-
引言
-
工业机械臂主要用于工业生产线等生产场景,完成指定的重复性、高精度和高质量的生产任务.为了保证机械臂作业的精度、稳定性和可靠性,机械臂需要以高刚度来抵抗外部载荷,而刚度的增加是以超出结构强度要求的质量来实现的.在功耗和灵活度等方面,高刚度机械臂被证明有着较大的不足.与刚性机械臂相比,柔性机械臂的结构柔韧性好、变形能力强、作业空间大、人机交互安全,适用于狭窄空间和非定型工作场景,最近受到了学术界和工程界的广泛关注.
-
2018年和2019年,美国国家科学基金会(NSF)和美国空军科学研究办公室(AFOSR)连续两年在前沿研究计划(Emerging Frontiers in Research and Innovation,EFRI)框架下发布了以“连续、顺应和可重构的软体机器人工程(Continuum,Compliant,and Configurable Soft Robotics Engineering,C3 SoRo)”为主题的研究方向.EFRI-C3 SoRo共资助项目 9 项,总计资助经费约 1800万美元,平均每项经费约为 200 万美元,项目周期 3~5 年,项目研究涵盖新型软体机器人设计与制备,软体机器人力学建模、软体机器人传感与控制等(表1).我国也高度重视柔性机器人这一前沿研究领域,在多个国家重大研究计划中立项支持.2016年,“共融机器人基础理论与关键技术”重大研究计划在国家自然科学基金委获批,其重点研究的关键科学问题之一即是“刚-柔-软体机器人的运动特性与可控性”,并尤其关注刚-柔-软机器人构型设计及力学行为解析.“十四五”国家重点研发计划“智能机器人”重点专项也高度关注柔性机器人技术,设立了柔性集成制造系统、柔性外科手术机器人、柔性焊接机器人、柔性精密传动等研究方向,并重点考核与柔性相关的运动自由度、定位精度、力感知精度等技术指标.在上述重大研究计划的资助下,柔性机械臂的设计、建模和控制研究取得了长足发展.图1展示了在Web of Science(WOS)数据库中,以“flexible/soft manipulator”或“flexible/soft robotic arm”为主题的期刊、会议和综述论文等的数目及其引用量在 2008 年至 2022 年间的演变趋势.近 15年来,在柔性机械臂领域发表的论文数目增长了近6倍,于2022年达到了2200余篇,引用量从2008年的40次跃升到2022年的40273次,这充分表明了学术界对柔性机械臂这一前沿研究领域的关注.
-
机械臂的柔性来源包括连杆柔性和关节柔性.本文主要讨论柔性连杆机械臂,而关节柔性的相关研究不在本文关注范围,读者可以参考相关综述论文[1-3].最近几年,各种柔性机械臂的设计不断涌现并被尝试应用于不同场景.例如,新型超冗余管状机械臂[4]通过具有可变中性轴机构和可调刚度,保证了机械臂的操作精度和高有效载荷能力[图2(a)].从头足类章鱼获得灵感,学者们提出了气驱动和绳驱动结合的柔性机械臂设计[5],两种驱动的融合导致了整体的拮抗驱动机制,气驱动和绳驱动利用类似章鱼手臂的纵向和横向肌肉的运动方式,实现了多种运动模式,包括弯曲、拉伸、收缩和变硬.在医疗领域运用中,常见的柔性机械臂包括模块化柔性机械臂、连续体机械臂和蛇形机械臂等,它们具有高灵活性、结构柔性和操作安全性,可用于微创和外科手术[6-8];为保证外科手术中激光传输的精确性,Fang等人[9]提出了一种流体驱动的柔性机械臂系统[图2(b)],其能够在粘膜上进行精细、精确和可重复的激光点控制.与传统的离散体机械臂相比,连续体机械臂不仅具有更高的自适应和避障能力,在抓取不同尺寸物体方面也具有明显优势.为实现柔性机械臂与不同曲率的非结构化环境的交互,Ma 等人[10]提出了一种仿象鼻气动柔性机械臂,通过调节局部刚度来适应变化曲率的环境[图2(c)];Liu 等人[11]提出了一种约束极少的新型象鼻机械臂,简化了操作过程中对传感和控制系统的要求.此外,还有学者提出了受折纸启发的柔性机械臂:Kaufmann等人[12]利用双稳态折纸结构构建机械臂,有效降低了柔性机械臂的控制要求;Jeong等人[13]基于折纸塔设计了一种三指机械臂,并证明了其能有效抓取易碎物体;基于折纸结构变大小、变形状和变刚度的特性,Zhang等人[14]设计的折纸机械臂实现了多种变形模式,如弯曲、扭转、伸缩以及他们的组合[图2(d)].
-
图1 以flexible/soft manipulator或flexible/soft robotic arm为主题的研究发展历程分析
-
Fig.1 Analysis of the development process of flexible/soft manipulator-themed or flexible/soft robotic arm-themed research
-
尽管柔性机械臂具有许多刚性机械臂所不具有的优点,但其也面临着由于结构柔性效应增加而产生的精度降低和振动问题.因此,柔性机械臂的研究必须充分考虑结构的柔性特征,柔性机械臂的高精度控制也需要考虑其动力学特性.开展柔性机械臂动力学和高精度控制研究的前提是建立其动力学模型,但柔性机械臂是一个复杂的动力学系统,具有非线性、强耦合和时变等特点,这使得柔性机械臂的动力学建模极具挑战.
-
尽管柔性机械臂具有广阔的应用前景,但其结构刚度低,容易引起振动问题,针对不同场景也常需要进行专门的结构设计和分析,缺乏一般性理论.对于柔性机械臂这一高复杂度系统,精确的运动学模型能够对机械结构设计起到关键的指导作用,而有效的动力学模型则有助于获得更好的控制效果.因此,柔性机械臂研究的一个重要方向就是运动学和动力学建模,以及在此基础上的设计方案和控制策略.但是,柔性机械臂是一类典型的连续动力学系统,其模型可以由非线性偏微分方程描述,模型的精确求解非常困难,无限维模型也对控制方案的设计施加了许多限制.
-
为解决上述难题,学者们提出了多种等效动力学建模方法来解决柔性机械臂的大变形预测、振动预测与控制、运动规划和高精度位姿控制等问题.尽管取得了一些进展,柔性机械臂动力学建模的方法框架尚不成熟和完备,相关研究依然面临较大挑战,但也充满机遇.作为动力学建模的基础,本文首先介绍柔性机械臂的常用运动学建模方法;随后详细介绍柔性机械臂的动力学建模方法,并概述当前柔性机械臂动力学的主要研究内容.最后,本文梳理柔性机械臂动力学领域值得关注的若干问题,为相关的研究者提供参考.
-
1 运动学建模
-
相比于刚性机械臂,柔性机械臂的运动学具有数学描述复杂、非线性强、逆解多解性等难题,解决这些问题的前提是建立柔性机械臂的运动学模型.本节简要介绍了柔性机械臂的运动学建模方法,引用了介绍相关方法的文献.柔性机械臂的柔性杆常被假设为广义欧拉-伯努利梁[15],在此基础上,学者们提出了一系列运动学建模方法,包括曲率法、伪刚体运动学(Pseudo-Rigid Body,PRB)、基于Cosserat杆的运动学建模、结构几何分析、Denavit-Hartenberg(D-H)表示法及坐标法,以及机器学习及数据驱动方法.
-
1.1 曲率法
-
在连续体机械臂的运动学建模中,常基于恒定曲率假设来简化模型.常曲率常被认为是连续体机器人的理想几何特性,可以有效简化运动学建模.恒定曲率假设不能完全描述柔性机械臂的运动学,可变曲率假设虽然可以更准确地描述连续体机械臂的运动学,但其过程更加复杂.可变曲率多截面连续体机械臂的运动学建模和分析还存在许多难题,包括复杂的矩阵计算、奇点问题、不可伸缩性以及在某些情况下无法找到数值解等[16].
