en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

鲍四元,E-mail:bsiyuan@126.com

中图分类号:O343

文献标识码:A

文章编号:1672-6553-2023-21(11)-062-011

DOI:10.6052/1672-6553-2022-049

参考文献 1
蒋睿嵩,徐萌波,胡伟鹏.基于保结构方法的航天器中微电子器件布局优化 [J].动力学与控制学报,2022,20(3):83-88.JIANG R S,XU M B,HU W P.Layout optimization on microelectronic devices in spacecraft based on structure-preserving method [J].Journal of Dynamics and Control,2022,20(3):83-88.(in Chinese)
参考文献 2
CHIA C Y.Nonlinear analysis of plates [M].New York,America:McGraw-Hill,1980.
参考文献 3
REDDY J N.A simple higher-order theory for laminated composite plates [J].Journal of Applied Mechanics,1984,51(4):745-752.
参考文献 4
Zhou D.Application of static beam functions in vibration analysis of structures[M].Beijing:Science Press,2013.
参考文献 5
宋华,胡瑞,任辉启,等.内部为弹性点支承的简支板的振动分析 [J].地下空间与工程学报,2007,3(4):613-616.SONG H,HU R,REN H Q,et al.Vibrant Analysis of rectangular slab simply supported by internal elastic point [J].Chinese Journal of Underground Space and Engineering,2007,3(4):613-616.(in Chinese)
参考文献 6
王元清,任志宏,石永久.点式玻璃建筑柔性支承体系的动力特性分析 [J].钢结构,2008,23(11):1-4.WANG Y Q,REN Z H,SHI Y J.Dynamic analysis of point supported glass curtain wall flexible supporting system [J].Steel Construction,2008,23(11):1-4.(in Chinese)
参考文献 7
许琪楼.四角点支承四边自由矩形板自振分析新方法 [J].振动与冲击,2013,32(3):83-86.XU Q L.A new analysis method for free vibration of a rectangular plate with 4-free-edges and 4 corner point supports [J].Journal of Vibration and Shock,2013,32(3):83-86.(in Chinese)
参考文献 8
HUANG M,MA X Q,SAKIYAMA T,et al.Free vibration analysis of rectangular plates with variable thickness and point supports [J].Journal of Sound and Vibration,2007,300(3-5):435-452.
参考文献 9
LIM C W,YAO W A,CUI S.Benchmark symplectic solutions for bending of corner-supported rectangular thin plates [J].The IES Journal Part A:Civil & Structural Engineering,2008,1(2):106-115.
参考文献 10
王砚,王忠民,阮苗.无网格法在点弹性支承矩形薄板横向振动中的应用 [J].计算力学学报,2010,27(2):238-243.WANG Y,WANG Z M,RUAN M.Application of meshless method in the transverse vibration of rectangular thin plate with elastic point supports [J].Chinese Journal of Computational Mechanics,2010,27(2):238-243.(in Chinese)
参考文献 11
李郑发,曹登庆,张迎春.四角点固定支承矩形板固有特性研究 [J].振动与冲击,2015,34(19):98-102.LI Z F,CAO D Q,ZHANG Y C.Natural characteristics of rectangular plates clamped at 4 corner points [J].Journal of Vibration and Shock,2015,34(19):98-102.(in Chinese)
参考文献 12
LOPATIN A V,MOROZOV E V.Fundamental frequency of an orthotropic rectangular plate with an internal centre point support [J].Composite Structures,2011,93(10):2487-2495.
参考文献 13
LI R,WANG B,LV Y F,et al.New analytic solutions for static problems of rectangular thin plates point-supported at three corners [J].Meccanica,2017,52(7):1593-1600.
参考文献 14
LI R,TIAN Y,WANG P C,et al.New analytic free vibration solutions of rectangular thin plates resting on multiple point supports [J].International Journal of Mechanical Sciences,2016,110:53-61.
参考文献 15
NAGHSH A,AZHARI M.Non-linear free vibration analysis of point supported laminated composite skew plates [J].International Journal of Non Linear Mechanics,2015,76:64-76.
参考文献 16
NARITA Y,HODGKINSON J M.Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates [J].Composite Structures,2005,69(2):127-135.
参考文献 17
LI W L.Free vibrations of beams with general boundary conditions [J].Journal of Sound and Vibration,2000,237(4):709-725.
参考文献 18
ZHANG H,SHI D Y,WANG Q S.An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions [J].International Journal of Mechanical Sciences,2017,121:1-20.
参考文献 19
LIU T,HU G Q,WANG A L,et al.A unified formulation for free in-plane vibrations of arbitrarily-shaped straight-sided quadrilateral and triangular thin plates [J].Applied Acoustics,2019,155:407-422.
参考文献 20
鲍四元,沈峰.各向异性矩形板和环扇形板横向自由振动的一种通用解法 [J].固体力学学报,2019,40(6):560-570.BAO S Y,SHEN F.A generalized solution procedure for free transverse vibration of anisotropic rectangular plates and annular sectorial plates [J].Chinese Journal of Solid Mechanics,2019,40(6):560-570.(in Chinese)
参考文献 21
张俊,李天匀,朱翔.多开口矩形板自由振动特性分析 [J].振动与冲击,2020,39(14):142-147+155.ZHANG J,LI T Y,ZHU X.Free vibration characteristics analysis on a rectangular plate with multiple cutouts [J].Journal of Vibration and Shock,2020,39(14):142-147+155.(in Chinese)
参考文献 22
陆斌,陈跃华,冯志敏,等.基于Chebyshev-变分法的复杂开口形状矩形薄板弯曲振动特性分析 [J].振动与冲击,2020,39(2):178-187.LU B,CHEN Y H,FENG Z M,et al.Bending vibration characteristics analysis of a rectangular plate with complex opening using Chebyshev-variational method [J].Journal of Vibration and Shock,2020,39(2):178-187.(in Chinese)
参考文献 23
LI W L.Comparison of Fourier sine and cosine series expansions for beams with arbitrary boundary conditions [J].Journal of Sound and Vibration,2002,255(1):185-194.
参考文献 24
孙海,李晖,徐忠浩,等.螺栓松动边界下纤维增强复合薄板固有特性分析 [J].中国机械工程,2020,31(10):1213-1218.SUN H,LI H,XU Z H,et al.Inherent characteristics analysis of fiber-reinforced composite plates under bolt looseness boundary [J].China Mechanical Engineering,2020,31(10):1213-1218.(in Chinese)
参考文献 25
项贻强,高超奇,杨云深.两端任意约束的弹性支撑梁在移动荷载下的动力响应 [J].哈尔滨工业大学学报,2022,54(3):12-19.XIANG Y Q,GAO C Q,YANG Y S.Dynamic response of elastic supported beams with arbitrary constraints at both ends under moving loads [J].Journal of Harbin Institute of Technology,2022,54(3):12-19.(in Chinese)
参考文献 26
冯青松,杨舟,郭文杰,等.基于人工弹簧模型的周期结构带隙计算方法研究 [J].力学学报,2021,53(6):1684-1697.FENG Q S,YANG Z,GUO W J,et al.Research on band gap calculation method of periodic structure based on artificial spring model [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(6):1684-1697.(in Chinese)
参考文献 27
DU Y,PANG F Z,SUN L P,et al.A unified formulation for dynamic behavior analysis of spherical cap with uniform and stepped thickness distribution under different edge constraints [J].Thin-Walled Structures,2020,146:106445.
参考文献 28
单逸峰,向维.虚拟弹簧边界Mindlin板的自由振动和屈曲分析 [J].起重运输机械,2022(1):54-61.SHAN Y F,XIANG W.Free vibration and buckling analysis of Mindlin plate with virtual spring boundaries [J].Hoisting and Conveying Machinery,2022(1):54-61.(in Chinese)
参考文献 29
刘开国.能量变分法在现代结构分析中的应用 [J].建筑结构,2012,42(12):78-81.LIU K G.Application of energy variational method in the current structure analysis [J].Building Structure,2012,42(12):78-81.(in Chinese)
参考文献 30
刘开国.组合型扁扭网壳结构分析 [J].建筑结构,2016,46(9):86-89.LIU K G.Analysis of combined-type flat twist latticed shell [J].Building Structure,2016,46(9):86-89.(in Chinese)
目录contents

