捕及抓捕后稳定控制方法研究 [D].西安:西北工业大学,2015.WANG D K.Stabilization for tethered space robot during target capture and post-capture phase [D].Xi’an:Northwestern Polytechnical University,2015.(in Chinese)
参考文献 82
蔡国平,刘晓峰,刘元卿.空间机器人捕获动力学与控制 [M].北京:科学出版社,2022.CAI G P,LIU X F,LIU Y Q.Capture dynamics and control of space robot [M].Beijing:Science Press,2022.(in Chinese)
参考文献 83
WANG Q S,LI P,LEI T,et al.A fuel optimization method for the pursuer in the spacecraft pursuit-evasion game [J].Journal of Computational and Nonlinear Dynamics,2022,17(7):071002.
参考文献 84
WANG Q S,LI P,LEI T,et al.A Dimension-reduction method for the finite-horizon spacecraft pursuit-evasion game [J].Journal of Industrial and Management Optimization,2023,19(3):1983-1998.
参考文献 85
WANG Q S,CAI G P.Pose estimation of a fast tumbling space noncooperative target using the time-of-flight camera [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2021,235(16):2529-2546.
参考文献 86
WANG Q S,LEI T,LIU X F,et al.Pose estimation of non-cooperative target coated with MLI [J].IEEE Access,1809,7:153958-153968.
参考文献 87
LEI T,LIU X F,CAI G P,et al.Pose estimation of a noncooperative target based on monocular visual SLAM [J].International Journal of Aerospace Engineering,2019,2019:9086891.
参考文献 88
WANG Q S,ZHOU B Z,LIU X F,et al.Motion prediction of a free-floating noncooperative target considering J2 perturbation [J].Journal of Computational and Nonlinear Dynamics,2021,16(5):051001.
参考文献 89
ZHOU B Z,LIU X F,CAI G P,et al.Motion prediction of an uncontrolled space target [J].Advances in Space Research,2019,63(1):496-511.
参考文献 90
ZHOU B Z,CAI G P,LIU Y M,et al.Motion prediction of a non-cooperative space target [J].Advances in Space Research,2018,61(1):207-222.
参考文献 91
ZHOU B Z,LIU X F,CAI G P.Motion-planning and pose-tracking based rendezvous and docking with a tumbling target [J].Advances in Space Research,2020,65(4):1139-1157.
参考文献 92
ZHOU B Z,LIU X F,CAI G P.Robust adaptive position and attitude-tracking controller for satellite proximity operations [J].Acta Astronautica,2020,167:135-145.
参考文献 93
LIU Y Q,LIU X F,CAI G P,et al.Attitude evolution of a dual-liquid-filled spacecraft with internal energy dissipation [J].Nonlinear Dynamics,2020,99(3):2251-2263.
参考文献 94
LIU Y Q,YU Z W,LIU X F,et al.Active detumbling technology for high dynamic non-cooperative space targets [J].Multibody System Dynamics,2019,47(1):21-41.
参考文献 95
LIU Y Q,YU Z W,LIU X F,et al.Active detumbling technology for noncooperative space target with energy dissipation [J].Advances in Space Research,2019,63(5):1813-1823.
参考文献 96
Liu Y Q,Liu X F,Cai G P,et al.Detumbling a non-cooperative tumbling target using a low-thrust device [J].AIAA Journal,2022,60(5):2718-2729.
参考文献 97
陈霈然,张晓龙,刘晓峰,等.基于点云的空间非合作目标结构识别问题研究 [J].上海航天(中英文),2022,39(4):128-138.CHEN P R,ZHANG X L,LIU X F,et al.Research on structure recognition of spatial non-cooperative objects based on point cloud data [J].Aerospace Shanghai(Chinese & English),2022,39(4):128-138.(in Chinese)
参考文献 98
YU Z W,LIU X F,LI H Q,et al.Dynamics and control of a 6-DOF space robot with flexible panels [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(6):1022-1034.
参考文献 99
ZHOU Q,LIU X F,CAI G P.Base attitude disturbance minimizing trajectory planning for a dual-arm space robot [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2022,236(4):704-721.
参考文献 100
LIU Y Q,LIU X F,CAI,G P,et al.Two-stage trajectory planning for autonomous deployment and target capture of space manipulators [J].Journal of Guidance,Control and Dynamics,2023,46(6):1219-1227.
参考文献 101
ZHANG Q,LIU X F,CAI G P.Dynamics and control of a flexible-link flexible-joint space robot with joint friction [J].International Journal of Aeronautical and Space Sciences,2021,22(2):415-432.
参考文献 102
LIU X F,LI H Q,CHEN Y J,et al.Dynamics and control of space robot considering joint friction [J].Acta Astronautica,2015,111:1-18.
参考文献 103
LIU X F,LI H Q,WANG J S,et al.Dynamics analysis of flexible space robot with joint friction [J].Aerospace Science and Technology,2015,47:164-176.
参考文献 104
Yu Z W,Cai G P.Dynamics modeling and fault tolerant control of a 6-DOF space robot with flexible panels [J].International Journal of Robotics and Automation,2018,33:662-671.
参考文献 105
ZHANG X Y,LIU X F,WANG M M,et al.A new strategy for capturing a noncooperative spacecraft by a robotic arm [J].Multibody System Dynamics,2023,59(2):143-169.
参考文献 106
LIU X F,ZHANG X Y,CAI G P,et al.Capturing a space target using a flexible space robot [J].Applied Sciences,2022,12(3):984.
参考文献 107
LIU X F,ZHANG X Y,CAI G P,et al.A collision control strategy for detumbling a non-cooperative spacecraft by a robotic arm [J].Multibody System Dynamics,2021,53(3):225-255.
参考文献 108
LIU X F,CAI G P,WANG M M,et al.Contact control for grasping a non-cooperative satellite by a space robot [J].Multibody System Dynamics,2020,50(2):119-141.
参考文献 109
LIU X F,ZHANG X Y,CHEN P C,et al.Hybrid control scheme for grasping a non-cooperative tumbling satellite [J].IEEE Access,2020,8:54963-54978.
参考文献 110
LIU X F,LI H Q,CHEN Y J,et al.Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm [J].Multibody System Dynamics,2015,33(3):315-332.
参考文献 111
YU Z W,LIU X F,CAI G P.Dynamics modeling and control of a 6-DOF space robot with flexible panels for capturing a free floating target [J].Acta Astronautica,2016,128:560-572.
参考文献 112
LIU X F,ZHANG X Y,CHEN P R,et al.Inertia parameter identification for an unknown satellite in precapture scenario [J].International Journal of Aerospace Engineering,2020,2020:7521434.
参考文献 113
LIU X F,ZHOU B Z,XIAO B Y,et al.Inertia parameter identification of anunknown captured space target [J].Aircraft Engineering and Aerospace Technology,2019,91(8):1147-1155.
参考文献 114
LIU Y Q,LIU X F,CAI G P.Detumbling a flexible tumbling target using a space robot in post-capture phase [J].The Journal of the Astronautical Sciences,2022,69(4):1048-1075.
参考文献 115
LIU Y Q,LIU X F,CAI G P,et al.Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase [J].Multibody System Dynamics,2021,52(3):281-311.
目录contents

    摘要

    空间目标的在轨捕获是航天器在轨服务的重要内容,无论是太空碎片清理还是对航天器进行维修等,都首先需要解决捕获这个极具挑战性的问题.本文对空间机器人捕获空间目标的动力学与控制问题进行综述,首先介绍国内外主要的空间机器人计划,然后介绍捕获前、捕获中、捕获后三个阶段的动力学与控制问题,寄望于本文内容能够对从事空间机器人技术研究的学者有所裨益.

    Abstract

    In-orbit capture of space objects is a crucial aspect of spacecraft servicing, whether it involves space debris removal or spacecraft maintenance. The challenging task of capturing objects in space is the primary focus of this article. This paper provides a comprehensive review of the dynamics and control issues related to space robot capture. It begins by introducing major space robot programs both domestically and internationally. Subsequently, it delves into the dynamics and control problems during the pre-capture, mid-capture, and post-capture phases. It is hoped that the content of this article will be beneficial to scholars engaged in space robot technology research.

  • 引言

  • 随着人类对外太空探索的逐渐深入,空间领域相关技术引起了人们的更多关注,它不仅是一个国家荣誉的象征,也是一个国家科技水平的标志,它的发展关系着未来空间资源利用以及国家空间安全等重大问题.

  • 由于太空环境的强辐射、微重力、大温差、高真空等特点,宇航员在太空的活动存在着很多威胁和困难,空间机器人便成为代替宇航员完成太空任务的重要选择之一[12].空间机器人具有如下优势与特点[3]:(1)不需要考虑维持人类生命的生态系统,(2)可以大幅度提升空间环境的适应能力,(3)可以长时间地在太空中执行任务,(4)能够降低成本和提高空间任务的效率,(5)能够完成很多情况下人类无法胜任的高精度、高可靠度的操作任务.正是由于空间机器人所具有的诸多优势,各个航天技术大国都在大力开展空间机器人相关技术的研究.

  • 空间机器人主要是由航天器的本体及装载在本体上的机械臂所构成,主要用于太空垃圾清除、空间站建造及维护、航天器组装与维修、空间探测、空间攻防以及太空实验等[34],以空间机器人为核心的在轨服务技术逐渐成为当下空间技术发展和应用的热点之一[5].以下从四方面简略阐述空间机器人的用途.

  • 太空垃圾清理.随着空间技术的不断发展,人类向太空中发射的航天器数量也在不断增多,太空垃圾数量呈现出爆发式增长.太空垃圾包括达到使用年限而报废或失效失控的人造卫星、火箭末级、箭星分离所产生的碎片、太空中漂浮的废弃物相互撞击所产生的小碎片等.世界各国目前每年发射的航天器的数量大约是80~130颗,其中约有2%的航天器没有成功进入指定轨道,并且有8%左右的航天器在进入指定轨道后一个月后就发生失效[6].据估计,在太空中环绕地球飞行、长度大于10 cm的各种太空垃圾的数量不少于21000件.这些太空垃圾长期占据着有限的轨道资源,对正常在轨运转的航天器带来严重威胁,如何清理太空垃圾已成为人们关注的热点问题[78],利用空间机器人来对太空垃圾进行捕获、然后将其拉进坟墓轨道或者将其拉至更低轨道进入大气层销毁,是太空垃圾治理的重要手段之一.

  • 在轨修理维护与燃料添加.卫星从研制、生产、及在轨使用等整个过程的投入是巨大的.卫星在发射之前都经过了周密设计,并且充分考虑了各种可能会导致卫星失效的因素.但是由于太空环境的恶劣等因素,有些卫星在未到达设计寿命时就发生故障[910].另一方面,卫星所能携带的燃料有限,太阳能设备也存在着使用寿命,当燃料耗尽或者太阳能设备使用寿命到期后,卫星成为了“废星”.利用空间机器人则可以对卫星进行维修与添加燃料,使其重新正常工作.