-
Fig.3 Simplified kinematics model of flexible manipulator. (a) Boundary conditions for PH curves[17], (b) Kinematic parameters of a continuous robot with a neutral skeleton and dual pivot flexible joints[18], (c) Elephant trunk robotic arm [19], (d) Linear, constant curvature models for rigid and flexible backbones [20]
-
Singh等人采用基于毕达哥拉斯曲线的定量建模方法[17]建立了具有可变曲率的连续体机械臂模型[图3(a)],并以此为基础进行逆运动学问题求解.Barrientos-Diez等人基于驱动空间和构型空间的运动学建模方法[18]给出了两端固定、具有中心支撑轴和柔性关节的连续机械臂的运动学参数[图3(b)],仿真/实验结果表明该方法有效降低了计算需求.Mishra等人[19]采用椭圆积分方法建立了仿生连续体机械臂的可变曲率运动学模型[图3(c)].基于分段恒定曲率模型,Wang等人[20]比较了柔性骨干中的线模型、柔性骨干中的恒定曲率模型、刚性骨干中的线模型和刚性骨干中的恒定曲率模型[图3(d)],在提高建模精度的同时实现了动力学模型的快速解耦.
-
Lu等人[21]基于恒定曲率假设并结合D-H方法、泰勒级数和四元数,建立了柔性机械臂的正运动学模型,并推导出了逆运动学的近似解析解.在无负载或小负载条件下,Li等人[22]基于恒定曲率假设建立了线驱柔性机械臂的运动学模型.针对多连杆柔性机械臂,Marchese等人[23]采用片状恒定曲率假设对柔性机械臂进行了运动学建模.为分析柔性机械臂的局部变形,Giorelli等人[24]采用分段恒定曲率假设建立了柔性机械臂的静态变形模型.为避免奇点问题,Yang等人[25]采用分段恒定曲率近似处理的方法建立了连续体机械臂的非恒定曲率的正、逆动力学模型(图4):
-
图4 连续体机械臂的几何关系[25]
-
Fig.4 Geometric relationships of the continuum robotic arm [25]
-
其中,是第i个节段对第i-1个节段的齐次变换矩阵,Li是第i个节段的长度;ψi为轴向旋转角,θi为轴向偏转角,T(Z,±ψi)为绕z轴旋转的旋转变换矩阵.考虑弹性的影响,Runge等人[26]运用曲率法以求解变直径的柔性机械臂的运动学方程.针对超弹性材料制成的连续体机械臂,Zhao等人[27]提出了位移补偿法以得到其逆运动学的闭式解.
-
1.2 伪刚体运动学(PRB)模型及基于Cosserat杆的运动学模型
-
连续体机械臂在运动过程中会连续变形,而学者们已经建立了运动学模型来描述柔性体的弹性变形.基于柔性体静力学中的伪刚体理论,PRB模型先将机械臂的柔性连杆近似为由传统的旋转关节、万向节关节或球形关节连接的刚性连杆,然后将柔性机械臂简化成由n个关节连接的n+1个均匀间隔的刚性连杆.相比而言,基于Cosserat杆的运动学模型可以更为精确地描述机械臂柔性杆的变形特征,包括其延展、剪切、弯曲和扭转这四种应变.
-
Campisano等人[28]分别用PRB方法和Cosserat杆模型建立了由水射流驱动的柔性连续体机械臂HydroJet的运动学模型,并给出了每个关节的内部弯矩和挠度角之间的关系(图5):
-
其中代表内部弯矩的矢量,Ki是第i个关节的刚度矩阵,ωi是第i个关节上的正交轴矢量,θi是第i个关节绕各轴旋转的角度矢量.
-
伪刚体理论模型主要侧重于平面静态建模,它准确地描述了柔性体的大变形,计算效率高.Venkiteswaran等人[29]利用伪刚体建模方法得到了连续体机械臂在多重外载荷下的静力学方程.针对由弹性中心轴组成的连续体机械臂,Huang等人[30]运用了基于PRB理论的三维静态建模方法来建立运动学模型.针对平面连续体机械臂,Kuo等人[31]运用了伪刚体模型方法来分析其运动学.Trivedi等人[32]建立的动力学模型充分考虑了柔性机械臂中非线性、自身重量和有效载荷等影响因素.
-
将连续体机械臂视为多个具有耦合边界条件的Cosserat杆,Till等人[33]提出了柔性机械臂逆运动学的数值求解方法.同样基于Cosserat理论,Ma等人[34]将柔性机械臂分为多段,然后依次建立了各段的动力学模型.针对具有高自由度的仿章鱼触手柔性机械臂,Niu等人[35]推导出了柔性机械臂闭式方程的解析解.
-
图5 连续体机械臂HydroJet运动学模型[28].(a)连续体机械臂HydroJet,(b)Cosserat框架,(c)PRB框架
-
Fig.5 Kinematic model of continuum robotic arm HydroJet [28]. (a) Continuum robotic arm HydroJet, (b) Cosserat framework, (c) PRB framework
-
1.3 几何结构分析
-
针对连续体机械臂在小载荷下发生大变形的问题,基于分段恒定曲率假设的计算过于复杂,因此,学者们通过几何结构分析来推导末端执行器的位置方程.为得到柔性机械臂末端执行器的准确位置,Karimi等人[36]考虑了柔性关节处的变形,推导出了末端位置的表达式[图6(a)].针对在载荷作用下机械臂的静力学平衡和结构产生的刚度变化,Zhao等人[37]建立了基于平面双三角形张拉机构的多连杆柔性机械臂的运动学模型.Barrientos等人[18]将麦克劳林一阶展开应用于柔性机械臂,建立了机械臂的分段线性化运动学模型.为避免连续体机械臂中的奇点问题,Allen等人[38]建立了机械臂柔性关节部分的闭式运动学方程[图6(b)].Lee等人[39]通过几何方法推导了柔性机械臂的运动学方程,并通过实验验证了运动学模型的准确性.
-
折纸机械臂是柔性机械臂中较为新颖的一类.结合折纸结构的柔性机械臂的复杂性在于折纸刚性面围绕折痕线的旋转,这些折痕线可等效为渐进式关节.而折纸的刚性折叠运动是由各个顶点的运动共同决定的.因此,建立一个运动学模型以及确定单个顶点的刚性折叠性条件,在折纸机械臂的设计中显得尤为重要.基于折纸末端点的运动学与底层的三角形各点的关系,Zimmermann等人[40]提出了三单元原理,为折纸机械臂的运动学建模提供了方法.Stanković等人[41]通过球形余弦定律推导出了折纸未知二面角的解析表达式,并利用刚性可折叠性得出了机械臂运动学模型.Chen等人[42]将机械臂的折纸单元简化为等边三角形,通过几何形状之间的关系建立了机械臂运动学模型.
-
1.4 Denavit-Hartenberg法(D-H法)
-
相较于传统刚性机械臂,柔性机械臂由多个柔性单元串联组成,它的运动学模型更加难以建立准确.D-H法通过将笛卡尔空间转换为关节空间来建立运动学模型,而这种空间变换对柔性机械臂的逐点控制是必要的.
-
Wang等人[43]运用D-H法简化了多关节连续体机械臂,并构建了关节空间的运动学模型(图7).针对蛇形柔性机械臂,Omisore等人[44]使用D-H法解决了正、逆运动学问题.针对一种多段柔性机械臂,Lu等人[21]结合D-H方法、泰勒级数和四元数,推导了逆运动学的近似解析解.Chawla等人[45]通过D-H法得到了多关节串联机械臂从关节空间到笛卡尔空间的映射关系.
-
图7 连续体机械臂的D-H坐标系[44]
-
Fig.7 D-H coordinate system of a continuum robot arm[44]
-
图8 逆运动学使用的神经网络模型[46]
-
Fig.8 Neural network models used in inverse kinematics [46]
-
1.5 机器学习及数据驱动方法
-
与基于模型的方法相比,无模型方法的计算成本较低.但机器学习需要在柔性机械臂上进行大量实验才能获得学习集,再用于训练柔性机械臂的运动学模型.