    摘要

    研究不同位置四点支承条件下矩形薄板的自由振动特性.首先,在板结构模型的不同位置上引入横向约束弹簧,并设定人工弹簧的刚度值以模拟出四点支承的边界条件.然后,基于二维改进傅里叶级数表示结构的位移容许函数,其中改进部分的正弦附加项可解决以往位移函数在边界上可能存在的求导不连续问题.建立矩形板系统能量对应的泛函,令其取驻值建立线性方程组.最后,求解矩阵特征值问题得到点支承矩形板自由振动频率等参数,给出不同位置四点支承条件下矩形薄板的振动特性.所应用二维改进傅里叶级数法中,位移函数基于改进傅里叶级数展开时的附加项能够提高结果的精度和收敛速度.研究结果为不同位置点支承矩形板的自由振动问题提供一定的参考.

    Abstract

    The free vibration characteristics of rectangular thin plates with four-point supports at different locations are studied. Firstly, the lateral constraint springs are introduced at different locations of the plate structure model, and the stiffness values of artificial springs are set to simulate the boundary conditions of four-point supports. Then based on the two-dimensional modified Fourier series, the admissible displacement function of the structure is expressed, in which the additional terms of the improved parts can solve the discontinuity problem of the derivatives of the displacement function on the boundary. The energy functional of the rectangular plate system is established, and the linear equations are established by letting the functional choose the stationery value. Finally, the free vibration frequency parameters of the point-supported rectangular plate are obtained by solving matrix eigenvalue problems, and the vibration characteristics of the rectangular plate supported by four points at different positions are given. In the two-dimensional modified Fourier series method, the additional terms can improve the accuracy and rate of convergence. The research results provide some reference for the free vibration of rectangular plates supported at different points.

  • 引言

  • 矩形板是较为常见的基本构件,在土木、机械等工程实际中有着不可或缺的作用.如放置在多柱上的桥面和楼屋面、飞机的面板结构、太阳能电池板、印刷电路板以及玻璃幕墙等,其中部分矩形板结构可简化为不同位置处四点支承的矩形薄板的力学模型,其自由振动是这类结构的重要力学行为之一,且结构的固有频率等特性与结构的安全性和人们的生活环境密切相关.如蒋睿嵩等[1]基于保结构方法研究航天器薄板结构受动态冲击载荷时的一种微电子器件布局优化问题.而四点支承矩形板可作为点支承板类结构的研究基础,因此不同位置四点支承条件下矩形板自由振动问题具有重要研究价值.

  • 薄板的分析主要建立于克希霍夫假设基础上,即不考虑剪切变形.Chia[2]对复合材料板非线性弯曲、屈曲和振动进行了系统的研究.Reddy[3]提出了小变形高阶剪切变形理论,可用于分析大挠度的中厚板问题.基于引入克希霍夫假设的薄板理论,Zhou等[4]利用点荷载下的静态梁函数作为允许函数,并结合瑞利-里兹方法研究了点支承层压矩形板的自由振动特性.宋华等[5]以内部为弹性点支承的简支梁的挠度函数为依据,采用多子域法与伽辽金法分析了内部为弹性点支承的四边简支矩形板的振动问题.王元清等[6]对两种常用的点式玻璃建筑柔性支承系统的动力特性进行研究,对比和分析影响这两种系统自振频率和振型的主要因素.许琪楼[7]利用振动微分方程和板挠度与角点力间的微分关系,对有角点支座矩形板自振进行了分析.Huang等[8]提出了一种分析带点支撑的矩形板自由振动问题的离散方法.Lim等[9]采用辛弹性方法研究角点支撑矩形薄板的静力弯曲问题,并得到不含有假设的理性解析解.