  • 失效卫星再利用.卫星发射升空后有可能出现太阳翼无法正常展开,也有可能出现通讯设施无法对地正常通讯等问题,从而导致卫星失效[1112].1997年6月,价值4.74亿美元、原本设计寿命3年的日本Adeos卫星在工作一年后,由于太阳翼故障而导致卫星完全失效,它是日本公开的已发射的最大和最复杂的卫星之一.2006年10月,西昌卫星发射中心发射的“鑫诺二号”通信广播卫星由于太阳能帆板和收发信号的天线没能成功展开,导致这颗耗费20亿元的卫星失效.以上这些问题可以利用空间机器人而得以解决,相比再次发射新卫星可以大大节约成本.

  • 空间军事攻防[13].由于空间技术的飞速发展,军用卫星也在不断涌现,使得现代战争发生了巨大变革.军事力量对通信、气象、导航及定位等有着绝对依赖,可以讲空间技术能够决定现代战争的成败.如何削弱敌方空间设备的能力、保证己方空间设备的安全和正常工作,是未来战争的一个重要课题,利用空间机器人技术来提升空间攻防的能力是其中的焦点之一.

  • 1 国内外空间机器人发展概况

  • 近几十年来,空间机器人技术得了迅速发展,取得了很多成果,以下对各个航天大国的主要空间机器人计划做一简介.

  • 1.1 美国

  • 早在20世纪80年代,美国就已逐步着手空间机器人相关项目的科研工作,他们的主要项目包含如下,项目示意图如图1所示.

  • (1)FTS项目(Flight Telerobotic Service-FTS)[14].FTS是1986年由NASA主导发起的,它是美国最早的空间机器人项目,原定于1993年对项目中的DTF-1空间机器人进行测试飞行实验,以评估机器人系统在太空中的性能.它的主要目标是把机器人带出实验室而将其应用于恶劣的太空中环境,使其朝着自主的方向发展,从而替代宇航员完成在轨任务.虽然该项目于1991年被取消了,但是DTF-1空间机器人的设计已经基本结束,并且完成了机器人末端执行机构的制作.此外,该项目在各阶段相关飞行硬件方面的研究也取得了一些成果.

  • (2)RTFX项目(Ranger Telerobotic Flight Experiment-RTFX)[1516].该项目开始于1992年,计划于1998年从地球低轨道上的航天飞机上发射,主要目的是验证空间遥操作机器人对航天器的各种服务功能,为将来执行对近地轨道上航天器的在轨任务做准备.项目中的机器人是高度先进的,并且在太空环境中具有自由飞行能力.

  • 图1 美国空间机器人项目示意图

  • Fig.1 Schematic diagram of the US space robot project

  • (3)Skyworker项目[17].Skyworker是由Carnegie Mellon大学自主研制的,主要用于大规模有效载荷的运输和装配任务,它是一个具有11个自由度的可移动空间机器人.

  • (4)AERCam项目(The Autonomous Extravehicular Activity Robotic Camera-AERCam)[18].AERCam是一个沙滩球大小、具有6个自由度的摄像机器人,主要用来对空间站和航天飞机内外部进行观察,从而帮助宇航员完成空间在轨任务.它是由美国NASA约翰逊航天中心设计开发的,机器人的半径为14 cm,总重为15.33 Kg,其中带有重为0.544 Kg的燃料.上面装有用来传送视频流到电脑和地面的两个摄像机、12个小型氮气动力推进器和航电设备.1997年12月,AERCam进行了在轨测试,由舱外宇航员手动释放后飞行了约30分钟,由舱内宇航员对它进行操纵拍摄图片并回传相关数据[19].

  • (5)Robonaut项目[2021].Robonaut是由美国NASA约翰逊航天中心研制的,是一款用来取代航天员完成舱段外工作的空间机器人.Robonaut在外形和运动能力上基本与人类的上半身一样,主要包含头部、躯体和手臂等部分,它能够使用多种工具完成大量复杂的操作.

  • (6)SCOUT项目(Space Construction and Orbital Utility Transport-SCOUT)[22].由于现有的EVA(extravehicular activity)压力服系统对太阳辐射和空间辐射的防护有限而不能满足在深空环境中的使用,同时为了在舱外活动中最大程度地利用人类灵活的手工操作,美国Maryland大学在结合压力服系统设计、航天器技术及机器人服务系统的基础上,开发了SCOUT系统,该系统的高、宽及深分别约为2 m、1.5 m和2 m,可为宇航员在太空作业中提供良好的工作环境.

  • (7)“轨道快车”项目[2324].该项目是由美国国防部高级研究计划局在1999年提出的,主要是为了检验航天器在轨操作的一些相关核心技术,主要包括:短程及远程自动交汇对接技术,捕捉及停靠,太空中的电力电子设备升级和在轨加注燃料等.2007年3月8日成功发射了轨道快车项目相关的航天器,2007年7月22日实现了所有在轨项目的演示[25].

  • (8)“凤凰(Phoenix)”计划项目[26].该计划是由美国国防部高级研究计划局于2011年发起的,整个系统由服务星(空间机器人)、细胞星(Satlet)和在轨投送设备(POD)三部分组成.主要任务是通过空间机器人将商业卫星上弹出的Satlet和POD捕获后存放起来,然后携带它们至目标星附近并捕获目标星,最后通过POD的相关工具将Satlet安装在目标星上并激活.

  • (9)“在轨服务、装配与维修(On-Orbit Servicing,Assembly and Manufacturing-OSAM)”计划项目[27].该项目是由美国航天局于2020年发起的,计划于发射两个在轨服务卫星,分别是OSAM-1与OSAM-2.OSAM-1卫星计划于2025年后发射,旨在使用机械臂为Landsat 7地球成像卫星进行轨道捕获与燃料加注工作,完成主要任务后,由麦克萨科技公司(Maxar Technologies)制造的空间基础设施灵巧机器人(Space Infrastructure Dexterous Robot,SPIDER)进行在轨组装与制造任务.OSAM-2卫星预计不早于2024年发射,正在开发与OSAM-1任务互补的技术.该卫星将在轨道上建造并部署一个替代太阳能电池阵列.在轨准备就绪后,OSAM-2将3D打印一个从航天器一侧延伸10米的横梁,完成后将来到航天器的另一侧打印一个延伸6米的横梁.

  • 1.2 加拿大

  • (1)加拿大SRMS(Shuttle Remote Manipulator System-SRMS)[28].SRMS是由加拿大MD Robotic公司于1981年开发的,也是全球上首个成功应用的远程遥操控的空间机械臂,主要用于航天飞机检查维修、操纵以及在轨构筑和组装等在轨任务,目前已经成功完成了几十个航天飞行器上的任务.它由上臂和下臂、终端执行机构和位于航天飞行器终端甲板上的控制台所组成,机械臂的总长为50英寸,包含有6个可以实现转动和平移运动的关节.

  • (2)加拿大MSS(Mobile Serving System-MSS)[29].在SRMS的基础上,MD Robotic公司又研制了在空间站上使用的远程遥操控的机器人系统.该系统主要由移动本体[3031](Mobile Base System-MBS)、空间站远程遥操控机械臂系统[3233](Space Station Remote Manipulator System-SSRMS)和专用灵巧机械手[34-36](Special Purpose Dexterous Manipulator-SPDM)三部分组成.其中,MBS相当于整个系统的基座,系统运行的能源由它来提供;SSRMS主要用来搬运和组装大型物件,它由总共有7个自由度的两臂杆所组成;SPDM可以执行一些更加复杂和精细的任务.

  • (3)加拿大机械臂3号(Canadarm3)[37].Canadarm3是加拿大航天局为美国月球空间站设计的空间机械臂系统,其一个8.5m长的机械臂、一个灵巧机械臂和一套在轨替换单元构成,主要用于完成空间站的维护、修理和检查、访问飞船的捕获、航天员的太空行走辅助以及科学实验.

  • 图2 加拿大空间机器人项目示意图

  • Fig.2 Schematic diagram of Canadian space robot project

  • 1.3 欧洲

  • 欧洲的德国、欧空局、俄罗斯及意大利等国家针对空间机器人技术都进行了研究和实验,相关项目如下所述,项目示意图如图3所示.

  • 图3 欧州空间机器人项目示意图

  • Fig.3 Schematic diagram of European space robot project

  • (1)德国ROTEX项目(Robotic Technology Experiment-ROTEX)[38].该项目发起于1986年,并在1993年从哥伦比亚航天飞机上成功发射,进行了结构组装、连接/断开开关动作及捕获空间漂浮目标等实验,并在多传感器融合的夹持技术及遥操作的延时补偿技术等方面取得了重大成果.ROTEX使用了一个小型6轴的空间机器人(太空中第一个遥操作机器人),抓手上安装有很多的传感器,包含两个6轴的腕关节力(力和力矩)传感设备、触觉阵列、一组9个激光测距仪设备和一个小型的深度摄像机等.

  • (2)德国ESS项目(Experimental Servicing Satellite-ESS)[39].该项目的主要目的是以GEO轨道上TV-Sat1为服务对象,利用服务星验证ROTEX中的遥操作思想在目标星检测、接近、抓取、停泊、维修及释放等操作的应用.

  • (3)德国ROKVISS项目(Robot Komponent Verification on ISS-ROKVISS)[40-42].2002年DLR(German Space Center)发起了ROKVISS项目,并于2004年随俄罗斯进步号宇宙飞船升空,2005年实现了在国际空间站的俄罗斯舱段上的装配,它主要是为了验证模块化轻型机器人关节在实际外太空条件下的性能、持续时间下的动力学和摩擦行为、以及远程遥操作监控方法的可行性.ROKVISS中包含一个两关节力控的小型机器人、一个控制器、一个深度相机、一套光照系统、一个地球探测相机、一套电力能源设备以及其他用于机器人性能验证的相关装置.

  • (4)德国TECSAS项目(Technology Satellites for demonstration and verification of Space systems-TECSAS)[4344].该项目是由德国于2003年发起、加拿大参与的,整个项目由德国安装有7个自由度的服务卫星和加拿大的客户端卫星构成,主要目标是验证远程汇合、近距离交汇、绕飞观察、捕获合作与非合作目标、稳定组合体和辨识被捕获目标、组合体的机动飞行、分离目标星和编队分行等.

  • (5)德国DEOS项目(Deutsche Orbitale Servicing Mission-DEOS)[45].TECSAS项目在2006年被中止后,DLR后续又发起了DEOS项目.DEOS同样包含服务和客户端两颗卫星,他们同时被发射到初始轨道.DEOS的主要任务包括利用服务星的机械臂捕获翻滚非合作客户端卫星和捕获后组合体再入预先定义的轨道.

  • (6)欧空局GSV项目(Geostationary Service Vehicle-GSV)[46].GSV项目是于1990年发起的,它本质上是一带有机器人系统的服务航天器.它在发射后,一直处在静止轨道上直到生命期结束,一旦有任务时才会被激活并去执行任务.GSV的主要任务是针对地球静止轨道的卫星进行在轨操作,包括近距离对问题卫星进行观测检查及维修、将失效卫星拖入坟墓轨道等.