-
通过无模型的机器学习方法,Shastri等人[46]训练了多层神经网络,为柔性机械臂逆运动学方程提供近似解(图8),缩短了逆运动学求解的计算时间并降低了复杂度.为避免传统的机械臂逆运动学求解算法中大量的迭代计算过程,Gao等人[47]改进了反向传播神经网络,并用于柔性机械臂逆解的求解,提高了逆运动学方程求解的精度.为解决柔性冗余机械臂的逆运动学问题,Csiszar等人[48]采用了支持向量回归和混合机器学习策略,并进行了有效性的验证.结合极限学习机、高斯混合回归和K-最近邻回归三种回归方法,Xu等人[49]运用数据驱动的方法建立了柔性机械臂的逆运动学模型.对于可变曲率柔性机械臂,学者运用单节迭代方法[16]来解决逆运动学问题.考虑刚柔耦合的变直径柔性机械臂的压力、载荷等因素,Yang等人[25]采用深度神经网络解决了逆运动学求解问题.
-
2 柔性机械臂动力学建模
-
柔性连杆机械臂是具有无限个自由度的连续动力学系统,其控制由非线性、强耦合的常微分方程和偏微分方程实现,而求出这种数学模型的精确解通常是不可行的.通常采用假定模态、有限元或集中参数方法对柔性连杆离散化,再利用拉格朗日方程建立动力学模型.
-
My等人[50]采用假设模态法和有限元法将柔性连杆离散化,再利用欧拉-伯努利方程推导梁的动力学方程,最后通过拉格朗日方程得出了柔性机械臂的动力学方程.Ata等人[51]在切向坐标系和虚拟链路坐标系中,使用扩展的哈密尔顿原理对具有末端质量的单连杆柔性机械臂进行动力学分析.Subedi等人[52]用位移矢量和旋转矩阵来建立平面三连杆柔性机械臂的运动学模型,最后使用拉格朗日方法推导出了动力学方程:
-
其中M(q)是惯性矩阵,是科里奥利力和离心力的矢量阵,G(q)是重力矩阵,K是刚度矩阵,D是关节粘性摩擦和连杆结构的阻尼矩阵,τ是作用机械臂上的广义力,q是广义坐标向量.
-
2.1 集中参数法
-
集中参数法是指由有限个惯性元件、弹性元件及阻尼元件等组成的用常微分方程来描述的离散系统.该方法建立的模型形式简单,并且在处理小挠度的单连杆柔性机械臂的动力学问题时精度较高.在集中参数法中,任何柔性接头都被认为是用来储存势能的弹性元件,任何柔性连杆都将被等效为一个质量-弹簧-阻尼系统.
-
Rone等人[53]使用一组有限的运动学变量描述柔性机械臂的曲率变化,建立了动力学模型来解释柔性机械臂的惯性、驱动、摩擦、弹性和重力效应.针对非线性动力学参数未知的柔性机械臂,Qi等人[54]提出了灰盒分布式参数建模方法,建立了一个n维的ODE系统:
-
其中非线性补偿项f[a(t),q(t)]是位移的函数,φi(x)是第i个特征函数,g(x)是满足边界条件的形函数,ai(t)是第i个表示运动规律的时间函数,m是机械臂的密度,c是阻尼系数,E是杨氏模量,I是惯性矩,q(t)是垂直于机械臂轴线的外激励,D∈Rn×n,G∈Rn×n是相应矩阵的参数.考虑关节柔性,Comi等人[55]基于集中参数系统法建立了柔性机械臂的数值模型.针对质量分布在末端的情况,Mishra等人[56]将柔性机械臂建模为可变曲率的弯杆和弹簧阻尼器.
-
线性柔性机械臂的性能取决于基本振动模态,学者运用集中参数法[57]将柔性杆离散化来构建动力学模型.为提高柔性机械臂模型的准确性,Godage等人[58]提出了稳定模态的集中参数动力学模型[图9(a)].He等人[59]推导了自由端具有载荷的柔性机械臂的非线性动力学方程,并以常微分方程的形式对柔性臂杆进行了控制.对量化控制的问题,Cao等人[60]研究了具有量化输入的双连杆刚柔耦合机械臂的控制问题.考虑内摩擦的影响,Jung等人[61]提出了一种包含非线性效应、摩擦的建模方法建立了柔性机械臂的动力学模型[图9(b)].针对在质量高速运动的柔性机械臂,Sarkhel等人[62]将单连杆柔性机械臂构建为柔性钓鱼竿,采用了集中参数方法对柔性杆进行建模[图9(c)].
-
为提高柔性机械臂挠度描述的准确性,Sun等人[63]通过集中弹簧质量方法对系统进行了建模.为分析柔性机械臂的动力学,Giri等人[64]使用模型单元(质量、弹簧和阻尼器)对连续体机械臂的局部进行了建模.针对柔性多连杆机械臂的轨迹跟踪与振动控制问题,Giorgio等人[65]应用集中参数法对连杆进行了离散化.将机械臂的弹性杆构建为成对的弹簧和阻尼器,Arkouli等人[66]为柔性机械臂的动力学建模提供一个框架.针对动力学实验的参数识别,Kim等人[67]提出了一个等效的集总元件系统,完善了柔性机械臂的伺服定位系统.为了解决柔性机械臂动力学模型计算复杂、精度低的问题,Zhang等人[68]提出了结合弹簧质量系统的柔性机械臂动力学模型.
-
2.2 假设模态法
-
柔性连杆机械臂在理论上具有无限自由度,而无限自由度到有限自由度是通过模态截断实现的.假设模态法(Assumed Modes Method,AMM)被广泛用于建立柔性连杆机械臂的有限自由度动力学模型.假设模态法是一种广义坐标近似法,将连续系统离散化,利用有限个已知的模态函数线性组合来近似确定系统的响应.在动力学模型的假设模态中,柔性连杆系统的柔性通常由截面的一组基于空间模态特征函数和时变模态振幅的有限模态函数组合来表示.学者利用模态振型函数和模态坐标来离散系统的动力学方程,再利用模态截断缩小方程的规模以便于柔性机械臂动力学的求解.
-
柔性连杆机械臂是一个连续系统,它的动力学方程可表示为[69]:
-
其中,n为模态阶数(n=1,2,···);Wn(x)为第n阶模态振型函数,x是与未变形的中性梁轴的距离;Tn(t)为第n阶模态的时间相关模态坐标.由于不可能包括系统的所有模态,假设模态法通过假设有限数量的模态来对系统进行建模,利用模态截断来重写方程,如下所示:
-
m为假设模态的模态截断阶数.在AMM中,有许多可选择的边界条件.理想情况下,最佳的假设模态集是最接近系统的自然模态集.选择适当的边界条件能得到更好的结果,常用模态的边界条件主要有[70]:简支-简支形式;固支-自由形式;固支-固支形式;固支-简支形式.假设模式法的动力学特性优于集中参数模型[71],只考虑弹性变形,在无动态约束下能更准确地表示出平面柔性连杆机械臂的动力学模型:
-
其中B(q)是惯性矩阵,是科里奥利力和离心力的矢量,K是正定刚度矩阵,D是正定阻尼矩阵,τ是关节扭矩输入,b是耦合矩阵,q是广义坐标向量.