  • 近些年来,点支承矩形板振动特性的问题得到学者的关注,且研究方法呈现出多元化的特点.王砚等[10]基于薄板理论和弹性动力学Hamilton原理,验证了无网格伽辽金法对点弹性支承矩形薄板的横向振动的适用性.李郑发等[11]基于能量守恒原理并结合固定支承点处的约束条件,建立四角点固定支承矩形板横向振动的拉格朗日方程,研究了四角点固定支承矩形板固有特性.利用Hamilton原理的变分方程,并用广义伽辽金法求解,Lopatin等[12]提出了一种计算具有内部中心点支撑矩形板的基本频率的新方法.对于具有多点支撑的矩形薄板,Li等[1314]采用辛叠加法分别得到了结构静态分析和自由振动问题的解析解.Naghsh等[15]采用无元素伽辽金(EFG)方法对点支承层压复合斜斜板的大振幅自由振动进行了分析.Narita等[16]将分层优化方法扩展到点支撑、对称层压矩形板研究当中,对其结构基频进行最大化的分层优化.以上学者对矩形板振动特性问题开展研究的方法主要有梁函数法、伽辽金法、辛弹性法以及辛叠加法等.但研究中的多数模型相对单一、研究理论复杂,不利于提高计算效率和精度.因此,寻求高效准确的理论解析法成为一个热门研究方向,文献[17]~[23]基于改进的傅里叶级数或 Chebyshev 级数方法对梁板结构动力学问题开展了研究.但关于点支撑约束条件下的矩形薄板自由振动问题鲜有报道,故将级数方法应用到四点支承板结构上具有一定的价值,其特点是计算时无需划分网格,建立模型后对不同的边界条件可进行统一研究,能够进一步用于优化问题的分析,满足实际工程中所需要的各种复杂工况.

  • 弹性约束边界具有重要的实用价值.如孙海等[24]提出纤维增强复合材料薄板振动过程中,螺栓松动引起的边界实际上属于弹性支撑边界,计算时可用人工弹簧组合模拟.又如项贻强等[25]指出桥梁工程中也存在弹性约束边界.基于人工弹簧的方法可见于文献[26]中分析周期结构带隙计算.这类人工虚拟边界易于模拟不同的边界条件,如Du等[27]用于分析球型盖的动态行为.而向逸峰等[28]使用虚拟弹簧施加Mindlin板边界,应用微分求积有限单元法分析自由振动和屈曲问题.

  • 本文采用二维改进傅里叶级数[18-21]给出结构位移函数的展开形式,再结合能量法对不同位置四点支承矩形板的自由振动特性展开研究.不同位置的点支承边界约束条件由引入的人工弹簧来模拟,并在数值上寻求一个较大刚度值来模拟理论上的无穷大刚度,最后通过相关算例来说明本文方法得到的结果与有限元分析结果以及既有文献结果吻合良好,验证本文方法的收敛性、准确性及其效率,进而分析不同支承位置下矩形薄板的固有频率变化情况,寻求四点支承条件下矩形薄板自由振动特性.

  • 1 矩形薄板理论分析

  • 1.1 模型建立

  • 假设四点支承矩形板的边长分别为ɑb,如图1所示.其中四个支承点以一定的形式分布在矩形板结构的不同位置,记为图中ABCD点.点支承处的横向约束由引入的人工弹簧模拟,且不需要施加旋转弹簧,如图2所示.其中图2(a)为四点刚性支承条件下矩形薄板的简化模型.为便于涵盖含有弹性点支承的情况,将四个支承点用人工弹簧代替,达到模拟边界的目的,如图2(b).模拟四点支承时,在ABCD点处所设置的横向弹簧需赋予具体的约束刚度系数值,理论上刚性支撑时设定所有弹簧的约束刚度系数为无穷大.

  • 图1 四点支承矩形薄板的平面模型

  • Fig.1 Plane model of rectangular thin plate with four-point supports

  • 图2 四点支承条件下的矩形薄板模型

  • Fig.2 Rectangular thin plate model with four-point supports

  • 1.2 位移函数的引入

  • 改进傅里叶级数方法在板自由振动问题中得到了一定的应用.按照改进傅里叶级数的理论[17-21],本文设薄板弯曲容许位移的形式为:

  • w(x,y)=i=-4jti -4tj Aijϕi(x)φj(y)
    (1)
  • 式中,Aij为描述矩形板弯曲位移的未知傅里叶系数;titj为改进傅里叶级数的截断数,理论上应取为无穷大,但实际计算时取到一定数值就可满足精度要求.其基函数如下:

  • ϕi(x)=cosλix0itisinλix-4i<0,λi=iπaφj(y)=cosλjy0jtjsinλjy-4j<0,λj=jπb
    (2)
  • 式(2)中的正弦基函数是改进傅里叶级数中引入的改进项,所附加的正弦项可以解决经典傅里叶级数函数在边界处导数不连续的问题.虽然此位移容许函数尚不满足点支撑的边界条件,后文模型中采用能量守恒原理确定待定系统,并且由支撑弹簧的势能体现点支撑边界条件.