  • (7)欧空局ERA项目(European Robotic Arm-ERA)[4748].该项目是由欧空局与俄罗斯航天局共同合作主导的,主要用于国际空间站俄罗斯舱段的装配和维修等任务.ERA是一个长11 m、结构完全对称的7关节机械系统.

  • (8)意大利SPIDER项目(SPIDER manipulator System-SMS)[49].SPIDER项目是一个由意大利航天局(ISA)主导的在空间机器人领域长久的战略性项目,项目中设计了用于轨道附近执行检查和修理任务、并且具有7个旋转自由度的高度自治自由漂浮空间机器人.

  • (9)欧空局“主动碎片清除/在轨服务”项目(Active Debris Removal/ In-Orbit Servicing-ADRIOS)[50].2020年,欧空局将第一个ADRIOS任务分配给Clear Space公司,该公司是一家由洛桑联邦理工学院(EPFL)研究人员成立的初创公司.在第一个ADRIOS任务中,Clear Space公司计划发射一颗名为“清洁太空”一号(ClearSpace-1)的航天器.ClearSpace-1将是欧洲首个实用性空间碎片主动清除系统,这是2012年ESA“欧洲离轨”(e.Deorbit)任务的延续,计划在2025年发射,通过其四重机械臂进行在处置轨道上进行一个太空垃圾的捕获与销毁任务.

  • 1.4 日本

  • 日本在空间机器人领域的研究工作始于上世纪80年代,是首先倡导在轨自主服务技术的国家之一[51],并在这个领域取得了重大成就,主要项目如下所述,,项目示意图如图4所示.

  • (1)MFD项目(Manipulator Flight Demonstration-MFD)[52].MFD是日本首个与空间机器人相关的试验项目.它作为NASA肯尼迪航天中心(KSC)sts-85 其中的一个任务,于1997年从“发现号”航天飞机上成功发射,并进行了在轨实验.MFD整个系统主要由空间的机载设备和地面的操控系统构成,该项目主要用于评价和估计空间环境对材料性能退化的影响、收集宇宙尘埃、两相流体循环实验的热控技术、评定在空间微小重力条件下机械臂系统的各种性能、评定机械臂控制系统的人机接口性能、以及验证机械臂对ORU的调试装卸等.

  • (2)OMS项目(Orbital Maintenance System-OMS)[53].日本通信研究实验室(CRL)于2004年提出了在轨执行监控测量、修理和清除等任务的轨道维护项目OMS,并且为其开发了一套可以实现各种图像处理功能的机械臂模块,该项目的首要任务是能够自主识别并实现与目标航天器的交汇对接.

  • (3)ETS-VII(Engineering Test Satellite VII-ETS-VII)[54].1997年11月28号,日本宇航局(NASDA)成功发射世界上第一颗使用了机械臂系统的卫星.ETS-VII由质量为2.5 t的追踪星和质量为0.4 t的目标星所组成,其中机械臂机构安装在追踪星上,长度为2 m,有6个旋转自由度,在末端执行机构上和第一个关节上配置有摄像设备.ETS-VII的主要任务是验证自主交会对接等在轨关键技术[55-57].

  • (4)JEMRMS(Japanese Experiment Module Remote Manipulator System-JEMRMS)[58].JEMRMS是日本宇航局为国际空间站中日本实验舱段设计的遥操作机器人系统.该系统主要由主臂杆(MA)和小臂杆(SFA)所构成,其中主臂(MA)安装在舱段PM上,它有9.8 m长,420 Kg,6个自由度,主要用来传递、取回及停泊有效载荷[59];小臂(SFA)初始时放在外部设备EF上备用,使用时就安装在主臂终端上,它有1.6 m长,1100 Kg,也是6个自由度,主要用来完成一些比较精细的工作,如天线安装等.

  • (5)CDR2项目(Commercial Removal of Debris Demonstration)[60].CDR2是日本宇航局主导空间碎片移除任务,目前东京宇宙尺度公司(Astroscale)来发射一颗卫星; 对一台废弃的日本火箭上面级进行检查,从而为后续清理任务铺路.合同要求该公司在2023年前完成这项检查任务.若能再拿到JAXA"商业碎片清理验证"(CRD)2计划下的一项后续合同,宇宙尺度公司将需要在2026年3月31日前把这台废弃上面级清出轨道.

  • 图4 日本空间机器人项目示意图

  • Fig.4 Schematic diagram of Japanese space robot project

  • 1.5 中国

  • 我国在空间机器人技术方面的探索研究工作起步比较晚,直到上世纪八十年代末才开始了空间机器人的相关项目.到目前为止,国内的一些研究所和高校已经对空间机器人技术的许多基础问题进行了研究,在一些关键技术上也取得了突破[61],其中“舱外自由移动空间机器人的地面模拟演示系统”(EMR系统)是这些研究当中影响力比较大的.EMR系统包括重力抵消系统、可以实现走动和操控运动的机构、及可以模拟舱内外环境的机器人作业平台[62].近年来,在众多空间需求的引导下,比如空间站建设、在轨维护、空间碎片清除、月球/火星/小行星探测、空间太阳能电站的建设等,我国空间机器人及空间人工智能技术也在蓬勃的发展,并在在轨服务、空间组装与生产、月球与深空勘探等方面也获得了一系列的成绩.嫦娥三号的成功发射实现了“玉兔”号月球车对月面的勘探计划,火星表面巡视监测机器人也在积极地进行研制,一系列航天器的在轨能源补给关键技术也获得了重大突破.2022年,美媒体证实我国与2021年发生实践二十一号卫星在1月22日成功捕获了失效的北斗2号G2卫星,1月26日将其拖到“墓地轨道”后,自己又回到了地球静止轨道(GEO).自此,中国的“空间碎片减缓技术”实验取得圆满成功.

  • 2 空间非合作目标抓捕措施

  • 在轨服务任务中,被捕获目标可以分为两类:合作目标,非合作目标.合作目标具有合作性,是指目标可以向服务机器人传递相对运动信息,或向服务航天器提供便于进行交会对接等操作的条件.这类航天器通常安装有用于测量的特征表示和机械臂抓持或对接的装置.相对而言,非合作目标是指那些无法向服务机器人提供相对状态信息、而且交互对接所需信息都未知的目标.美国空间研究委员会(SSB)、航空与空间工程局(ASEB)在哈勃望远镜修复计划的评估报告中曾这样定义过非合作目标的概念[63]:“非合作目标是指那些没有安装通讯应答机或其它主动传感器的空间目标,其它航天器不能通过电子讯问或发射信号等方式实现对此类目标的识别或定位”.非合作目标不能向服务航天器提供有效的信息,这就给交互测量、抓捕和对接等操作带来了极大的挑战.如何在没有合作信息的情况下对目标进行识别、测量和抓捕便成为了非合作在轨服务的一项关键技术,同时也是任务中面临的难点技术.目前各国实际在轨运行的航天器和在研型号,并没有专门设计用于接受在轨服务的抓捕手柄和测量标志器(发光标识器或角反射镜),即是非合作的,因此基于合作目标的在轨服务技术无法用于此类目标.

  • 在轨捕获技术是航天高技术领域中的一项极具前瞻性和挑战性的课题,同时也具有极高的军民两用双重价值.美国宇航局(NASA)、欧洲航天局(ESA)以及日本NASDA等航天科研机构都对该技术表现出了高度关注,国内哈尔滨工业大学、清华大学、上海交通大学、北京理工大学、南京航空航天大学、西北工业大学、北京邮电大学、福州大学、中国空间技术研究院和上海航天技术研究院等单位也对相关技术进行了长期研究.在国内外学者的共同努力下,相关研究已经取得了不错的研究进展,并提出了多种行之有效的捕获方法.如图5所示,这些捕获方法可分为:刚性连接捕获和柔性连接捕获.刚性连接捕获方法主要指利用直接利用机械臂和其末端的刚性适配器来完成非合作目标捕获的方法[64].该类方法主要针对各类非合作航天器,且要求目标具有星箭对接环或卫星发动机喷管等结构[65-67].相对柔性连接捕获方法,其在技术成熟度、可控性和重复使用性上具有一定优势.不过由于该类方法所采用的末端执行器往往具有较高的刚度,因此当末端执行器与目标发生接触碰撞后存在接触分离和损伤目标结构的风险.柔性连接捕获方法主要指利用飞网[68-74]、鱼叉[75-79]、飞爪[8081]等来完成非合作目标捕获的方法.由于柔性连接捕获方法不再要求目标上具有特殊机构,因此该类方法具有通用性更高的优点.不过相对第一类捕获方法,该类方法的可重复使用性较低.另外,由于柔性连接捕获方法所采用的抓捕机构往往具有较高的自由度,所以此类方法可控性也较低.以飞网为例,其在捕获过程中会面临无法展开和无法包裹住目标的风险.

  • 图5 捕获方法分类

  • Fig.5 Classification of capture methods

  • 3 空间机器人动力学与控制

  • 空间机器人的在轨服务中蕴含着大量的动力学与控制问题,它涉及到力学、材料、信息、自动化等多个学科,是需要这些学科技术的有效综合.总体上讲,动力学的问题是根本,控制问题是目的,动力学问题的有效解决可以为控制设计提供参数与模型保障,减轻控制设计的难度.空间机器人一般用于空间大质量目标的捕获,过程可以分为捕获前、捕获中和捕获后三个阶段.捕获前的主要任务通常是空间机器人与空间目标的远距离交会、运动观测与运动预测、近距离交会、消旋、捕获点确定等,以便规划空间机器人的作业路径.捕获中的核心问题是空间机器人和空间目标之间的接触碰撞,该过程冲击载荷大、作用时间短、存在碰撞后再次分离的可能,是复杂的非线性动力学问题.捕获后的主要问题是系统姿态的快速稳定控制.上海交通大学蔡国平教授课题组对这三个阶段的主要动力学与控制问题进行了深入研究,出版了《空间机器人捕获动力学与控制》学术专著[82],下面对这三个阶段的动力学与控制问题做一简介.