-
Heidari等人[72]对假设模态法截断导致的柔性机械臂的零点位置变化进行了全面研究,为模态数目的选择提供了准则:
-
λ是柔性连杆的侧向挠度,λx(x,t)和λt(x,t)分别是λ(x,t)关于x,t的偏导数,类似的符号被用于高阶导数,Ih为惯性质量矩,τ为所受外力矩,μ为扰度引起的内力矩,E为杨氏模量、I为截面惯性矩,θ为关节转动角度,ρ为质量密度.考虑一些不同的边界条件,Khoiy等人[70]采用假设模态法对柔性机械臂进行了非线性动力学分析(图10).在每个柔性臂的末端施加适当的边界条件,Subedi等人[52]将柔性机械臂的连杆挠度简化为一个高阶的有限维模型.考虑关节变量对弹性位移的影响,Mishra等人[69]利用拉格朗日方法和假设模态法得到了单连杆柔性机械臂的动力学模型.Ding等人[73]着重研究了假设模态法计算瞬态变形响应的能力,由此建立了双连杆连续体机械臂的动力学模型.Sharifnia等人[74]使用近似模态分析方法,提出了三连杆柔性机械臂的柔性多体动力学.考虑n阶弹性模态,Gao等人[75]采用假设模态法在切坐标系统中推导了时空变化扰动未知的柔性机械臂动力学方程.在棱柱形柔性连杆的机械臂中,Theodore等人[76]利用假设模态法建立了时间相关的动力学方程.Gao等人[77]实现了n维模型从偏微分方程到常微分方程的转换,建立了单、双连杆柔性机械臂的n维离散化模型.针对任意数量连杆的机械臂,Celentano等人[78]采用了假设模态法降低计算成本.Jeong等人[79]采用可扩展梁假设简化了应变能和几何约束,对大挠度的柔性机械臂连杆进行了动力学分析,图11展示了柔性杆和无限小段变形前后的状态,其中,杆上一点P0在发生变形后移动到P,施加的水平力和垂直力为F1和F2,施加的力矩为M.Ata等人[80]运用四种模态振型计算了柔性机械臂连杆的弹性挠度,证明了不同初始条件和边界条件对关节扭矩有着较大影响.对于平面柔性连杆柔性关节机械臂的闭式有限维动力学模型,Vakil等人[81]结合假设模态法和拉格朗日方程简化了推导过程和导数计算.
-
图10 双连杆柔性机械臂系统[70]
-
Fig.10 Double link flexible robotic arm system [70]
-
图11 柔性杆和微元体节段承受大扰度.[79](a)悬臂梁,(b)微元体节段
-
Fig.11 Flexible rods and infinitesimal segments subjecting to large disturbances [79]. (a) Cantilever beam, (b) Infinitesimal segments
-
2.3 有限元法
-
有限元法(Finite element method,FEM)是一种计算技术,用于获得工程中边值问题的近似解,基本概念是将计算域拆分为单个小块,并找到满足边界内微分方程的局部解.有限元法将连续体离散化为有限数量的部分(或单元),并可以通过离散化单元来估计连续域的特征.有限元法的数值分析通过离散化的时域和空间域给出,有限元法为每个单元生成一个简单的代数方程,并通过最小化误差函数值来求解这些方程.与假设模态法相比,有限元法[77]的惯性矩阵计算所需的数学运算更少.但由于状态空间方程的数量更多,有限元法数值模拟时间可能更长,近似柔性连杆的刚度会偏高,通常用于处理有界域的问题.
-
图12 有限元分析平面双连杆柔性机械臂系统[85]
-
Fig.12 Finite element analysis of planar dual linkage flexible robotic arm system [85]
-
通过对气体驱动的柔性机械臂连杆的固有频率和响应形状的分析,Gharavi等人[82]提出了一个有限元模型来描述其动力学行为.为验证动力学模型在频域和时域的准确性,Singla等人[83]利用有限元法建立了双连杆柔性机械臂的动力学模型.在连杆中引入局部坐标系,My等人[50]基于有限元方法和拉格朗日法推出了柔性机械臂的动力学方程.Zebin等人[84,85]采用有限元方法和拉格朗日法将动力学模型由单杆柔性机械臂扩展到了多连杆柔性机械臂(图12),一个单元的动能和势能可以表示为:
-
E,I,ρ,A分别代表机械臂的杨氏模量、截面惯性矩、单位体积质量密度和横截面积.
-
考虑粘性阻尼、离心力、科里奥利力和重力以及刚性和柔性运动之间耦合的因素,Mishra等人[86]采用拉格朗日法和有限元方法对基于平面框架单元的柔性机械臂进行了动力学建模.对于柔性平面单连杆机械臂,Boucetta等人[87]使用拉格朗日方程和有限元方法描述了它的动力学模型.对于软体机械臂设计中传统的试错过程,Zheng等人[88]采用有限元方法对硅胶软体机械臂动力学进行了建模.为处理在不同的材料和边界条件下柔性机械臂的动力学问题,Bayo等人[89]提出了一种基于伯努利-欧拉梁理论结构的有限元方法.针对三维柔性连杆机械臂的等效刚性系统,Vidoni等人[90]通过有限元法将等效刚体-连杆系统的概念进行了扩展.为了对柔性机械臂进行非线性动力学分析,同时考虑剪切和旋转惯性的影响因素,Esfandiar等人[91]基于混合有限元公式的和广义哈密顿方法完成了动力学建模.为了控制柔性单连杆机械臂的运动,Muhammad等人[92]通过有限元法推导了它的动力学方程.为有效抑制水下柔性单连杆机械臂系统的振动和控制角位移,Al-khafaji等人[93]使用拉格朗日方法和有限元方法建立了动力学模型.为开发一种基于模型的可预测系统并控制柔性杆变形,Grazioso等人[94]运用非线性有限元形式的特殊欧几里得组框架,对柔性机械臂进行了动力学建模.
-
图13 柔性机械臂有限元分析.[102](a)平面柔性连杆并联机械臂,(b)机械臂有限元模型
-
Fig.13 Finite element analysis of flexible manipulator. [102] (a) Planar flexible linkage parallel robotic arm, (b) Finite element model of robotic arm
-
Mostafa等人[95]采用有限元方法对柔性机械臂系统进行了动力学建模,并通过柔性单元的形函数推导出了总位移.在柔性机械臂的连杆和关节参数不确定的情况下,Lara-Molina等人[96]提出一种基于随机有限元法的动力学模型.Farid等人[97]提出了一种使用节点曲率近似欧拉-伯努利梁单元曲率分布的有限元公式,有效地提高了柔性机械臂动力学模型的精度.为推导大挠度的柔性连杆机械臂的几何非线性公式,Heidari等人[98]采用非线性有限元方法进行了非线性动力学建模.为解决柔性单连杆机械臂的控制问题,Mejerbi等人[99]建立了基于拉格朗日方程和有限元方法的动力学模型.为抑制单连杆柔性机械臂的振动,Dubay等人[100]在控制算法中运用了有限元模型来提供更准确的动力学行为预测.考虑了惯性效应和结构阻尼,Tokhi等人[101]基于有限元方法建立了平面单连杆柔性机械臂的动力学模型.忽略弹性变形对连杆运动的影响,Piras等人[102]对平面柔性连杆并联机械臂进行了有限元分析.图13描述了机械臂有限元模型的7个单元和节点,Piras等人推导了单个单元的拉格朗日运动方程:
-
其中Me和Ke分别是单个单元的质量和刚度矩阵;Pe是载荷向量;qe是局部节点坐标的向量;ΥBe-由刚体运动和柔性变形的耦合产生;2ΥBe是离心刚度项;KGe为几何刚度项.
-
3 柔性机械臂动力学的主要研究内容
-
运动学建模对于柔性机械臂的形状控制和姿态估计至关重要,而动力学模型是柔性机械臂感知、规划和控制的基础.柔性机械臂的动力学研究内容主要分为以下几类:基于动力学模型的大变形预测、振动预测和振动控制、运动规划和高精度位姿控制.下面对这些动力学研究内容进行简要介绍:
-
在基于动力学模型的大变形预测方面,高效可靠的动力学模型对于连续机械臂的形状控制和预测来说至关重要.Wang等人[103]将柔性机械臂简化为等效悬臂梁,再利用连续梁的振动理论建立其动力学模型,之后通过计算动力学模型的模态振型得到大挠度响应,最后通过实验结果与建模结果的对比,证实了动力学模型对大变形的预测是精确有效的.针对具有柔性表面的机械臂,He等人[104]提出了包含表面和驱动元件的物理特性的质量块模型,预测了多个曲率方向的变形,并通过实验系统进行了验证.