  • 1.3 基于结构能量的分析

  • 能量守恒原理是自然界最基本的原理之一,它也是力学中最基本的原理,由它可以导出弹性力学中的虚功原理、最小势能原理及最小余能原理等经典原理[29].国内外学者都十分重视变分原理的研究与应用,因为它是现代结构理论分析与简化计算的出发点.

  • 在研究自由振动问题时,刘开国[30]对于一类扁壳结构,利用的惯性力的概念把组合型扁扭网壳结构的动能转化为势能,从而把动力问题化为结构势能的变分法应用.该方法也可用于薄板动力分析中.

  • 本文应用振动位移的谐函数形式,结合薄板能量守恒原理进行推导.矩形板结构能量泛函为:

  • V~p+V~s+T~= constant
    (3)
  • 由薄板弯曲的基本理论知:

  • V~p=Ds20a 0b 2w~x22+2w~y22+2ν2w~x22w~y2+2(1-ν)2w~xy2dxdy
    (4)
  • V~s=12kAw~A2+kBw~B2+kCw~C2+kDw~D2
    (5)
  • 式中,V~p为结构的应变能;V~s为各个支承处储存的最大总势能,即全部横向弹簧的最大势能;T为结构的最大动能。kAkBkCkD分别为四个支承点ABCD处所设置的横向弹簧约束刚度系数,w~Aw~Bw~Cw~D分别是四个支承点ABCD点的挠度。Ds为薄板的弯曲刚度,即Ds = Eh3/12(1-ν2),其中E为材料的弹性模量,h为薄板厚度,ν为泊松比.

  • 矩形板结构的动能表示为:

  • T~=12ρh0a 0b w~t2dxdy
    (6)
  • 式中,ρ为板结构的密度.设板做简谐移动,即w~=eiωtwxy,其中ω为结构的固有圆频率,t为时间,i为虚数单位.代入式(6)可分离出时间变量.在频域中,结构的最大动能为:

  • T~=-ω2VT=-12ρhω20a 0b w2(x,y)dxdye2iωt
    (7)
  • 另外,基于w~=eiωtwxy,式(4)和式(5)可变为如下形式

  • V~p=e2iωtVpV~s=e2iωtVs=e2iωt2kAw2xA,yA+kBw2xB,yB+kCw2xC,yC+kDw2xD,yD
    (8)
  • 其中Vp的表达式可由式(4)右端用wxy)代替w~.(xAyA)、(xByB)、(xCyC)和(xDyD)分别是四个支承点的坐标.

  • 认为薄板是保守系统,其总能量守恒,故

  • δV~p+V~s+T~=δe2iωtVp+Vs-ω2VT=0
    (9)
  • 由于有动力项,对应动力问题中的新型函数L=Vp+Vs-ω2VT应取驻值.实际上,对不同阶次的频率,L均取驻值.如果式(1)代入式(8),即把L表示为由未知傅里叶系数Aij[见式(1)]的表达式,则L对待定参数Aij的偏导数均应为零.

  • 1.4 自振频率的求解

  • 研究点支承矩形板自振特性时,根据式(1)和式(4),矩形板结构的应变能对未知傅里叶系数Aij求导得

  • VpAij=Dm=-4ntm ntn AmnEmi (2, 2) Fnj (0, 0) +

  • AmnEmi(0,0)Fnj(2,2)+νAmnEmi(0,2)Fnj(2,0)+Emi(2,0)Fnj(0,2)+2(1-ν)AmnEmi(1,1)Fnj(1,1)
    (10)
  • 其中,Emirs=0a ϕmrϕisdxFnjrs=0b φnrφjsdyrs=0,12,而ϕi1xφj1y分别表示dϕixdxdφjydy; ϕm1xφn1y分别表示dϕmxdxdφnydy;同样,ϕi2xφj2yϕm2xφn2y分别表示φmx)对xφny)对y的二阶导数.而tmtn为改进傅里叶级数的截断数.

  • 由式(5),板中约束弹簧所储存的弹性势能Vs对未知傅里叶系数Aij求导得

  • VsAij=kAm=-4n=-4tm mtn AmnϕixAφjyAϕmxAφnyA+kBm=-4n=-4tm tn AmnϕixBφjyBϕmxBφnyB+kCm=-4n=-4tm tn AmnϕixCφjyCϕmxCφnyC+kDm=-4n=-4tm tn AmnϕixDφjyDϕmxDφnyD
    (11)
  • 类似处理板结构动能表达式,即式(7)对未知傅里叶系数Aij求导,得VTAij的表达式.

  • 为使能量函数取极小值,需令L=Vp+Vs-ω2VT对未知傅里叶系数Aij取极小值,具体为:

  • VpAij+VsAij-ω2VTAij=0
    (12)
  • 将式(10)和式(11)等代入式(12)中,可得到点支承矩形板结构的标准特征值方程如下:

  • K-ω2MA=0
    (13)
  • 式中,K为系统的刚度矩阵,其取值与结构几何尺寸和点支承的条件有关;M为系统的质量矩阵,仅与结构特征有关;A为式(1)位移函数未知傅里叶级数所组成的列向量.AK可分别表达如下:

  • A=A11,A12,,A1j,A21,A22,,A2j,,Ai1,Ai2,,AtitjT
    (14)
  • K=Kp+Ks
    (15)
  • 其中KpKs分别表示系统的应变能和点支承处弹簧势能所对应的刚度矩阵.式(13)有非零解的条件是系数行列式等于零,即

  • K-ω2M=0
    (16)
  • 求解出上述方程中矩阵的广义特征值与特征向量,可得到四点支承矩形板结构的固有频率;再把特征向量代入式(1),可获得位移的具体表达式,并得到对应的各阶模态.