  • 捕获前的动力学与控制问题.(1)首先表现在空间机器人与空间目标的远距离交会,此时两者相距较远,可达几百甚至上千公里.当目标为报废卫星等的无动力目标时,远距离交会的轨迹规划与控制设计较为容易.但当目标为有动力的非合作目标时,远距离交会则变成了零和博弈问题,需要采用微分对策方法等进行轨迹与控制的设计[8384].(2)当空间机器人与空间目标完成远距离交会后,两者相距几公里甚至几百米,此时需要采用视觉手段获取目标的三维点云信息,然后利用目标连体坐标系和相机坐标系的相对位姿关系获取目标的运动状态[85-87].(3)在有效得到目标的实时运动学信息后,可以根据观测信息对目标下一步的运动状态进行预测,以方便提前规划空间机器人的近距离交会,常采用的处理方法是首先通过无损卡尔曼滤波方法对目标的动力学参数进行估计、然后根据动力学方程进行运动预测[88-90].(4)在完成对目标的运动观测与运动预测后,空间机器人需要对目标进行近距离交会,以到达与目标相距更近的地方,例如几米,以备下一步的抓取.近距离交会本质上讲是一个轨迹优化与控制问题,先设计空间机器人的靠近轨迹,然后设计控制律去跟踪轨迹[9192].(5)如果空间目标的翻滚角速度较大,抓捕前还需要对目标进行消旋,以将其角速度降低到允许抓捕的范围内,直接抓捕有可能导致机械臂的损坏.一般来说,所允许抓取的角速度条件为小于5度/秒.当目标为大质量目标时,通常采用柔性刷进行消旋,通过柔性刷与目标的摩擦接触来消耗其转动能量[93-95].柔性刷消旋的接触碰撞是非光滑动力学问题,接触动力学建模与分析是消旋设计的难点.当然也可以采用非接触方式的鱼叉推进消旋策略,通过空间机器人向目标发射带有动力推进的鱼叉装置与目标结为一体,然后通过鱼叉上的动力将目标的角速度降下来[96].(6)抓捕前空间机器人还需要利用传感器数据完成对非合作目标上的可抓取结构的识别,然后操作机械臂完成抓捕操作,可以说可抓取结构识别是非合作目标捕获任务得以完成的重要前提.处理该问题可以通过目标的点云信息采用PointNet++等神经网络算法完成对目标结构的识别与分割[97].

  • 捕获中的动力学与控制问题.在完成捕获前的各项操作后,空间机器人下一步开始操作机械臂对目标进行捕获,总体上讲有两个操控步骤.(1)空间机器人和目标都为漂浮状态,机械臂的运动会导致机器人本体发生位姿改变,位姿改变反过来又会影响机械臂末端执行器的定位,影响执行器的抓捕作业.解决该问题的方法之一是在操控机械臂时也同时对机器人本体施加控制,在机械臂关节控制和本体控制的同时作用下来保证末端执行器的精准定位[98].方法之二是采用无扰轨迹规划控制方法,既然机械臂的运动会影响本体的运动,那么就可以设计机械臂关节的运动轨迹来保证末端执行器到达捕获点的同时本体的位姿不发生改变[99].另外,在操控机械臂由初始折叠状态到达捕获点时,还可能发生机械臂各臂杆之间的自碰撞以及与目标的碰撞,因此设计机械臂的关节轨迹时还需考虑避障问题[103].再一方面,机械臂的关节摩擦和柔性会对精准定位造成影响[100-103],机械臂操控过程中的容错控制设计也是一个值得关注的问题[104].(2)在完成机械臂末端执行器的精准定位后,执行器开始与目标接触进行抓捕,这个阶段的动力学问题最为突出,涉及接触碰撞分析与抓捕控制策略设计等.空间机器人一旦抓捕不成功,会出现与目标分离的可能.由于每次碰撞过程持续时间极短且无法采用传感器直接进行测量,事实上接触力的信息很难获得.接触碰撞分析涉及空间机器人与目标的接触动力学建模,赫兹接触理论仍然是目前的主流分析方法.抓捕控制策略主要采用柔顺控制方法,通过设计机械臂关节的柔顺控制律来减小碰撞冲击和保证成功抓取[105-111].

  • 捕获后的动力学与控制问题.该阶段主要涉及参数辨识和卫星组合体的姿态快速稳定.(1)在成功抓取目标后,首先需要对目标的惯性参数进行辨识,以便为后续的姿态快速稳定控制设计提供参数保障.机器人抓住目标后,其上的敏感器感知到卫星组合体的运动信息,根据运动信息将能够通过辨识方法得到目标的惯性参数,常采用的辨识方法有动量守恒方法和作用力方法[112113].(2)在机器人抓住目标后,由于目标仍在不断翻滚,卫星组合体的姿态会发生快速变化,需要对姿态进行快速稳定.在实施姿态稳定控制之前,需要首先规划空间机器人的运动轨迹.一类常用的方法是将机械臂关节运动表示成多项式曲线、贝塞尔曲线等光滑曲线,然后利用粒子群优化、遗传算法等搜索满足约束限制的最优轨迹[114115];另一类方法是将空间机器人的轨迹规划问题转换成最优控制问题,然后利用非线性规划、凸优化等方法生成最优轨迹.在得到最优轨迹后,即可利用反馈控制对所得轨迹进行跟踪控制,实现卫星组合体的快速姿态稳定.另外,对于产生固定推力的推进器,还需利用脉宽脉频调制技术将所得跟踪控制力转换成开关控制力.

  • 另一方面,近年来以深度学习和强化学习为代表的人工智能算法的不断成熟为捕获非合作目标策略设计提供了新的可能.到目前为止,该类算法已经在图像分析、语音识别、自然语言处理、视频分类、视频游戏、棋牌类游戏、物理系统的导航与控制、用户交互算法等领域取得了令人瞩目的成功.有理由相信,人工智能技术可以为空间非合作目标的在轨捕获提供帮助,且该技术具有在航天领域广泛应用的前景.

  • 4 结束语

  • 抓取空间翻滚非合作目标是当前国际上的热点研究课题,它对空间站的组装、航天器的在轨维修、空间碎片的清理、空间军事攻防等极具战略意义.为此,国家科技部和国家自然科学基金委员会都发布有重大研究计划,旨在通过科学探索奠定空间飞行器在轨服务以及空间目标抓取的基础理论,以提高我国空间资产的使用效益、保证飞行器在轨的可靠运行.本文简短介绍了国内外主要的空间机器人计划以及捕获非合作目标三个过程中的动力学与控制问题,希望对从事空间机器人技术研究的学者有所裨益.

  • 参考文献

    • [1] DAN K.Space Servicing:past,present and future [C/OL]//Proceedings of the 6th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2001 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2001/papers/Paper_AM082.pdf.

    • [2] XU Y,TAKEO K.Space robotics:dynamics and control [M].Berlin,German:Springer,1992.

    • [3] 林益明,李大明,王耀兵,等.空间机器人发展现状与思考 [J].航天器工程,2015,24(5):1-7.LIN Y M,LI D M,WANG Y B,et al.Current status and analysis of space robot [J].Spacecraft Engineering,2015,24(5):1-7.(in Chinese)

    • [4] 张文辉,叶晓平,季晓明,等.国内外空间机器人技术发展综述 [J].飞行力学,2013,31(3):198-202.ZHANG W H,YE X P,JI X M,et al.Development summarizing of space robot technology national and outside [J].Flight Dynamics,2013,31(3):198-202.(in Chinese)

    • [5] FLORES-ABAD A,MA O,PHAM K,et al.A review of space robotics technologies for on-orbit servicing [J].Progress in Aerospace Sciences,2014,68:1-26.

    • [6] AKIN D,SULLIVAN B.A survey of serviceable spacecraft failures [C]//Proceedings of the AIAA Space 2001 Conference and Exposition,Albuquerque,USA.Reston,USA:AIAA,2001.

    • [7] LIOU J C,JOHNSON N L,HILL N M.Controlling the growth of future LEO debris populations with active debris removal [J].Acta Astronautica,2010,66(5/6):648-653.

    • [8] LIOU J C,SHOOTS D.The 2006 Geosynchronous(GEO)environment for ORDEM2010 [J].Orbital Debris Quarterly News,2009,13(4):4-6.

    • [9] TAFAZOLI M.A study of on-orbit spacecraft failures [J].Acta Astronautica,2009,64(2/3):195-205.

    • [10] ELLERY A,KREISEL J,SOMMER B.The case for robotic on-orbit servicing of spacecraft:Spacecraft reliability is a myth [J].Acta Astronautica,2008,63(5-6):632-648.

    • [11] SETTELMEYER E,HARTMANN R,LANDZETTEL K.The experimental servicing satellite-ESS [C/OL]//21st International Symposium on Space Technology and Science Conference,1998 [2022-12-29].https://www.esa.int/esapub/pff/pffv7n2/settv7n2.htm.

    • [12] 徐文福.空间机器人目标捕获的路径规划与实验研究 [D].哈尔滨:哈尔滨工业大学,2007.XU W F.Path planning and experiment study of space robot for target capturing [D].Harbin:Harbin Institute of Technology,2007.(in Chinese)

    • [13] 梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展 [J].机器人,2012,34(2):242-256.LIANG B,DU X D,LI C,et al.Advances in space robot on-orbit servicing for non-cooperative spacecraft [J].Robot,2012,34(2):242-256.(in Chinese)

    • [14] ANDARY J F,SPIDALIERE P D.The development test flight of the flight telerobotic servicer:design description and lessons learned [J].IEEE Transactions on Robotics and Automation,1993,9(5):664-674.

    • [15] DAVID L A.Flight-ready robotic servicing for Hubble Space Telescope:a white paper [D].Washington,USA:University of Maryland College Park,2004.

    • [16] PARRISH J C.Ranger Telerobotic Flight Experiment:a teleservicing system for on-orbit spacecraft [C]//Proceedings of SPIE-Telemanipulator and Telepresence Technologies III.[S.l.]:SPIE,1996,2901:177-185.

    • [17] STARITZ P J,SKAFF S,URMSON C,et al.Skyworker:a robot for assembly,inspection and maintenance of large scale orbital facilities [C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2003:4180-4185.

    • [18] ALENIUS L,GUPTA V.Modeling an AERCam:a case study in modeling with concurrent constraint languages [C]//Proceedings of the CP’97 Workshop on Modeling and Computation in the Concurrent Constraint Languages,1998.

    • [19] WILLIAMS T,TANYGIN S.On-orbit engineering test of the AERCam sprint robotic camera vehicle [C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting,Monterey,USA,Reston,USA:AIAA,1998.

    • [20] PEDERSEN L,KORTENKAMP D,WETTERGREEN D,et al.A survey of space robotics [C/OL]//Proceeding of the 7th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2003 [2022-12-29].https://ntrs.nasa.gov/citations/20030054507.

    • [21] LOVCHIK C S,DIFTLER M A.The Robonaut hand:a dexterous robot hand for space [C]//Proceedings 1999 IEEE International Conference on Robotics and Automation,Detroit,USA.Piscataway,USA:IEEE,2002:907-912.

    • [22] AKIN D,BOWDEN M.Human-robotic hybrids for deep space EVA:the SCOUT concept [C]//Proceedings of the AIAA Space 2003 Conference & Exposition,Long Beach,California.Reston,USA:AIAA,2003.

    • [23] 林来兴.美国“轨道快车” 计划中的自主空间交会对接技术 [J].国际太空,2005(2):23-27.

    • [24] WHELAN D A,ADLER E A,et al.DARPA Orbital Express program:effecting a revolution in space-based systems [C]//Proceedings of SPIE-Small Payloads in Space.[S.l.]:SPIE,2000.