-
针对受干扰的柔性机械臂的振动预测和控制问题,Zhao等人[105]在偏微分方程动力学模型的基础上,研究了一种控制方案来稳定机械臂振荡同时减弱外部扰动,并在不对偏微分方程动力学进行离散化或简化的情况下,利用严格的分析方法证实了控制器的稳定性.在存在时滞的情况下,Araújo等人[106]通过布置稳定极点的方法抑制了双连杆柔性机械臂的振动,并通过收敛法来精确分配这对极点,使柔性机械臂具有更好的稳定性.
-
对于柔性机械臂的运动规划问题,Renda等人[107]基于严格的几何精确方法,建立了由钢索驱动的柔性机械臂的动力学模型,并针对密集介质中运动的连续体机械臂提出了有效的控制策略.Korayem等人[108]基于庞特里亚金最小原理,建立了包含底座和柔性机械臂耦合运动、底座非完整约束以及连杆柔性等因素的强非线性动力学模型,并基于此建立了考虑所有非线性状态和控制约束的最优控制方法,通过仿真证明了其有效性.
-
在高精度位姿控制方面,为处理柔性机械臂的非线性输入和反冲力约束问题,He等人[104]将柔性机械臂的PDE模型与非线性自适应反演算法相结合,为柔性机械臂系统提出了一种新的自适应反演控制算法及相应的边界控制器,并通过理论分析、数值模拟和物理实验证明了控制器的有效性和稳定性.针对空间机械臂的运动控制问题,在建立高度非线性和完全耦合的动力学控制方程的基础上,Sabatini等人[109]实现了电机主动阻尼控制,用于减少空间机械臂柔性连杆在轨运行期间产生的结构振动,但由于控制效果取决于柔性机械臂的整体惯性和几何特征,这种方法不具有普遍有效性.
-
除了上面这些应用,动力学模型还可以用于指导柔性机械臂的构型设计,对实现柔性机械臂实时控制、主动柔顺和轨迹规划也有重要意义.目前,柔性机械臂的动力学研究和基于动力学模型的应用正在不断涌现,已逐渐成为柔性机械臂研究的新前沿和重要突破方向.
-
4 总结和展望
-
近年来,柔性机械臂在制造、自动化和机器人等领域呈现出广泛应用,其理论和应用研究受到了广泛关注.与传统刚性机械臂不同,柔性机械臂在非结构化的环境中具有高灵活性,与使用者有着更为安全的交互.从本质上来说,柔性机械臂与环境和对象的交互属于动力学过程,为实现柔性机械臂的实时控制和安全交互,开展柔性机械臂的动力学研究是将柔性机械臂应用于实际工程中的必由之路.柔性机械臂动力学模型的建立有助于更好地研究机械臂在运动过程中受到的内力和外力,分析这些力如何改变机械臂的运动状态,以及明确关节受力与末端执行器受力的相互关系.引入准确的动力学模型也将使我们更好、更精确地跟踪预设轨迹,在非结构化环境和未知环境中及时避障,在人机交互的过程中更好地控制柔性机械臂与外界的相互作用.
-
本文主要讨论了柔性机械臂的建模问题.通过回顾大量论文,本文首先总述了作为动力学建模6基础的运动学建模的相关方法;随后本文归纳了柔性机械臂的动力学建模方法,包括集中参数法、假设模态法和有限元法等,并指出了不同建模方法的适用场景.最后,我们也简要地讨论了柔性机械臂动力学的主要研究内容.虽然本文已经较为系统地总结了目前柔性机械臂的动力学建模方法,但柔性机械臂的动力学建模研究总体仍未成熟,还有许多问题值得深入探讨.
-
在理论建模过程中:(1)为提高柔性机械臂动力学模型的准确性和为实际设计提供理论依据,研究重点将放在未建模动力学的影响,例如,在流体介质中工作时,可引入流体-柔性体相互作用模型;(2)为提高柔性机械臂控制模型的可靠性,在大变形、高速运动和复杂环境中建立包含非线性因素的动力学模型将成为一个重要的研究方向;(3)对于柔性机械臂的控制模型中存在着的动力学限制,重点关注柔性连杆的基于动力学模型的控制策略.
-
在工程应用方面:(1)基于动力学模型,设计者可以在柔性机械臂中加入储能元件,以开发低能量需求的机械臂;(2)对于复杂环境,研究重点关注通过动力学模型感知和适应不确定性,并由此提高柔性机械臂运动控制的鲁棒性;(3)柔性机械臂动力学建模和分析方法能够帮助研究人员发现潜在的性能瓶颈和设计缺陷,为优化设计提供理论依据.
-
此外,柔性机械臂也将成为动力学理论研究与应用开发相结合的新平台,为传统力学学科带来新的研究对象,并为工程应用提供了全新的思路.未来研究将进一步提出有效的柔性机械臂动力学建模和辨识新方法,着力解决动力学模型的复杂性和参数不确定性,提升建模方法对不同柔性机械臂的通用性.建立高精度动力学模型并实现基于此的高精度力控也将是一直的追求方向,通过感知非结构化环境、未知环境和复杂任务下施加给柔性机械臂的激励,可以计算得到主动控制作用力,实现柔性机械臂的准确实时控制和主动柔顺.此外,未来研究也将关注基于动力学模型的控制策略,实时预测柔性机械臂的位置和轨迹信息,解决输入/输出的延迟和时间延迟导致的柔性机械臂的非线性时滞问题.我们期待柔性机械臂的动力学研究能在未来涌现出更多理论和应用方面的新成果.
-
参考文献
-
[1] DWIVEDY S K,EBERHARD P.Dynamic analysis of flexible manipulators,a literature review [J].Mechanism and Machine Theory,2006,41(7):749-777.
-
[2] OZGOLI S,TAGHIRAD H D.A survey on the control of flexible joint robots [J].Asian Journal of Control,2006,8(4):332-344.
-
[3] RAHIMI H N,NAZEMIZADEH M.Dynamic analysis and intelligent control techniques for flexible manipulators:a review [J].Advanced Robotics,2014,28(2):63-76.
-
[4] KIM Y J,CHENG S B,KIM S,et al.A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery [J].IEEE Transactions on Robotics,2014,30(2):382-395.
-
[5] STILLI A,WURDEMANN H A,ALTHOEFER K.Shrinkable,stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2014:2476-2481.
-
[6] RANZANI T,CIANCHETTI M,GERBONI G,et al.A soft modular manipulator for minimally invasive surgery:design and characterization of a single module [J].IEEE Transactions on Robotics,2016,32(1):187-200.
-
[7] BURGNER-KAHRS J,RUCKER D C,CHOSET H.Continuum robots for medical applications:a survey [J].IEEE Transactions on Robotics,2015,31(6):1261-1280.
-
[8] CIANCHETTI M,LASCHI C,MENCIASSI A,et al.Biomedical applications of soft robotics [J].Nature Reviews Materials,2018,3:143-153.
-
[9] FANG G,CHOW M C K,HO J D L,et al.Soft robotic manipulator for intraoperative MRI-guided transoral laser microsurgery [J].Science Robotics,2021,6(57):eabg5575.
-
[10] MA K,CHEN X D,ZHANG J,et al.Inspired by physical intelligence of an elephant trunk:biomimetic soft robot with pre-programmable localized stiffness [J].IEEE Robotics and Automation Letters,2023,8(5):2898-2905.
-
[11] LIU Y W,GE Z,YANG S K,et al.Elephant’s trunk robot:an extremely versatile under-actuated continuum robot driven by a single motor [J].Journal of Mechanisms and Robotics,2019,11(5):051008.