  • 2 数值算例分析

  • 2.1 方法的有效性

  • 为验证所提方法的准确性,首先分析位移函数中改进傅里叶级数截断数titj对结构固有频率的影响,确定计算时的有效截断数.然后研究用于模拟点支承的人工弹簧具体数值,以达到理论上的精度要求.最后,采用所提方法,计算出四点支承矩形板的自振特性并与相应的文献和有限元软件(ABAQUS)的结果进行对比,以验证本文方法的有效性.

  • 为方便于对比分析,材料参数中弹性模量E=2.1×1011Pa,松泊比为ν=0.3,密度为ρ=7850kg/m3.对自振频率的数值结果进行统一的无量纲化处理,具体公式为:Ω=ωa2ρh/Ds.

  • 首先,验证收敛性.板长度b=1.2m,宽度a=1.2m,厚度为h=0.002m,且四点支承分别作用在矩形板结构的四个角点处.验算知,当截断数titj同时取6时[按照式(1),实际截断项共有11项],可得到小数点后三位的收敛值,因此本文中的计算截断数titj均取为8.

  • 表1 不同弹簧刚度系数下四角点支撑矩形薄板的前5阶无量纲频率参数Ω

  • Table1 The first 5 dimensionless frequency parameters Ω of the rectangular plate supported by four corners under different spring stiffness coefficients

  • 其次,研究模拟边界条件的弹簧刚度取值对研究结果的影响.四支承点的位置位于矩形板的四个角点处,板的形状参数和材料参数同上.设图2(b)中四支承点弹簧刚度相等,即kA=kB=kC=kD,并记为k.表1列出刚度参数k/Ds取不同值时板的无量纲自振频率参数.

  • 由表1可以看出,线弹簧刚度值的大小对计算结果有着较大的影响,且随着模拟弹簧刚度值的增加,四个支承点处的约束越强,结构的自振频率就越大.当弹簧刚度参数k/Ds取0时,矩形薄板为自由边界;当弹簧刚度参数k/Ds取10至105/m时,矩形薄板为四点弹性支承;当k/Ds的取值大于107/m时,结构的各阶自振频率无量纲参数开始收敛,因此采用本文方法进行计算时,参数k/Ds取107/m时可模拟理论上的刚度无穷大.以上弹簧刚度参数由小到大的取值可反映弹簧由软变刚的过程,k/Ds为107/m的取值从数值计算上可以近似对应着刚性约束,此取值对工程设计也具有参考价值.

  • 选取长宽比α不同的矩形板为研究对象,其中长度b为1.2m,且四个点支承位于板结构的四个角点处.α=1,2,2.5和3时,采用本文方法计算,并与文献[14]和有限元方法结果进行对比,具体见表2.再将四点支承位置转换至矩形板各边缘的中点,对长宽比不同的矩形板进行计算,数值对比结果见表3.

  • 表2 四点角支承矩形板的前5阶无量纲频率参数Ω

  • Table2 The first 5 order dimensionless frequency parameters Ω of rectangular plates supported at four corners

  • 注:表中标注a的数据为文献[14]中的数值结果;标注b的为有限元方法计算的结果.

  • 图3 四角点支承矩形方板的前四阶模态振型

  • Fig.3 The first four modal shapes of rectangular square plates supported at four corners

  • 表3 矩形板边缘各边中点支承条件下的前5阶无量纲频率参数Ω

  • Table3 The first 5 order dimensionless frequency parameters Ω of rectangular plates with different aspect ratios supported at the midpoint of each edge

  • 注:表中标注a的数据为文献[14]中的数值结果;标注b的为有限元方法计算的结果.

  • 从表2及表3中可以看出,本文方法研究的四点支承矩形板自振频率无量纲数与文献和有限元结果吻合良好,证明本文研究方法的适用性,可满足工程实际的精度要求.另外,为验证模态振型的准确性,对四角点支承的方板进行分析,图3分别给出本文和有限元法的振型结果,对比显示本文方法所求振型与有限元方法吻合良好.本文有限元分析采用ABAQUS软件中的四节点薄壳单元S4R,划分单元的尺寸为0.003m×0.003m.

  • 2.2 不同位置四角点支承板的分析

  • 所提方法的准确性已得到验证,为得出四点支承矩形板自由振动的特性,对位于边缘上不同位置四点支承矩形板进行研究.矩形板四个支承分别设置在各个边缘的等分点处,且对每种位置支承条件下不同长宽比的矩形板进行分析.表4给出不同边界等分点处点支承条件下矩形板自由振动前5阶无量纲频率参数 .

  • 从表4中可以看出,矩形板的自振频率和各条边界上点支承的位置有关,支承点位置越靠近角点,结构自振的基频越小;支撑点位置从三等分点至八等分点变化时,即越靠近原点,结构前五阶自振频率变化率越大;结合表2及表3可得:在相同的支承位置条件下,四点支承矩形板的自振频率参数随着结构的长宽比α的增大而减小.

  • 2.3 方板内部四点支承的若干情况

  • 当支承点位于矩形板边缘内时,建立边长为1.2m的方形板研究模型.选取四点支承分别位于板的横向、纵向对称轴和对角线上进行分析,具体如图4和图5所示,其中四支承点呈对称分布(各个支承点与对应边缘上的中点或者对应角点的距离相同,四个支承点始终呈正方形分布).图4中p为对应布置方式下各个支承点至相邻边的垂直距离,图5中q为对应布置方式下各个支承点至相邻边的垂直距离.令支承位置参数ξ=2p/ɑη=2q/ɑ,随着pq的变化得到不同位置四点支承矩形板的计算模型.为了更加直观地得到两种类型四点对称支承条件下矩形板的自由振动特性规律,对不同ξη取值的矩形板结构进行计算,并将固有频率的数据绘制成折线,如图6和图7所示.