    • [25] FRIEND R B.Orbital Express program summary and mission overview [C]//Proceedings of SPIE-Sensors and Systems for Space Applications II.[S.l.]:SPIE,2008.

    • [26] 闫海江,范庆玲,康志宇,等.DARPA地球静止轨道机器人项目综述 [J].机器人,2016,38(5):632-640.YAN H J,FAN Q L,KANG Z Y,et al.Review of DARPA’s geostationary earth orbit robotic programs [J].Robot,2016,38(5):632-640.(in Chinese)

    • [27] BRANNAN J C,CARIGNAN C R,ROBERTS B J.Hybrid strategy for evaluating on-orbit servicing,assembly,and manufacturing technologies [C]//Proceedings of the ASCEND 2020.Reston,USA:AIAA,2020.

    • [28] WU E C,HWANG J C,CHLADEK J T.Fault-tolerant joint development for the Space Shuttle remote manipulator system:analysis and experiment [J].IEEE Transactions on Robotics and Automation,1993,9(5):675-684.

    • [29] GIBBS G,SACHDEV S.Canada and the International Space Station program:overview and status [J].Acta Astronautica,2002,51(1-9):591-600.

    • [30] STIEBER M E,HUNTER D G,ABRAMOVICI A.Overview of the mobile servicing system for the international space station [C/OL]//Proceedings of the 55th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1999 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas1999/s02-01.pdf.

    • [31] COLESHILL E,OSHINOWO L,REMBALA R,et al.Dextre:improving maintenance operations on the International Space Station [J].Acta Astronautica,2009,64(9-10):869-874.

    • [32] NOKLEBY S B.Singularity analysis of the Canadarm2 [J].Mechanism and Machine Theory,2007,42(4):442-454.

    • [33] XU W F,ZHANG J T,QIAN H H,et al.Identifying the singularity conditions of Canadarm2 based on elementary Jacobian transformation [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:795-800.

    • [34] MA O,WANG J G,MISRA S,et al.On the validation of SPDM task verification facility [J].Journal of Robotic Systems,2004,21(5):219-235.

    • [35] HWANG J,WU E,BELL A,et al.Design of a SPDM-like robotic manipulator system for Space Station on orbit replaceable unit ground testing-an overview of the system architecture [C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation,San Diego,USA.Los Alamitos,USA:IEEE Computer Society,1994:1286-1291.

    • [36] BASSETT D,ABRAMOVICI A.Special purpose dexterous manipulator(SPDM)requirements verification [C/OL]//Proceedings of the 55th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1999 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas1999/s02-02.pdf.

    • [37] REIM G.Axiom first commercial customer for canadarm [J].Aerospace Daily & Defense Report,2022,280:6-8.

    • [38] HIRZINGER G,BRUNNER B,DIETRICH J,et al.ROTEX-the first remotely controlled robot in space [C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation,San Diego,USA.Los Alamitos,USA:IEEE Computer Society,1994:2604-2611.

    • [39] LANDZETTEL K,BRUNNER B,HIRZINGER G.The telerobotic concepts for ESS [C/OL]//IARP Workshop on Space Robotics,1994 [2022-12-29].https://api.semanticscholar.org/CorpusID:17608316.

    • [40] LANDZETTEL K,ALBU-SCHÄFFER A,BRUNNER B,et al.ROKVISS verification of advanced light weight robotic joints and telepresence concepts for future space missions [C]//In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation.Noordwijk,The Netherlands:ESTEC,2006.

    • [41] ALBU-SCHAFFER A,BERTLEFF W,REBELE B,et al.ROKVISS-robotics component verification on ISS current experimental results on parameter identification [C]//2006 IEEE International Conference on Robotics and Automation,Orlando,USA.Piscataway,USA:IEEE,2006:3879-3885.

    • [42] SCHÄFER B,LANDZETTEL K,ALBUSCHÄF-FER A,et al.ROKVISS:orbital testbed for teleoresence experiments,novel robotic components and dynamics models verification [C]//In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation.Noordwijk,The Netherlands:ESTEC,2004.

    • [43] CUSUMANO F,LAMPARIELLO R,HIRZING-ER G.Development of tele-operation control for a free-floating robot during the grasping of a tumbling target [C]//IMG04,Intelligent Manipulation and Grasping.Bradford,UK:Emerald Publishing,2004.

    • [44] MARTIN E,DUPUIS E,Piedboeuf JC,Doyon M.The TECSAS mission from a Canadian perspective [C]//In Proceedings of the 8th International Symposium on Artificial Intelligence and Robotics and Automation in Space,2005 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2005/session_02b/1_martin_2b.pdf.

    • [45] RUPP T,BOGE T,KIEHLING R,SELLMAINER F.Flight dynamics challenges of the german on-orbit servicing mission DEOS [C]//The 21st International Symposium on Space Flight Dynamics.Cologne,Germany:German Aerospace Agency,2009.

    • [46] VISENTIN G,BROWN D L.Robotics for geostationary satellite servicing [J].Robotics and Autonomous Systems,1998,23(1/2):45-51.

    • [47] BOUMANS R,HEEMSKERK C.The European robotic arm for the international space station [J].Robotics and Autonomous Systems,1998,23(1-2):17-27.

    • [48] MENNENGA G.European Robotic Arm:Europe’s grip on the International Space Station [J].Air & Space Europe,1999,1(4):62-63.

    • [49] MUGNUOLO R,DI PIPPO S,MAGNANI P G,et al.The SPIDER manipulation system(SMS)The Italian approach to space automation [J].Robotics and Autonomous Systems,1998,23(1-2):79-88.

    • [50] BIESBROEK R,AZIZ S,Wolahan A,et al.The ClearSpace-1 mission:ESA and ClearSpace team up to remove debris [C]//8th European Conference on Space Debris.Darmstadt,Germany:ESA Space Debris Office,2021.

    • [51] 王平.空间自主在轨服务航天器近距离操作运动规划研究 [D].哈尔滨:哈尔滨工业大学,2010.WANG P.Research on short distance motion planning of on-orbit autonomous servicing spacecraft [D].Harbin:Harbin Institute of Technology,2010.(in Chinese)

    • [52] NAGATOMO M,WADA K.On the results of the manipulator flight demonstration(MFD)project [R],National Space Development Agency of Japan,1998 [2022-12-29].https://iss.jaxa.jp/shuttle/flight/mfd/pdf/mfdpro_e.pdf.

    • [53] KIMURA S,MINENO H,YAMAMOTO H,et al.Preliminary experiments on technologies for satellite orbital maintenance using Micro-LabSat 1 [J].Advanced Robotics,2004,18(2):117-138.

    • [54] YOSHIDA K.Engineering test satellite VII flight experiments for space robot dynamics and control:theories on laboratory test beds ten years ago,now in orbit [J].The International Journal of Robotics Research,2003,22(5):321-335.

    • [55] ODA M,KIBE K,YAMAGATA F.ETS-VII,space robot in-orbit experiment satellite [C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2002:739-744.

    • [56] YOSHIDA K,HASHIZUME K,ABIKO S.Zero reaction maneuver:flight validation with ETS-VII space robot and extension to kinematically redundant arm [C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2006:441-446.

    • [57] ODA M.Experiences and lessons learned from the ETS-VII robot satellite [C]//Proceeding of 2000 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2000:914-919.

    • [58] MATSUEDA T,KURAOKA K,GOMA K,et al.JEMRMS system design and development status [C]//NTC′91-National Telesystems Conference,Atlanta,USA.Piscataway,USA:IEEE,2002:391-395.

    • [59] ABIKO S,YOSHIDA K,SATO Y,et al.Performance improvement of JEMRMS in light of vibration dynamics [C/OL]//The 8th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2005 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2005/session_08b/3_abiko_8b.pdf.

    • [60] YAMAMOTO T,MATSUMOTO J,OKAMOTO H,et al.Pave the way for Active Debris Removal Realization:JAXA Commercial Removal of Debris Demonstration(CRD2)[C]//8th European Conference on Space Debris.Darmstadt,Germany:ESA Space Debris Office,2021.

    • [61] 郭琦,洪炳镕.空间机器人运动控制方法 [M].北京:中国宇航出版社,2010.

    • [62] 黄献龙,梁斌,陈建新等.EMR系统机器人运动学和工作空间的分析[J].控制工程,2000,(3):1-6+34.

    • [63] BOARD S S,BOARD A A S E,et al.Assessment of options for extending the life of the Hubble Space Telescope:final report [M].Washington,USA:National Academies Press,2005

    • [64] SHAN M H,GUO J,GILL E.Review and comparison of active space debris capturing and removal methods [J].Progress in Aerospace Sciences,2016,80:18-32.

    • [65] KAISER C,SJÖBERG F,DELCURA J M,et al.SMART-OLEV-an orbital life extension vehicle for servicing commercial spacecrafts in GEO [J].Acta Astronautica,2008,63(1-4):400-410.

    • [66] ESA.e.Deorbit implementation plan [R].European Space Research and Technology Centre,2015:TEC-SC-TN-2015-007.

    • [67] BIESBROEK R,SOARES T,HUSING J.The e.Deorbit CDF study:a design study for the safe removal of a large space debris//64th International Astronautical Congress 2013(IAC 2013).Paris,France:International Astronautical Federation,2013.

    • [68] Shan M,Guo J,Gill E.An analysis of critical deployment parameters for tethered-net capturing for space debris removal [C]//66th International Astronautical Congress(IAC 2015).Paris,France:International Astronautical Federation,2015.

    • [69] MEDINA A,CERCÓS L,STEFANESCU R M,et al.Validation results of satellite mock-up capturing experiment using nets [J].Acta Astronautica,2017,134:314-332.

    • [70] BENVENUTO R,LAVAGNA M.Flexible capture devices for medium to large debris active removal:simulations results to drive experiments [C/OL]//12th Symposium on Advanced Space Technologies in Automation and Robotics,2013 [2022-12-29].https://robotics.estec.esa.int/ASTRA/Astra2013/Papers/Lavagna_2824514.pdf

    • [71] BENVENUTO R,PESCE V,LAVAGNA M,et al.3D reconstruction of a space debris capturing net trajectory during microgravity experiments-results and lesson learnt [C]//67th International Astronautical Congress(IAC 2016).Paris,France:International Astronautical Federation,2016.

    • [72] FORSHAW J L,AGLIETTI G S,NAVARATHINAM N,et al.RemoveDEBRIS:an in-orbit active debris removal demonstration mission [J].Acta Astronautica,2016,127:448-463.

    • [73] FORSHAW J L,AGLIETTI G S,FELLOWES S,et al.The active space debris removal mission Remove Debris.Part 1:from concept to launch [J].Acta Astronautica,2020,168:293-309.

    • [74] AGLIETTI G S,TAYLOR B,FELLOWES S,et al.The active space debris removal mission Remove Debris.Part 2:in orbit operations [J].Acta Astronautica,2020,168:310-322.

    • [75] DUDZIAK R,TUTTLE S,BARRACLOUGH S.Harpoon technology development for the active removal of space debris [J].Advances in Space Research,2015,56(3):509-527.