-
[12] KAUFMANN J,BHOVAD P,LI S Y.Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms [J].Soft Robotics,2022,9(2):212-223.
-
[13] JEONG D,LEE K.Design and analysis of an origami-based three-finger manipulator [J].Robotica,2018,36(2):261-274.
-
[14] ZHANG C,ZHANG Z,PENG Y,et al.Plug & play origami modules with all-purpose deformation modes [J].Nature Communications,2023,14:4329.
-
[15] NIKRAVESH P E.Computer-aided analysis of mechanical systems [M].Englewood Cliffs,USA:Prentice-Hall,1988.
-
[16] KOLPASHCHIKOV D,GERGET O,DANILOV V.FABRIKx:tackling the inverse kinematics problem of continuum robots with variable curvature [J].Robotics,2022,11(6):128.
-
[17] SINGH I,AMARA Y,MELINGUI A,et al.Modeling of continuum manipulators using Pythagorean hodograph curves [J].Soft Robotics,2018,5(4):425-442.
-
[18] BARRIENTOS-DIEZ J,DONG X,AXINTE D,et al.Real-time kinematics of continuum robots:modelling and validation [J].Robotics and Computer-Integrated Manufacturing,2021,67:102019.
-
[19] MISHRA M K,SAMANTARAY A K,CHAKR-ABORTY G,et al.Kinematics model of bionic manipulator by using elliptic integral approach[C]//KUMAR R,CHAUHAN VS,TALHA M,et al.Machines,mechanism and robotics.Singapore:Springer,2022:319-325.
-
[20] WANG F H,WANG H B,LUO J J,et al.FIORA:a flexible tendon-driven continuum manipulator for laparoscopic surgery [J].IEEE Robotics and Automation Letters,2022,7(2):1166-1173.
-
[21] LU J J,DU F X,YANG F C,et al.Kinematic modeling of a class of n-tendon continuum manipulators [J].Advanced Robotics,2020,34(19):1254-1271.
-
[22] LI Z,REN H L,CHIU P W Y,et al.A novel constrained wire-driven flexible mechanism and its kinematic analysis [J].Mechanism and Machine Theory,2016,95:59-75.
-
[23] MARCHESE A D,RUS D.Design,kinematics,and control of a soft spatial fluidic elastomer manipulator [J].International Journal of Robotics Research,2016,35(7):840-869.
-
[24] GIORELLI M,RENDA F,CALISTI M,et al.A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm [C]//2012 IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2012:3819-3824.
-
[25] YANG C,XU H,LI X,et al.Kinematic modeling and solution of rigid-flexible and variable-diameter underwater continuous manipulator with load [J].Robotica,2022,40(4):1020-1035.
-
[26] RUNGE G,WIESE M,GÜNTHER L,et al.A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics [C]//2017 3rd International Conference on Control,Automation and Robotics(ICCAR).[S.l.]:IEEE,2017:7-14.
-
[27] ZHAO J S,CHU F L,FENG Z J.Kinematics of spatial parallel manipulators with tetrahedron coordinates [J].IEEE Transactions on Robotics,2014,30(1):233-243.
-
[28] CAMPISANO F,REMIREZ A A,CALÓS,et al.Online disturbance estimation for improving kinematic accuracy in continuum manipulators [J].IEEE Robotics and Automation Letters,2020,5(2):2642-2649.
-
[29] VENKITESWARAN V K,SIKORSKI J,MISRA S.Shape and contact force estimation of continuum manipulators using pseudo rigid body models [J].Mechanism and Machine Theory,2019,139:34-45.
-
[30] HUANG S P,MENG D S,WANG X Q,et al.A 3D static modeling method and experimental verification of continuum robots based on pseudo-rigid body theory [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).[S.l.]:IEEE,2019:4672-4677.
-
[31] KUO C H,CHEN Y C,PAN T Y.Continuum kinematics of a planar dual-backbone robot based on pseudo-rigid-body model:formulation,accuracy,and efficiency [C]//Proceedings of ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York,USA:ASME,2017.
-
[32] TRIVEDI D,LOTFI A,RAHN C D.Geometrically exact models for soft robotic manipulators [J].IEEE Transactions on Robotics,2008,24(4):773-780.
-
[33] TILL J,BRYSON C E,CHUNG S,et al.Efficient computation of multiple coupled Cosserat rod models for real-time simulation and control of parallel continuum manipulators [C]//2015 IEEE International Conference on Robotics and Automation(ICRA).[S.l.]:IEEE,2015:5067-5074.
-
[34] MA J,HAN Z J,YANG L S,et al.Dynamics modeling of a soft arm under the Cosserat theory [C]//2021 IEEE International Conference on Real-time Computing and Robotics(RCAR).[S.l.]:IEEE,2021:87-90.
-
[35] NIU L Z,DING L,GAO H B,et al.Closed-form equations and experimental verification for soft robot arm based on Cosserat theory [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).[S.l.]:IEEE,2019:6630-6635.
-
[36] KARIMI S,KONH B.Kinematics modelling and dynamics analysis of an SMA-actuated active flexible needle for feedback-controlled manipulation in phantom [J].Medical Engineering & Physics,2022,107:103846.
-
[37] ZHAO W D,PASHKEVICH A,KLIMCHIK A,et al.Elastostatic modeling of multi-link flexible manipulator based on two-dimensional dual-triangle tensegrity mechanism [J].Journal of Mechanisms and Robotics,2022,14(2):021002.
-
[38] ALLEN T F,RUPERT L,DUGGAN T R,et al.Closed-form non-singular constant-curvature continuum manipulator kinematics [C]//2020 3rd IEEE International Conference on Soft Robotics(RoboSoft).[S.l.]:IEEE,2020:410-416.
-
[39] LEE B J.Geometrical derivation of differential kinematics to calibrate model parameters of flexible manipulator [J].International Journal of Advanced Robotic Systems,2013,10(2):106.
-
[40] ZIMMERMANN L,SHEA K,STANKOVIĆ T.Conditions for rigid and flat foldability of degreen vertices in origami [J].Journal of Mechanisms and Robotics,2020,12(1):011020.
-
[41] ZIMMERMANN L,SHEA K,STANKOVIĆ T.A computational design synthesis method for the generation of rigid origami crease patterns [J].Journal of Mechanisms and Robotics,2022,14(3):031014.
-
[42] CHEN W H,MISRA S,GAO Y C,et al.A programmably compliant origami mechanism for dynamically dexterous robots [J].IEEE Robotics and Automation Letters,2020,5(2):2131-2137.
-
[43] WANG H D,WANG X L,YANG W L,et al.Construction of controller model of Notch continuum manipulator for laryngeal surgery based on hybrid method [J].IEEE/ASME Transactions on Mechatronics,2021,26(2):1022-1032.
-
[44] OMISORE O M,HAN S P,AL-HANDARISH Y,et al.Motion and trajectory constraints control modeling for flexible surgical robotic systems [J].Micromachines,2020,11(4):386.
-
[45] CHAWLA A,FRAZELLE C,WALKER I.A comparison of constant curvature forward kinematics for multisection continuum manipulators [C]//2018 Second IEEE International Conference on Robotic Computing(IRC).[S.l.]:IEEE,2018:217-223.
-
[46] SHASTRI S,PARVEZ Y,CHAUHAN N R.Inverse kinematics for A 3-R robot using artificial neural network and modified particle swarm optimization [J].Journal of the Institution of Engineers(India):Series C,2020,101(2):355-363.
-
[47] GAO R H.Inverse kinematics solution of Robotics based on neural network algorithms [J].Journal of Ambient Intelligence and Humanized Computing,2020,11(12):6199-6209.
-
[48] CSISZAR A.A combinatorial approach to the automated generation of inverse kinematics equations for robot arms [C]//2016 IEEE International Conference on Automation Science and Engineering(CASE).Piscatawa,USA:IEEE,2016:984-989.