  • 表4 边缘上不同点支承矩形板的前5阶无量纲频率参数Ω

  • Table4 The first 5 order dimensionless frequency parameters Ω under the support condition of the center point of each edge of the rectangular plate

  • 图4 四个支承点对称分布于方板的横向、竖向对称轴上

  • Fig.4 A square plate with four support points symmetrically located on the transverse and vertical symmetry axes

  • 图5 四个支承点对称分布于方板的对角线上

  • Fig.5 A square plate with four supports symmetrically located on the diagonals

  • 图6 板无量纲固频参数Ω随参数ξ的变化趋势(对应图4中的支承)

  • Fig.6 The trend of dimensionless natural frequency parameter Ω of plates with respect to ξ (Corresponding to the supports in Fig.4)

  • 从图6和图7可以看出,对于方形板,对称分布的四个支承点从相应的边缘中心处或角点处向矩形板几何中心不断靠近时,结构的基频有先增大后减小的趋势;结构低阶频率随位置参数的变化速率较小,高阶频率随位置参数的变化率较大,尤其第5阶频率变化最为剧烈.

  • 图7 板无量纲固频参数Ω随参数η的变化趋势(对应图5中的支承)

  • Fig.7 The trend of dimensionless natural frequency parameter Ω of plates with respect to η (Corresponding to the supports in Fig.5)

  • 为直观展示四点支承结构的自振特点,考虑对不同位置支承方板的振型进行研究.几种位置情况如下,Case1:三个支承点同时设置在方板三条边的中点处,第四支承点的位置坐标为(aa/2);Case2:三个支承点同时设置在方板三条边的中点处,第四支承点的位置坐标为(aa/4);Case3:三支承点分别固定于角点,第四支承点的位置坐标为(aa/2);Case4:三支承点分别固定于角点,第四支承点的位置坐标为(aa/4).以上四种典型情况的前5阶模态振型如图8所示.

  • 图8 不同位置四点支承矩形板的前五阶模态振型图

  • Fig.8 The first five mode shapes of rectangular plates supported by four different positions

  • 2.4 四点支承刚度不同的情况

  • 探索非对称支承刚度条件下的矩形薄板的振动特性,其中结构四个支承点处的刚度值不完全相等,可包括竖向支承弹簧为弹性的情况.选取角点处四点支承的矩形方板为研究模型.此时模型中ABCD处的弹簧刚度参数用kA/DskB/DskC/DskD/Ds表示,其具体值分别对应取10e1、10e2、10e3及10e4.设置不同刚度参数中指数eii=1,2,3,4)的数值,可得到若干种支承弹簧刚度值的组合.表5给出各刚度组合下相应的前5阶无量纲频率参数.各种刚度组合大致分为三类,其中弹性点支承各刚度参数中ei值不小于5时,可认为是总体刚性约束.而各刚度参数中ei值不小于3,且4个ei之和不小于20时,可认为总体接近刚性支承约束,即第二类约束.而第三类约束中刚度参数ei值不全大于3,且4个ei之和不大于20时,可认为是总体弹性支承约束.

  • 表5中点支承约束的刚度组合有12种,其中第1~4、5~6、7~11种情况可分别归结为总体弹性点支承约束、总体近似刚性点支承约束和总体刚性点支承约束.由表5知,自上而下,前2阶频率呈逐步增大趋势,而第3~5阶频率值较为接近,除了前3种刚度组合下第5阶固有频率参数偏小.但当四个支承处弹簧刚度系数值均较大且接近时,则各阶固有频率之间的差别越小,如表5中第7~11种情况下的固有频率值.这是因为当支承点处的弹簧刚度系数值增大到一定量时,板在支承点处的竖向刚度较大(或接近刚性),此时四个支承点刚度值是否全相等,对结构的自振频率和振型的影响较弱,可忽略其影响.

  • 表5 矩形板角点处非对称支承刚度条件下的前5阶无量纲频率参数Ω

  • Table5 The first 5 dimensionless frequency parameters Ω under the condition of asymmetric support stiffness at the corner of the rectangular plate

  • 3 结论

  • 通过改进傅里叶级数法表征出薄板的容许位移函数,引入人工弹簧模拟四点支承于板内不同位置对应的约束条件,并结合能量守恒原理得到矩形薄板自由振动时位移展开时未知傅里叶系数有非零解的条件,最后求解矩阵方程的特征值问题得到各阶固有频率与振型,对不同位置四点支承条件下的矩形板自由振动特性进行了分析.可得到以下结论:

  • (1)基于改进傅里叶级数的研究方法,矩形板自由振动频率的收敛性好,计算结果与既有文献和有限元结果吻合良好,且模态振型与有限元方法的结果对比也高度一致.

  • (2)四角点支承矩形板的自振特性与结构的长宽比有关.在相同的支承位置条件下,矩形板长度不变,随着宽度逐渐减小时,结构的各阶振动频率呈减小的趋势.

  • (3)矩形板的自振频率与刚性点支承的位置有关.通过若干算例对不同位置四点支承的矩形板进行了分析,得到了相应结构的无量纲频率及模态振型.

  • (4)四个支承点约束按照竖向刚度参数值的大小情况分为三大类,即总体弹性、总体近似刚性和总体刚性的点支承约束.分析知不同类别情况下矩形薄板自由振动频率一般存在差别,但当四个点支承中的最小刚度系数均增大到某一较大量值时,板在竖向具有的刚度整体上比较大或接近刚性,所得固有频率的结果很接近或相同.

  • 通过设置结构模型支承点处的弹簧刚度系数,所提方法可以分析任意弹性点支承矩形板的自振特性,包括三点及多点支承的板结构.为该类板构件在实践中的应用提供较好的参考,也可为不同位置支承矩形板的频率优化提供一定的参考.