    • [76] FORSHAW J,AGLIETTI G,NAVARATHINAM N,et al.An in-orbit active debris removal mission-REMOVEDEBRIS:Pre-Launch update [C]//66th International Astronautical Congress(IAC 2015).Paris,France:International Astronautical Federation,2015.

    • [77] FORSHAW J L,AGLIETTI G S,SALMON T,et al.Final payload test results for the RemoveDebris active debris removal mission [J].Acta Astronautica,2017,138:326-342.

    • [78] REED J,BARRACLOUGH S.Development of harpoon system for capturing space debris [C]//6th European Conference on Space Debris.[S.l.]:ESA,2013.

    • [79] WAYMAN A,RACTCLIFFE A,BARRACLOU-GH S,et al.Design and testing of a full scale harpoon capture system [C]//Proceedings of the 7th European Space Debris Conference.Darmstadt,Germany:ESA Space Debris Office,2017.

    • [80] 孟中杰,黄攀峰.空间绳系机器人飞行控制技术[M].北京:中国宇航出版社,2018.

    • [81] 王东科.空间绳系机器人目标抓捕及抓捕后稳定控制方法研究 [D].西安:西北工业大学,2015.WANG D K.Stabilization for tethered space robot during target capture and post-capture phase [D].Xi’an:Northwestern Polytechnical University,2015.(in Chinese)

    • [82] 蔡国平,刘晓峰,刘元卿.空间机器人捕获动力学与控制 [M].北京:科学出版社,2022.CAI G P,LIU X F,LIU Y Q.Capture dynamics and control of space robot [M].Beijing:Science Press,2022.(in Chinese)

    • [83] WANG Q S,LI P,LEI T,et al.A fuel optimization method for the pursuer in the spacecraft pursuit-evasion game [J].Journal of Computational and Nonlinear Dynamics,2022,17(7):071002.

    • [84] WANG Q S,LI P,LEI T,et al.A Dimension-reduction method for the finite-horizon spacecraft pursuit-evasion game [J].Journal of Industrial and Management Optimization,2023,19(3):1983-1998.

    • [85] WANG Q S,CAI G P.Pose estimation of a fast tumbling space noncooperative target using the time-of-flight camera [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2021,235(16):2529-2546.

    • [86] WANG Q S,LEI T,LIU X F,et al.Pose estimation of non-cooperative target coated with MLI [J].IEEE Access,1809,7:153958-153968.

    • [87] LEI T,LIU X F,CAI G P,et al.Pose estimation of a noncooperative target based on monocular visual SLAM [J].International Journal of Aerospace Engineering,2019,2019:9086891.

    • [88] WANG Q S,ZHOU B Z,LIU X F,et al.Motion prediction of a free-floating noncooperative target considering J2 perturbation [J].Journal of Computational and Nonlinear Dynamics,2021,16(5):051001.

    • [89] ZHOU B Z,LIU X F,CAI G P,et al.Motion prediction of an uncontrolled space target [J].Advances in Space Research,2019,63(1):496-511.

    • [90] ZHOU B Z,CAI G P,LIU Y M,et al.Motion prediction of a non-cooperative space target [J].Advances in Space Research,2018,61(1):207-222.

    • [91] ZHOU B Z,LIU X F,CAI G P.Motion-planning and pose-tracking based rendezvous and docking with a tumbling target [J].Advances in Space Research,2020,65(4):1139-1157.

    • [92] ZHOU B Z,LIU X F,CAI G P.Robust adaptive position and attitude-tracking controller for satellite proximity operations [J].Acta Astronautica,2020,167:135-145.

    • [93] LIU Y Q,LIU X F,CAI G P,et al.Attitude evolution of a dual-liquid-filled spacecraft with internal energy dissipation [J].Nonlinear Dynamics,2020,99(3):2251-2263.

    • [94] LIU Y Q,YU Z W,LIU X F,et al.Active detumbling technology for high dynamic non-cooperative space targets [J].Multibody System Dynamics,2019,47(1):21-41.

    • [95] LIU Y Q,YU Z W,LIU X F,et al.Active detumbling technology for noncooperative space target with energy dissipation [J].Advances in Space Research,2019,63(5):1813-1823.

    • [96] Liu Y Q,Liu X F,Cai G P,et al.Detumbling a non-cooperative tumbling target using a low-thrust device [J].AIAA Journal,2022,60(5):2718-2729.

    • [97] 陈霈然,张晓龙,刘晓峰,等.基于点云的空间非合作目标结构识别问题研究 [J].上海航天(中英文),2022,39(4):128-138.CHEN P R,ZHANG X L,LIU X F,et al.Research on structure recognition of spatial non-cooperative objects based on point cloud data [J].Aerospace Shanghai(Chinese & English),2022,39(4):128-138.(in Chinese)

    • [98] YU Z W,LIU X F,LI H Q,et al.Dynamics and control of a 6-DOF space robot with flexible panels [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(6):1022-1034.

    • [99] ZHOU Q,LIU X F,CAI G P.Base attitude disturbance minimizing trajectory planning for a dual-arm space robot [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2022,236(4):704-721.

    • [100] LIU Y Q,LIU X F,CAI,G P,et al.Two-stage trajectory planning for autonomous deployment and target capture of space manipulators [J].Journal of Guidance,Control and Dynamics,2023,46(6):1219-1227.

    • [101] ZHANG Q,LIU X F,CAI G P.Dynamics and control of a flexible-link flexible-joint space robot with joint friction [J].International Journal of Aeronautical and Space Sciences,2021,22(2):415-432.

    • [102] LIU X F,LI H Q,CHEN Y J,et al.Dynamics and control of space robot considering joint friction [J].Acta Astronautica,2015,111:1-18.

    • [103] LIU X F,LI H Q,WANG J S,et al.Dynamics analysis of flexible space robot with joint friction [J].Aerospace Science and Technology,2015,47:164-176.

    • [104] Yu Z W,Cai G P.Dynamics modeling and fault tolerant control of a 6-DOF space robot with flexible panels [J].International Journal of Robotics and Automation,2018,33:662-671.

    • [105] ZHANG X Y,LIU X F,WANG M M,et al.A new strategy for capturing a noncooperative spacecraft by a robotic arm [J].Multibody System Dynamics,2023,59(2):143-169.

    • [106] LIU X F,ZHANG X Y,CAI G P,et al.Capturing a space target using a flexible space robot [J].Applied Sciences,2022,12(3):984.

    • [107] LIU X F,ZHANG X Y,CAI G P,et al.A collision control strategy for detumbling a non-cooperative spacecraft by a robotic arm [J].Multibody System Dynamics,2021,53(3):225-255.

    • [108] LIU X F,CAI G P,WANG M M,et al.Contact control for grasping a non-cooperative satellite by a space robot [J].Multibody System Dynamics,2020,50(2):119-141.

    • [109] LIU X F,ZHANG X Y,CHEN P C,et al.Hybrid control scheme for grasping a non-cooperative tumbling satellite [J].IEEE Access,2020,8:54963-54978.

    • [110] LIU X F,LI H Q,CHEN Y J,et al.Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm [J].Multibody System Dynamics,2015,33(3):315-332.

    • [111] YU Z W,LIU X F,CAI G P.Dynamics modeling and control of a 6-DOF space robot with flexible panels for capturing a free floating target [J].Acta Astronautica,2016,128:560-572.

    • [112] LIU X F,ZHANG X Y,CHEN P R,et al.Inertia parameter identification for an unknown satellite in precapture scenario [J].International Journal of Aerospace Engineering,2020,2020:7521434.

    • [113] LIU X F,ZHOU B Z,XIAO B Y,et al.Inertia parameter identification of anunknown captured space target [J].Aircraft Engineering and Aerospace Technology,2019,91(8):1147-1155.

    • [114] LIU Y Q,LIU X F,CAI G P.Detumbling a flexible tumbling target using a space robot in post-capture phase [J].The Journal of the Astronautical Sciences,2022,69(4):1048-1075.

    • [115] LIU Y Q,LIU X F,CAI G P,et al.Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase [J].Multibody System Dynamics,2021,52(3):281-311.

  • 参考文献

    • [1] DAN K.Space Servicing:past,present and future [C/OL]//Proceedings of the 6th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2001 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2001/papers/Paper_AM082.pdf.

    • [2] XU Y,TAKEO K.Space robotics:dynamics and control [M].Berlin,German:Springer,1992.

    • [3] 林益明,李大明,王耀兵,等.空间机器人发展现状与思考 [J].航天器工程,2015,24(5):1-7.LIN Y M,LI D M,WANG Y B,et al.Current status and analysis of space robot [J].Spacecraft Engineering,2015,24(5):1-7.(in Chinese)

    • [4] 张文辉,叶晓平,季晓明,等.国内外空间机器人技术发展综述 [J].飞行力学,2013,31(3):198-202.ZHANG W H,YE X P,JI X M,et al.Development summarizing of space robot technology national and outside [J].Flight Dynamics,2013,31(3):198-202.(in Chinese)

    • [5] FLORES-ABAD A,MA O,PHAM K,et al.A review of space robotics technologies for on-orbit servicing [J].Progress in Aerospace Sciences,2014,68:1-26.

    • [6] AKIN D,SULLIVAN B.A survey of serviceable spacecraft failures [C]//Proceedings of the AIAA Space 2001 Conference and Exposition,Albuquerque,USA.Reston,USA:AIAA,2001.

    • [7] LIOU J C,JOHNSON N L,HILL N M.Controlling the growth of future LEO debris populations with active debris removal [J].Acta Astronautica,2010,66(5/6):648-653.

    • [8] LIOU J C,SHOOTS D.The 2006 Geosynchronous(GEO)environment for ORDEM2010 [J].Orbital Debris Quarterly News,2009,13(4):4-6.

    • [9] TAFAZOLI M.A study of on-orbit spacecraft failures [J].Acta Astronautica,2009,64(2/3):195-205.

    • [10] ELLERY A,KREISEL J,SOMMER B.The case for robotic on-orbit servicing of spacecraft:Spacecraft reliability is a myth [J].Acta Astronautica,2008,63(5-6):632-648.

    • [11] SETTELMEYER E,HARTMANN R,LANDZETTEL K.The experimental servicing satellite-ESS [C/OL]//21st International Symposium on Space Technology and Science Conference,1998 [2022-12-29].https://www.esa.int/esapub/pff/pffv7n2/settv7n2.htm.

    • [12] 徐文福.空间机器人目标捕获的路径规划与实验研究 [D].哈尔滨:哈尔滨工业大学,2007.XU W F.Path planning and experiment study of space robot for target capturing [D].Harbin:Harbin Institute of Technology,2007.(in Chinese)

    • [13] 梁斌,杜晓东,李成,等.空间机器人非合作航天器在轨服务研究进展 [J].机器人,2012,34(2):242-256.LIANG B,DU X D,LI C,et al.Advances in space robot on-orbit servicing for non-cooperative spacecraft [J].Robot,2012,34(2):242-256.(in Chinese)

    • [14] ANDARY J F,SPIDALIERE P D.The development test flight of the flight telerobotic servicer:design description and lessons learned [J].IEEE Transactions on Robotics and Automation,1993,9(5):664-674.