-
[49] XU W J,CHEN J,LAU H Y K,et al.Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators [J].The International Journal of Medical Robotics and Computer Assisted Surgery:MRCAS,2017,13(3):e1774.
-
[50] MY C A,BIEN D X,LE C H,et al.An efficient finite element formulation of dynamics for a flexible robot with different type of joints [J].Mechanism and Machine Theory,2019,134:267-288.
-
[51] ATA A A,HARAZ E H,RIZK A E A,et al.Kinematic analysis of a single link flexible manipulator [C]//2012 IEEE International Conference on Industrial Technology.Piscatawa,USA:IEEE,2012:852-857.
-
[52] SUBEDI D,TYAPIN I,HOVLAND G.Dynamic modeling of planar multi-link flexible manipulators [J].Robotics,2021,10(2):70.
-
[53] RONE W S,BEN-TZVI P.Continuum robot dynamics utilizing the principle of virtual power [J].IEEE Transactions on Robotics,2014,30(1):275-287.
-
[54] QI C K,GAO F,ZHAO X C,et al.A grey-box distributed parameter modeling approach for a flexible manipulator with nonlinear dynamics [J].IFAC-PapersOnLine,2015,48(28):544-549.
-
[55] COMI F,MIGUEL A O,CAVENAGO F,et al.Modelling,validation and control of DELIAN flexible manipulator [J].IFAC-PapersOnLine,2019,52(15):364-369.
-
[56] MISHRA M K,SAMANTARAY A K,CHAKR-ABORTY G,et al.Dynamic modelling of an elephant trunk like flexible bionic manipulator [C]//Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition.Volume 4:Dynamics,Vibration,and Control.New York,USA:ASME,2019.
-
[57] KIM S M,KIM H,BOO K.Use of a simple mechanical analogy to analytically tune the PD controller of a flexible manipulator system [J].Shock and Vibration,2018,2018:4073963.
-
[58] GODAGE I S,WIRZ R,WALKER I D,et al.Accurate and efficient dynamics for variable-length continuum arms:a center of gravity approach [J].Soft Robotics,2015,2(3):96-106.
-
[59] HE C,ZHANG F,JIANG J H.Adaptive boundary control of flexible manipulators with parameter uncertainty based on RBF neural network [J].Shock and Vibration,2020,2020:8261423.
-
[60] CAO F F,LIU J K.Boundary vibration control for a two-link rigid-flexible manipulator with quantized input [J].Journal of Vibration and Control,2019,25(23-24):2935-2945.
-
[61] JUNG J,PENNING R S,FERRIER N J,et al.A modeling approach for continuum robotic manipulators:effects of nonlinear internal device friction [C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscatawa,USA:IEEE,2011:5139-5146.
-
[62] SARKHEL P,DIKSHIT M K,PATHAK V K,et al.Robust deflection control and analysis of a fishing rod-type flexible robotic manipulator for collaborative robotics [J].Robotics and Autonomous Systems,2023,159:104293.
-
[63] SUN C Y,HE W,HONG J.Neural network control of a flexible robotic manipulator using the lumped spring-mass model [J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,47(8):1863-1874.
-
[64] GIRI N,WALKER I D.Three module lumped element model of a continuum arm section [C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscatawa,USA:IEEE,2011:4060-4065.
-
[65] GIORGIO I,DEL VESCOVO D.Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms [J].Robotics,2018,7(4):60.
-
[66] ARKOULI Z,AIVALIOTIS P,MAKRIS S.Towards accurate robot modelling of flexible robotic manipulators [J].Procedia CIRP,2021,97:497-501.
-
[67] KIM S M.Lumped element modeling of a flexible manipulator system [J].IEEE/ASME Transactions on Mechatronics,2015,20(2):967-974.
-
[68] ZHANG J H,TIAN Y,ZHANG M L.Dynamic model and simulation of flexible manipulator based on springs and rigid bodies [C]//2014 IEEE International Conference on Robotics and Biomimetics(ROBIO 2014).Piscatawa,USA:IEEE,2014:2460-2464.
-
[69] MISHRA N,SINGH S P,NAKRA B C.Dynamic analysis of a single link flexible manipulator using Lagrangian-assumed modes approach [C]//2015 International Conference on Industrial Instrumentation and Control(ICIC).Piscatawa,USA:IEEE,2015:1144-1149.
-
[70] KHOIY K A,DAVATGARZADEH F,TAHERI M.Application of assumed mode method in nonlinear dynamic analysis of elastic robot arms [J].The International Journal of Engineering and Science(IJFS),2013,2(10):109-113.
-
[71] LOCHAN K,ROY B K,SUBUDHI B.Robust tip trajectory synchronisation between assumed modes modelled two-link flexible manipulators using second-order PID terminal SMC [J].Robotics and Autonomous Systems,2017,97:108-124.
-
[72] HEIDARI F,VAKIL M,FOTOUHI R.On the accuracy of assumed mode modeling for flexible manipulators [C]//Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York,USA:ASME,2012:953-962.
-
[73] DING W,SHEN Y N.Analysis of transient deformation response for flexible robotic manipulator using assumed mode method [C]//2017 2nd Asia-Pacific Conference on Intelligent Robot Systems(ACIRS).[S.l.]:IEEE,2017:331-335.
-
[74] SHARIFNIA M,AKBARZADEH A.A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints [J].Multibody System Dynamics,2017,40(3):261-285.
-
[75] GAO H J,HE W,SONG Y H,et al.Modeling and neural network control of a flexible beam with unknown spatiotemporally varying disturbance using assumed mode method [J].Neurocomputing,2018,314:458-467.
-
[76] THEODORE R J,GHOSAL A.Comparison of the assumed modes and finite element models for flexible multilink manipulators [J].International Journal of Robotics Research,1995,14(2):91-111.
-
[77] GAO H J,HE W,ZHOU C,et al.Neural network control of a two-link flexible robotic manipulator using assumed mode method [J].IEEE Transactions on Industrial Informatics,2019,15(2):755-765.
-
[78] CELENTANO L,COPPOLA A.A computationally efficient method for modeling flexible robots based on the assumed modes method [J].Applied Mathematics and Computation,2011,218(8):4483-4493.
-
[79] JEONG S,YOO H H.Flexibility modeling of a beam undergoing large deflection using the assumed mode method [J].International Journal of Mechanical Sciences,2017,133:611-618.
-
[80] ATA A A,FARES W F,SA’ADEH M Y.Dynamic analysis of a two-link flexible manipulator subject to different sets of conditions [J].Procedia Engineering,2012,41:1253-1260.
-
[81] VAKIL M,FOTOUHI R,NIKIFORUK P N.A new method for dynamic modeling of flexible-link flexible-joint manipulators [J].Journal of Vibration and Acoustics,2012,134(1):1.
-
[82] GHARAVI L,ZAREINEJAD M,OHADI A.Dynamic Finite-Element analysis of a soft bending actuator [J].Mechatronics,2022,81:102690.
-
[83] SINGLA A,SINGH A.Dynamic modeling of flexible robotic manipulators[C]//YADAV N,YADAV A,BANSAL J,et al.Harmony Search and Nature Inspired Optimization Algorithms:Theory and Applications,ICHSA 2018.Singapore:Springer,2019:819-834.
-
[84] ZEBIN T,ALAM M S.Dynamic modeling and fuzzy logic control of a two-link flexible manipulator using genetic optimization techniques [C]//2010 13th International Conference on Computer and Information Technology(ICCIT).Piscatawa,USA:IEEE,2010:418-423.
-
[85] ZEBIN T,ALAM M S.Modeling and control of a two-link flexible manipulator using fuzzy logic and genetic optimization techniques [J].Journal of Computers,2012,7(3):578-585.
-
[86] MISHRA N,SINGH S P.Dynamic modeling of a two-link flexible manipulator using the Lagrangian finite elements method [M]//Technology Drivers:Engine for Growth.Boca Raton,USA:CRC Press,2018:167-172.