  • 参考文献

    • [1] 蒋睿嵩,徐萌波,胡伟鹏.基于保结构方法的航天器中微电子器件布局优化 [J].动力学与控制学报,2022,20(3):83-88.JIANG R S,XU M B,HU W P.Layout optimization on microelectronic devices in spacecraft based on structure-preserving method [J].Journal of Dynamics and Control,2022,20(3):83-88.(in Chinese)

    • [2] CHIA C Y.Nonlinear analysis of plates [M].New York,America:McGraw-Hill,1980.

    • [3] REDDY J N.A simple higher-order theory for laminated composite plates [J].Journal of Applied Mechanics,1984,51(4):745-752.

    • [4] Zhou D.Application of static beam functions in vibration analysis of structures[M].Beijing:Science Press,2013.

    • [5] 宋华,胡瑞,任辉启,等.内部为弹性点支承的简支板的振动分析 [J].地下空间与工程学报,2007,3(4):613-616.SONG H,HU R,REN H Q,et al.Vibrant Analysis of rectangular slab simply supported by internal elastic point [J].Chinese Journal of Underground Space and Engineering,2007,3(4):613-616.(in Chinese)

    • [6] 王元清,任志宏,石永久.点式玻璃建筑柔性支承体系的动力特性分析 [J].钢结构,2008,23(11):1-4.WANG Y Q,REN Z H,SHI Y J.Dynamic analysis of point supported glass curtain wall flexible supporting system [J].Steel Construction,2008,23(11):1-4.(in Chinese)

    • [7] 许琪楼.四角点支承四边自由矩形板自振分析新方法 [J].振动与冲击,2013,32(3):83-86.XU Q L.A new analysis method for free vibration of a rectangular plate with 4-free-edges and 4 corner point supports [J].Journal of Vibration and Shock,2013,32(3):83-86.(in Chinese)

    • [8] HUANG M,MA X Q,SAKIYAMA T,et al.Free vibration analysis of rectangular plates with variable thickness and point supports [J].Journal of Sound and Vibration,2007,300(3-5):435-452.

    • [9] LIM C W,YAO W A,CUI S.Benchmark symplectic solutions for bending of corner-supported rectangular thin plates [J].The IES Journal Part A:Civil & Structural Engineering,2008,1(2):106-115.

    • [10] 王砚,王忠民,阮苗.无网格法在点弹性支承矩形薄板横向振动中的应用 [J].计算力学学报,2010,27(2):238-243.WANG Y,WANG Z M,RUAN M.Application of meshless method in the transverse vibration of rectangular thin plate with elastic point supports [J].Chinese Journal of Computational Mechanics,2010,27(2):238-243.(in Chinese)

    • [11] 李郑发,曹登庆,张迎春.四角点固定支承矩形板固有特性研究 [J].振动与冲击,2015,34(19):98-102.LI Z F,CAO D Q,ZHANG Y C.Natural characteristics of rectangular plates clamped at 4 corner points [J].Journal of Vibration and Shock,2015,34(19):98-102.(in Chinese)

    • [12] LOPATIN A V,MOROZOV E V.Fundamental frequency of an orthotropic rectangular plate with an internal centre point support [J].Composite Structures,2011,93(10):2487-2495.

    • [13] LI R,WANG B,LV Y F,et al.New analytic solutions for static problems of rectangular thin plates point-supported at three corners [J].Meccanica,2017,52(7):1593-1600.

    • [14] LI R,TIAN Y,WANG P C,et al.New analytic free vibration solutions of rectangular thin plates resting on multiple point supports [J].International Journal of Mechanical Sciences,2016,110:53-61.

    • [15] NAGHSH A,AZHARI M.Non-linear free vibration analysis of point supported laminated composite skew plates [J].International Journal of Non Linear Mechanics,2015,76:64-76.

    • [16] NARITA Y,HODGKINSON J M.Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates [J].Composite Structures,2005,69(2):127-135.

    • [17] LI W L.Free vibrations of beams with general boundary conditions [J].Journal of Sound and Vibration,2000,237(4):709-725.

    • [18] ZHANG H,SHI D Y,WANG Q S.An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions [J].International Journal of Mechanical Sciences,2017,121:1-20.

    • [19] LIU T,HU G Q,WANG A L,et al.A unified formulation for free in-plane vibrations of arbitrarily-shaped straight-sided quadrilateral and triangular thin plates [J].Applied Acoustics,2019,155:407-422.

    • [20] 鲍四元,沈峰.各向异性矩形板和环扇形板横向自由振动的一种通用解法 [J].固体力学学报,2019,40(6):560-570.BAO S Y,SHEN F.A generalized solution procedure for free transverse vibration of anisotropic rectangular plates and annular sectorial plates [J].Chinese Journal of Solid Mechanics,2019,40(6):560-570.(in Chinese)

    • [21] 张俊,李天匀,朱翔.多开口矩形板自由振动特性分析 [J].振动与冲击,2020,39(14):142-147+155.ZHANG J,LI T Y,ZHU X.Free vibration characteristics analysis on a rectangular plate with multiple cutouts [J].Journal of Vibration and Shock,2020,39(14):142-147+155.(in Chinese)

    • [22] 陆斌,陈跃华,冯志敏,等.基于Chebyshev-变分法的复杂开口形状矩形薄板弯曲振动特性分析 [J].振动与冲击,2020,39(2):178-187.LU B,CHEN Y H,FENG Z M,et al.Bending vibration characteristics analysis of a rectangular plate with complex opening using Chebyshev-variational method [J].Journal of Vibration and Shock,2020,39(2):178-187.(in Chinese)

    • [23] LI W L.Comparison of Fourier sine and cosine series expansions for beams with arbitrary boundary conditions [J].Journal of Sound and Vibration,2002,255(1):185-194.