    • [15] DAVID L A.Flight-ready robotic servicing for Hubble Space Telescope:a white paper [D].Washington,USA:University of Maryland College Park,2004.

    • [16] PARRISH J C.Ranger Telerobotic Flight Experiment:a teleservicing system for on-orbit spacecraft [C]//Proceedings of SPIE-Telemanipulator and Telepresence Technologies III.[S.l.]:SPIE,1996,2901:177-185.

    • [17] STARITZ P J,SKAFF S,URMSON C,et al.Skyworker:a robot for assembly,inspection and maintenance of large scale orbital facilities [C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2003:4180-4185.

    • [18] ALENIUS L,GUPTA V.Modeling an AERCam:a case study in modeling with concurrent constraint languages [C]//Proceedings of the CP’97 Workshop on Modeling and Computation in the Concurrent Constraint Languages,1998.

    • [19] WILLIAMS T,TANYGIN S.On-orbit engineering test of the AERCam sprint robotic camera vehicle [C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting,Monterey,USA,Reston,USA:AIAA,1998.

    • [20] PEDERSEN L,KORTENKAMP D,WETTERGREEN D,et al.A survey of space robotics [C/OL]//Proceeding of the 7th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2003 [2022-12-29].https://ntrs.nasa.gov/citations/20030054507.

    • [21] LOVCHIK C S,DIFTLER M A.The Robonaut hand:a dexterous robot hand for space [C]//Proceedings 1999 IEEE International Conference on Robotics and Automation,Detroit,USA.Piscataway,USA:IEEE,2002:907-912.

    • [22] AKIN D,BOWDEN M.Human-robotic hybrids for deep space EVA:the SCOUT concept [C]//Proceedings of the AIAA Space 2003 Conference & Exposition,Long Beach,California.Reston,USA:AIAA,2003.

    • [23] 林来兴.美国“轨道快车” 计划中的自主空间交会对接技术 [J].国际太空,2005(2):23-27.

    • [24] WHELAN D A,ADLER E A,et al.DARPA Orbital Express program:effecting a revolution in space-based systems [C]//Proceedings of SPIE-Small Payloads in Space.[S.l.]:SPIE,2000.

    • [25] FRIEND R B.Orbital Express program summary and mission overview [C]//Proceedings of SPIE-Sensors and Systems for Space Applications II.[S.l.]:SPIE,2008.

    • [26] 闫海江,范庆玲,康志宇,等.DARPA地球静止轨道机器人项目综述 [J].机器人,2016,38(5):632-640.YAN H J,FAN Q L,KANG Z Y,et al.Review of DARPA’s geostationary earth orbit robotic programs [J].Robot,2016,38(5):632-640.(in Chinese)

    • [27] BRANNAN J C,CARIGNAN C R,ROBERTS B J.Hybrid strategy for evaluating on-orbit servicing,assembly,and manufacturing technologies [C]//Proceedings of the ASCEND 2020.Reston,USA:AIAA,2020.

    • [28] WU E C,HWANG J C,CHLADEK J T.Fault-tolerant joint development for the Space Shuttle remote manipulator system:analysis and experiment [J].IEEE Transactions on Robotics and Automation,1993,9(5):675-684.

    • [29] GIBBS G,SACHDEV S.Canada and the International Space Station program:overview and status [J].Acta Astronautica,2002,51(1-9):591-600.

    • [30] STIEBER M E,HUNTER D G,ABRAMOVICI A.Overview of the mobile servicing system for the international space station [C/OL]//Proceedings of the 55th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1999 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas1999/s02-01.pdf.

    • [31] COLESHILL E,OSHINOWO L,REMBALA R,et al.Dextre:improving maintenance operations on the International Space Station [J].Acta Astronautica,2009,64(9-10):869-874.

    • [32] NOKLEBY S B.Singularity analysis of the Canadarm2 [J].Mechanism and Machine Theory,2007,42(4):442-454.

    • [33] XU W F,ZHANG J T,QIAN H H,et al.Identifying the singularity conditions of Canadarm2 based on elementary Jacobian transformation [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,Japan.Piscataway,USA:IEEE,2013:795-800.

    • [34] MA O,WANG J G,MISRA S,et al.On the validation of SPDM task verification facility [J].Journal of Robotic Systems,2004,21(5):219-235.

    • [35] HWANG J,WU E,BELL A,et al.Design of a SPDM-like robotic manipulator system for Space Station on orbit replaceable unit ground testing-an overview of the system architecture [C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation,San Diego,USA.Los Alamitos,USA:IEEE Computer Society,1994:1286-1291.

    • [36] BASSETT D,ABRAMOVICI A.Special purpose dexterous manipulator(SPDM)requirements verification [C/OL]//Proceedings of the 55th International Symposium on Artificial Intelligence,Robotics and Automation in Space,1999 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas1999/s02-02.pdf.

    • [37] REIM G.Axiom first commercial customer for canadarm [J].Aerospace Daily & Defense Report,2022,280:6-8.

    • [38] HIRZINGER G,BRUNNER B,DIETRICH J,et al.ROTEX-the first remotely controlled robot in space [C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation,San Diego,USA.Los Alamitos,USA:IEEE Computer Society,1994:2604-2611.

    • [39] LANDZETTEL K,BRUNNER B,HIRZINGER G.The telerobotic concepts for ESS [C/OL]//IARP Workshop on Space Robotics,1994 [2022-12-29].https://api.semanticscholar.org/CorpusID:17608316.

    • [40] LANDZETTEL K,ALBU-SCHÄFFER A,BRUNNER B,et al.ROKVISS verification of advanced light weight robotic joints and telepresence concepts for future space missions [C]//In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation.Noordwijk,The Netherlands:ESTEC,2006.

    • [41] ALBU-SCHAFFER A,BERTLEFF W,REBELE B,et al.ROKVISS-robotics component verification on ISS current experimental results on parameter identification [C]//2006 IEEE International Conference on Robotics and Automation,Orlando,USA.Piscataway,USA:IEEE,2006:3879-3885.

    • [42] SCHÄFER B,LANDZETTEL K,ALBUSCHÄF-FER A,et al.ROKVISS:orbital testbed for teleoresence experiments,novel robotic components and dynamics models verification [C]//In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation.Noordwijk,The Netherlands:ESTEC,2004.

    • [43] CUSUMANO F,LAMPARIELLO R,HIRZING-ER G.Development of tele-operation control for a free-floating robot during the grasping of a tumbling target [C]//IMG04,Intelligent Manipulation and Grasping.Bradford,UK:Emerald Publishing,2004.

    • [44] MARTIN E,DUPUIS E,Piedboeuf JC,Doyon M.The TECSAS mission from a Canadian perspective [C]//In Proceedings of the 8th International Symposium on Artificial Intelligence and Robotics and Automation in Space,2005 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2005/session_02b/1_martin_2b.pdf.

    • [45] RUPP T,BOGE T,KIEHLING R,SELLMAINER F.Flight dynamics challenges of the german on-orbit servicing mission DEOS [C]//The 21st International Symposium on Space Flight Dynamics.Cologne,Germany:German Aerospace Agency,2009.

    • [46] VISENTIN G,BROWN D L.Robotics for geostationary satellite servicing [J].Robotics and Autonomous Systems,1998,23(1/2):45-51.

    • [47] BOUMANS R,HEEMSKERK C.The European robotic arm for the international space station [J].Robotics and Autonomous Systems,1998,23(1-2):17-27.

    • [48] MENNENGA G.European Robotic Arm:Europe’s grip on the International Space Station [J].Air & Space Europe,1999,1(4):62-63.

    • [49] MUGNUOLO R,DI PIPPO S,MAGNANI P G,et al.The SPIDER manipulation system(SMS)The Italian approach to space automation [J].Robotics and Autonomous Systems,1998,23(1-2):79-88.

    • [50] BIESBROEK R,AZIZ S,Wolahan A,et al.The ClearSpace-1 mission:ESA and ClearSpace team up to remove debris [C]//8th European Conference on Space Debris.Darmstadt,Germany:ESA Space Debris Office,2021.

    • [51] 王平.空间自主在轨服务航天器近距离操作运动规划研究 [D].哈尔滨:哈尔滨工业大学,2010.WANG P.Research on short distance motion planning of on-orbit autonomous servicing spacecraft [D].Harbin:Harbin Institute of Technology,2010.(in Chinese)

    • [52] NAGATOMO M,WADA K.On the results of the manipulator flight demonstration(MFD)project [R],National Space Development Agency of Japan,1998 [2022-12-29].https://iss.jaxa.jp/shuttle/flight/mfd/pdf/mfdpro_e.pdf.

    • [53] KIMURA S,MINENO H,YAMAMOTO H,et al.Preliminary experiments on technologies for satellite orbital maintenance using Micro-LabSat 1 [J].Advanced Robotics,2004,18(2):117-138.

    • [54] YOSHIDA K.Engineering test satellite VII flight experiments for space robot dynamics and control:theories on laboratory test beds ten years ago,now in orbit [J].The International Journal of Robotics Research,2003,22(5):321-335.

    • [55] ODA M,KIBE K,YAMAGATA F.ETS-VII,space robot in-orbit experiment satellite [C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2002:739-744.

    • [56] YOSHIDA K,HASHIZUME K,ABIKO S.Zero reaction maneuver:flight validation with ETS-VII space robot and extension to kinematically redundant arm [C]//Proceedings of 2001 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2006:441-446.

    • [57] ODA M.Experiences and lessons learned from the ETS-VII robot satellite [C]//Proceeding of 2000 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2000:914-919.

    • [58] MATSUEDA T,KURAOKA K,GOMA K,et al.JEMRMS system design and development status [C]//NTC′91-National Telesystems Conference,Atlanta,USA.Piscataway,USA:IEEE,2002:391-395.

    • [59] ABIKO S,YOSHIDA K,SATO Y,et al.Performance improvement of JEMRMS in light of vibration dynamics [C/OL]//The 8th International Symposium on Artificial Intelligence,Robotics and Automation in Space,2005 [2022-12-29].https://robotics.estec.esa.int/i-SAIRAS/isairas2005/session_08b/3_abiko_8b.pdf.

    • [60] YAMAMOTO T,MATSUMOTO J,OKAMOTO H,et al.Pave the way for Active Debris Removal Realization:JAXA Commercial Removal of Debris Demonstration(CRD2)[C]//8th European Conference on Space Debris.Darmstadt,Germany:ESA Space Debris Office,2021.

    • [61] 郭琦,洪炳镕.空间机器人运动控制方法 [M].北京:中国宇航出版社,2010.

    • [62] 黄献龙,梁斌,陈建新等.EMR系统机器人运动学和工作空间的分析[J].控制工程,2000,(3):1-6+34.