-
[87] BOUCETTA R,ABDELKRIM M N.Neural network modeling of a flexible manipulator robot [C]//Computer Information Systems and Industrial Management.Berlin,Heidelberg:Springer,2012:395-404.
-
[88] ZHENG G,GOURY O,THIEFFRY M,et al.Controllability pre-verification of silicone soft robots based on finite-element method [C]//2019 International Conference on Robotics and Automation(ICRA).[S.l.]:IEEE,2019:7395-7400.
-
[89] BAYO E.A finite-element approach to control the end-point motion of a single-link flexible robot [J].Journal of Robotic Systems,1987,4(1):63-75.
-
[90] Vidoni R,Scalera L,Gasparetto A.3-D ERLS based dynamic formulation for flexible-link robots:theoretical and numerical comparison between the finite element method and the component mode synthesis approaches[J].International Journal of Mechanics and Control,2018,19(1):39-50.
-
[91] ESFANDIAR H,KORAYEM M H.Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load [J].Journal of Mechanical Science and Technology,2015,29(9):3971-3982.
-
[92] MUHAMMAD A K,OKAMOTO S,LEE J H.Comparison of proportional-derivative and active-force controls on vibration of a flexible single-link manipulator using finite-element method [J].Artificial Life and Robotics,2014,19(4):375-381.
-
[93] AL-KHAFAJI A A M,MAT DARUS I Z.Finite element method to dynamic modelling of an underwater flexible single-link manipulator [J].Journal of Vibroengineering,2014,16(7):3620-3636.
-
[94] GRAZIOSO S,SONNEVILLE V,DI GIRONIMO G,et al.A nonlinear finite element formalism for modelling flexible and soft manipulators [C]//2016 IEEE International Conference on Simulation,Modeling,and Programming for Autonomous Robots(SIMPAR).Piscatawa,USA:IEEE,2016:185-190.
-
[95] MOSTAFA N,RAHIMI N H.An analysis of the finite element method applied on dynamic motion and maximum payload planning of flexible manipulators [J].Transactions of FAMENA,2016,39(4):15-22.
-
[96] LARA-MOLINA F A.Modeling of flexible-link manipulators under uncertain parameters based on stochastic finite element method [J].Journal of Mechanisms and Robotics,2022,14(6):061002.
-
[97] FARID M,CLEGHORN W L.Dynamic modeling of multi-flexible-link planar manipulators using curvature-based finite element method [J].Journal of Vibration and Control,2014,20(11):1682-1696.
-
[98] HEIDARI H R,KORAYEM M H,HAGHPANAHI M,et al.A new nonlinear finite element model for the dynamic modeling of flexible link manipulators undergoing large deflections [C]//2011 IEEE International Conference on Mechatronics.Piscatawa,USA:IEEE,2011:375-380.
-
[99] MEJERBI M,ZRIBI S,KNANI J.Dynamic modeling of flexible manipulator based on a large number of finite elements [C]//2018 International Conference on Advanced Systems and Electric Technologies(IC_ASET).[S.l.]:IEEE,2018:357-362.
-
[100] DUBAY R,HASSAN M,LI C Y,et al.Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator [J].ISA Transactions,2014,53(5):1609-1619.
-
[101] TOKHI M O,MOHAMED Z,SHAHEED M H.Dynamic characterisation of a flexible manipulator system [J].Robotica,2001,19(5):571-580.
-
[102] PIRAS G,CLEGHORN W L,MILLS J K.Dynamic finite-element analysis of a planar high-speed,high-precision parallel manipulator with flexible links [J].Mechanism and Machine Theory,2005,40(7):849-862.
-
[103] WANG H,GAO G H,XIA Q X,et al.Modal dynamics and analysis of a vertical stretch-retractable continuum manipulator with large deflection [C]//2019 International Conference on Robotics and Automation(ICRA).[S.l.]:IEEE,2019:6258-6264.
-
[104] HE W,HE X Y,ZOU M F,et al.PDE model-based boundary control design for a flexible robotic manipulator with input backlash [J].IEEE Transactions on Control Systems Technology,2019,27(2):790-797.
-
[105] ZHAO Z J,HE X Y,AHN C K.Boundary disturbance observer-based control of a vibrating single-link flexible manipulator [J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,51(4):2382-2390.
-
[106] ARAÚ JO J M,BETTEGA J,DANTAS N J B,et al.Vibration control of a two-link flexible robot arm with time delay through the robust receptance method [J].Applied Sciences,2021,11(21):9907.
-
[107] RENDA F,GIORELLI M,CALISTI M,et al.Dynamic model of a multibending soft robot arm driven by cables [J].IEEE Transactions on Robotics,2014,30(5):1109-1122.
-
[108] KORAYEM M H,NOHOOJI H R,NIKOOBIN A.Path planning of mobile elastic robotic arms by indirect approach of optimal control [J].International Journal of Advanced Robotic Systems,2011,8(1):10.
-
[109] SABATINI M,GASBARRI P,MONTI R,et al.Vibration control of a flexible space manipulator during on orbit operations [J].Acta Astronautica,2012,73:109-121.
-
摘要
刚性机械臂由于其较高的工作精度和重复性、较强的承载能力,已广泛应用于危险或相对单一、重复性高工作场景.但刚性机械臂的结构及运作方式不够灵活,无法适用于不定型、非标准、狭窄空间等生产场景.最近几年,柔性机械臂因其结构柔性、作业空间大、人机交互安全等优点而受到广泛关注,有希望应用于医疗、服务和智能制造等领域.但柔性机械臂结构柔软,运动比较自由,在作业过程中柔性效应不可忽略,这对其高精度控制提出了重大挑战.柔性机械臂控制的核心科学问题之一是建立包含结构柔性特征和动态特性的高精度动力学模型.为此,本文对柔性机械臂运动学建模和动力学建模研究进行了综述.作为动力学建模的基础,本文首先综述了柔性机械臂的运动学建模方法,主要介绍了曲率法、伪刚体运动学(PRB)方法、基于Cosserat杆的运动学建模方法、结构几何分析方法、Denavit-Hartenberg(D-H)法及坐标法、数据驱动和机器学习方法等.随后,本文详细综述了柔性机械臂的动力学建模方法,主要包括集中参数系统法、假设模态法、有限元法.最后,本文简述了目前柔性机械臂动力学研究的主要内容,并对未来研究做出展望.
Abstract
Rigid robotic arms have been widely used in risky or single, repetitive work situations due to their high work accuracy and repeatability, and strong load bearing capacity. However, the structure and operation of rigid robotic arms are not flexible enough to be applied to some production scenarios such as unstructured, non-standard, and confined spaces. In recent years, flexible robotic arms have attracted widespread attention due to their structural pliability, extensive operational space, and safety of human-machine interaction, with promising applications in the fields of medical, service, and intelligent manufacturing. However, the soft structure and free movement of flexible robotic arms mean that their flexural effects cannot be ignored during operations, posing significant challenges for high-precision control. One of the core scientific problems in the control of flexible robotic arms is the establishment of high-precision dynamic models that incorporate structural flexibility features and dynamic characteristics. To this end, this paper reviews the research on the kinematic modeling and dynamic modeling of flexible robotic arms. As a foundation for dynamic modeling, this paper firstly summarizes the kinematic modeling methods of flexible robotic arms, mainly introducing the curvature method, Pseudo-Rigid Body (PRB) kinematics, kinematic modeling based on Cosserat rods, structural geometry analysis, Denavit-Hartenberg (D-H) method and coordinate method, and data-driven and machine learning approaches. Subsequently, the paper provides a detailed overview of dynamic modeling methods for flexible robotic arms, primarily including the lumped parameter system method, assumed modes method, and finite element method. Finally, this paper outlines the main content of flexible robotic arm dynamics research and offers prospects for future studies.
Keywords
flexible robotic arm ; robot kinematics ; robot dynamics ; dynamic model ; multibody dynamics