    • [63] BOARD S S,BOARD A A S E,et al.Assessment of options for extending the life of the Hubble Space Telescope:final report [M].Washington,USA:National Academies Press,2005

    • [64] SHAN M H,GUO J,GILL E.Review and comparison of active space debris capturing and removal methods [J].Progress in Aerospace Sciences,2016,80:18-32.

    • [65] KAISER C,SJÖBERG F,DELCURA J M,et al.SMART-OLEV-an orbital life extension vehicle for servicing commercial spacecrafts in GEO [J].Acta Astronautica,2008,63(1-4):400-410.

    • [66] ESA.e.Deorbit implementation plan [R].European Space Research and Technology Centre,2015:TEC-SC-TN-2015-007.

    • [67] BIESBROEK R,SOARES T,HUSING J.The e.Deorbit CDF study:a design study for the safe removal of a large space debris//64th International Astronautical Congress 2013(IAC 2013).Paris,France:International Astronautical Federation,2013.

    • [68] Shan M,Guo J,Gill E.An analysis of critical deployment parameters for tethered-net capturing for space debris removal [C]//66th International Astronautical Congress(IAC 2015).Paris,France:International Astronautical Federation,2015.

    • [69] MEDINA A,CERCÓS L,STEFANESCU R M,et al.Validation results of satellite mock-up capturing experiment using nets [J].Acta Astronautica,2017,134:314-332.

    • [70] BENVENUTO R,LAVAGNA M.Flexible capture devices for medium to large debris active removal:simulations results to drive experiments [C/OL]//12th Symposium on Advanced Space Technologies in Automation and Robotics,2013 [2022-12-29].https://robotics.estec.esa.int/ASTRA/Astra2013/Papers/Lavagna_2824514.pdf

    • [71] BENVENUTO R,PESCE V,LAVAGNA M,et al.3D reconstruction of a space debris capturing net trajectory during microgravity experiments-results and lesson learnt [C]//67th International Astronautical Congress(IAC 2016).Paris,France:International Astronautical Federation,2016.

    • [72] FORSHAW J L,AGLIETTI G S,NAVARATHINAM N,et al.RemoveDEBRIS:an in-orbit active debris removal demonstration mission [J].Acta Astronautica,2016,127:448-463.

    • [73] FORSHAW J L,AGLIETTI G S,FELLOWES S,et al.The active space debris removal mission Remove Debris.Part 1:from concept to launch [J].Acta Astronautica,2020,168:293-309.

    • [74] AGLIETTI G S,TAYLOR B,FELLOWES S,et al.The active space debris removal mission Remove Debris.Part 2:in orbit operations [J].Acta Astronautica,2020,168:310-322.

    • [75] DUDZIAK R,TUTTLE S,BARRACLOUGH S.Harpoon technology development for the active removal of space debris [J].Advances in Space Research,2015,56(3):509-527.

    • [76] FORSHAW J,AGLIETTI G,NAVARATHINAM N,et al.An in-orbit active debris removal mission-REMOVEDEBRIS:Pre-Launch update [C]//66th International Astronautical Congress(IAC 2015).Paris,France:International Astronautical Federation,2015.

    • [77] FORSHAW J L,AGLIETTI G S,SALMON T,et al.Final payload test results for the RemoveDebris active debris removal mission [J].Acta Astronautica,2017,138:326-342.

    • [78] REED J,BARRACLOUGH S.Development of harpoon system for capturing space debris [C]//6th European Conference on Space Debris.[S.l.]:ESA,2013.

    • [79] WAYMAN A,RACTCLIFFE A,BARRACLOU-GH S,et al.Design and testing of a full scale harpoon capture system [C]//Proceedings of the 7th European Space Debris Conference.Darmstadt,Germany:ESA Space Debris Office,2017.

    • [80] 孟中杰,黄攀峰.空间绳系机器人飞行控制技术[M].北京:中国宇航出版社,2018.

    • [81] 王东科.空间绳系机器人目标抓捕及抓捕后稳定控制方法研究 [D].西安:西北工业大学,2015.WANG D K.Stabilization for tethered space robot during target capture and post-capture phase [D].Xi’an:Northwestern Polytechnical University,2015.(in Chinese)

    • [82] 蔡国平,刘晓峰,刘元卿.空间机器人捕获动力学与控制 [M].北京:科学出版社,2022.CAI G P,LIU X F,LIU Y Q.Capture dynamics and control of space robot [M].Beijing:Science Press,2022.(in Chinese)

    • [83] WANG Q S,LI P,LEI T,et al.A fuel optimization method for the pursuer in the spacecraft pursuit-evasion game [J].Journal of Computational and Nonlinear Dynamics,2022,17(7):071002.

    • [84] WANG Q S,LI P,LEI T,et al.A Dimension-reduction method for the finite-horizon spacecraft pursuit-evasion game [J].Journal of Industrial and Management Optimization,2023,19(3):1983-1998.

    • [85] WANG Q S,CAI G P.Pose estimation of a fast tumbling space noncooperative target using the time-of-flight camera [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2021,235(16):2529-2546.

    • [86] WANG Q S,LEI T,LIU X F,et al.Pose estimation of non-cooperative target coated with MLI [J].IEEE Access,1809,7:153958-153968.

    • [87] LEI T,LIU X F,CAI G P,et al.Pose estimation of a noncooperative target based on monocular visual SLAM [J].International Journal of Aerospace Engineering,2019,2019:9086891.

    • [88] WANG Q S,ZHOU B Z,LIU X F,et al.Motion prediction of a free-floating noncooperative target considering J2 perturbation [J].Journal of Computational and Nonlinear Dynamics,2021,16(5):051001.

    • [89] ZHOU B Z,LIU X F,CAI G P,et al.Motion prediction of an uncontrolled space target [J].Advances in Space Research,2019,63(1):496-511.

    • [90] ZHOU B Z,CAI G P,LIU Y M,et al.Motion prediction of a non-cooperative space target [J].Advances in Space Research,2018,61(1):207-222.

    • [91] ZHOU B Z,LIU X F,CAI G P.Motion-planning and pose-tracking based rendezvous and docking with a tumbling target [J].Advances in Space Research,2020,65(4):1139-1157.

    • [92] ZHOU B Z,LIU X F,CAI G P.Robust adaptive position and attitude-tracking controller for satellite proximity operations [J].Acta Astronautica,2020,167:135-145.

    • [93] LIU Y Q,LIU X F,CAI G P,et al.Attitude evolution of a dual-liquid-filled spacecraft with internal energy dissipation [J].Nonlinear Dynamics,2020,99(3):2251-2263.

    • [94] LIU Y Q,YU Z W,LIU X F,et al.Active detumbling technology for high dynamic non-cooperative space targets [J].Multibody System Dynamics,2019,47(1):21-41.

    • [95] LIU Y Q,YU Z W,LIU X F,et al.Active detumbling technology for noncooperative space target with energy dissipation [J].Advances in Space Research,2019,63(5):1813-1823.

    • [96] Liu Y Q,Liu X F,Cai G P,et al.Detumbling a non-cooperative tumbling target using a low-thrust device [J].AIAA Journal,2022,60(5):2718-2729.

    • [97] 陈霈然,张晓龙,刘晓峰,等.基于点云的空间非合作目标结构识别问题研究 [J].上海航天(中英文),2022,39(4):128-138.CHEN P R,ZHANG X L,LIU X F,et al.Research on structure recognition of spatial non-cooperative objects based on point cloud data [J].Aerospace Shanghai(Chinese & English),2022,39(4):128-138.(in Chinese)

    • [98] YU Z W,LIU X F,LI H Q,et al.Dynamics and control of a 6-DOF space robot with flexible panels [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(6):1022-1034.

    • [99] ZHOU Q,LIU X F,CAI G P.Base attitude disturbance minimizing trajectory planning for a dual-arm space robot [J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2022,236(4):704-721.

    • [100] LIU Y Q,LIU X F,CAI,G P,et al.Two-stage trajectory planning for autonomous deployment and target capture of space manipulators [J].Journal of Guidance,Control and Dynamics,2023,46(6):1219-1227.

    • [101] ZHANG Q,LIU X F,CAI G P.Dynamics and control of a flexible-link flexible-joint space robot with joint friction [J].International Journal of Aeronautical and Space Sciences,2021,22(2):415-432.

    • [102] LIU X F,LI H Q,CHEN Y J,et al.Dynamics and control of space robot considering joint friction [J].Acta Astronautica,2015,111:1-18.

    • [103] LIU X F,LI H Q,WANG J S,et al.Dynamics analysis of flexible space robot with joint friction [J].Aerospace Science and Technology,2015,47:164-176.

    • [104] Yu Z W,Cai G P.Dynamics modeling and fault tolerant control of a 6-DOF space robot with flexible panels [J].International Journal of Robotics and Automation,2018,33:662-671.

    • [105] ZHANG X Y,LIU X F,WANG M M,et al.A new strategy for capturing a noncooperative spacecraft by a robotic arm [J].Multibody System Dynamics,2023,59(2):143-169.

    • [106] LIU X F,ZHANG X Y,CAI G P,et al.Capturing a space target using a flexible space robot [J].Applied Sciences,2022,12(3):984.

    • [107] LIU X F,ZHANG X Y,CAI G P,et al.A collision control strategy for detumbling a non-cooperative spacecraft by a robotic arm [J].Multibody System Dynamics,2021,53(3):225-255.

    • [108] LIU X F,CAI G P,WANG M M,et al.Contact control for grasping a non-cooperative satellite by a space robot [J].Multibody System Dynamics,2020,50(2):119-141.

    • [109] LIU X F,ZHANG X Y,CHEN P C,et al.Hybrid control scheme for grasping a non-cooperative tumbling satellite [J].IEEE Access,2020,8:54963-54978.

    • [110] LIU X F,LI H Q,CHEN Y J,et al.Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm [J].Multibody System Dynamics,2015,33(3):315-332.

    • [111] YU Z W,LIU X F,CAI G P.Dynamics modeling and control of a 6-DOF space robot with flexible panels for capturing a free floating target [J].Acta Astronautica,2016,128:560-572.

    • [112] LIU X F,ZHANG X Y,CHEN P R,et al.Inertia parameter identification for an unknown satellite in precapture scenario [J].International Journal of Aerospace Engineering,2020,2020:7521434.

    • [113] LIU X F,ZHOU B Z,XIAO B Y,et al.Inertia parameter identification of anunknown captured space target [J].Aircraft Engineering and Aerospace Technology,2019,91(8):1147-1155.

    • [114] LIU Y Q,LIU X F,CAI G P.Detumbling a flexible tumbling target using a space robot in post-capture phase [J].The Journal of the Astronautical Sciences,2022,69(4):1048-1075.

    • [115] LIU Y Q,LIU X F,CAI G P,et al.Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase [J].Multibody System Dynamics,2021,52(3):281-311.

  • 微信公众号二维码

    手机版网站二维码