    • [24] 孙海,李晖,徐忠浩,等.螺栓松动边界下纤维增强复合薄板固有特性分析 [J].中国机械工程,2020,31(10):1213-1218.SUN H,LI H,XU Z H,et al.Inherent characteristics analysis of fiber-reinforced composite plates under bolt looseness boundary [J].China Mechanical Engineering,2020,31(10):1213-1218.(in Chinese)

    • [25] 项贻强,高超奇,杨云深.两端任意约束的弹性支撑梁在移动荷载下的动力响应 [J].哈尔滨工业大学学报,2022,54(3):12-19.XIANG Y Q,GAO C Q,YANG Y S.Dynamic response of elastic supported beams with arbitrary constraints at both ends under moving loads [J].Journal of Harbin Institute of Technology,2022,54(3):12-19.(in Chinese)

    • [26] 冯青松,杨舟,郭文杰,等.基于人工弹簧模型的周期结构带隙计算方法研究 [J].力学学报,2021,53(6):1684-1697.FENG Q S,YANG Z,GUO W J,et al.Research on band gap calculation method of periodic structure based on artificial spring model [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(6):1684-1697.(in Chinese)

    • [27] DU Y,PANG F Z,SUN L P,et al.A unified formulation for dynamic behavior analysis of spherical cap with uniform and stepped thickness distribution under different edge constraints [J].Thin-Walled Structures,2020,146:106445.

    • [28] 单逸峰,向维.虚拟弹簧边界Mindlin板的自由振动和屈曲分析 [J].起重运输机械,2022(1):54-61.SHAN Y F,XIANG W.Free vibration and buckling analysis of Mindlin plate with virtual spring boundaries [J].Hoisting and Conveying Machinery,2022(1):54-61.(in Chinese)

    • [29] 刘开国.能量变分法在现代结构分析中的应用 [J].建筑结构,2012,42(12):78-81.LIU K G.Application of energy variational method in the current structure analysis [J].Building Structure,2012,42(12):78-81.(in Chinese)

    • [30] 刘开国.组合型扁扭网壳结构分析 [J].建筑结构,2016,46(9):86-89.LIU K G.Analysis of combined-type flat twist latticed shell [J].Building Structure,2016,46(9):86-89.(in Chinese)

  • 参考文献

    • [1] 蒋睿嵩,徐萌波,胡伟鹏.基于保结构方法的航天器中微电子器件布局优化 [J].动力学与控制学报,2022,20(3):83-88.JIANG R S,XU M B,HU W P.Layout optimization on microelectronic devices in spacecraft based on structure-preserving method [J].Journal of Dynamics and Control,2022,20(3):83-88.(in Chinese)

    • [2] CHIA C Y.Nonlinear analysis of plates [M].New York,America:McGraw-Hill,1980.

    • [3] REDDY J N.A simple higher-order theory for laminated composite plates [J].Journal of Applied Mechanics,1984,51(4):745-752.

    • [4] Zhou D.Application of static beam functions in vibration analysis of structures[M].Beijing:Science Press,2013.

    • [5] 宋华,胡瑞,任辉启,等.内部为弹性点支承的简支板的振动分析 [J].地下空间与工程学报,2007,3(4):613-616.SONG H,HU R,REN H Q,et al.Vibrant Analysis of rectangular slab simply supported by internal elastic point [J].Chinese Journal of Underground Space and Engineering,2007,3(4):613-616.(in Chinese)

    • [6] 王元清,任志宏,石永久.点式玻璃建筑柔性支承体系的动力特性分析 [J].钢结构,2008,23(11):1-4.WANG Y Q,REN Z H,SHI Y J.Dynamic analysis of point supported glass curtain wall flexible supporting system [J].Steel Construction,2008,23(11):1-4.(in Chinese)

    • [7] 许琪楼.四角点支承四边自由矩形板自振分析新方法 [J].振动与冲击,2013,32(3):83-86.XU Q L.A new analysis method for free vibration of a rectangular plate with 4-free-edges and 4 corner point supports [J].Journal of Vibration and Shock,2013,32(3):83-86.(in Chinese)

    • [8] HUANG M,MA X Q,SAKIYAMA T,et al.Free vibration analysis of rectangular plates with variable thickness and point supports [J].Journal of Sound and Vibration,2007,300(3-5):435-452.

    • [9] LIM C W,YAO W A,CUI S.Benchmark symplectic solutions for bending of corner-supported rectangular thin plates [J].The IES Journal Part A:Civil & Structural Engineering,2008,1(2):106-115.

    • [10] 王砚,王忠民,阮苗.无网格法在点弹性支承矩形薄板横向振动中的应用 [J].计算力学学报,2010,27(2):238-243.WANG Y,WANG Z M,RUAN M.Application of meshless method in the transverse vibration of rectangular thin plate with elastic point supports [J].Chinese Journal of Computational Mechanics,2010,27(2):238-243.(in Chinese)

    • [11] 李郑发,曹登庆,张迎春.四角点固定支承矩形板固有特性研究 [J].振动与冲击,2015,34(19):98-102.LI Z F,CAO D Q,ZHANG Y C.Natural characteristics of rectangular plates clamped at 4 corner points [J].Journal of Vibration and Shock,2015,34(19):98-102.(in Chinese)

    • [12] LOPATIN A V,MOROZOV E V.Fundamental frequency of an orthotropic rectangular plate with an internal centre point support [J].Composite Structures,2011,93(10):2487-2495.

    • [13] LI R,WANG B,LV Y F,et al.New analytic solutions for static problems of rectangular thin plates point-supported at three corners [J].Meccanica,2017,52(7):1593-1600.

    • [14] LI R,TIAN Y,WANG P C,et al.New analytic free vibration solutions of rectangular thin plates resting on multiple point supports [J].International Journal of Mechanical Sciences,2016,110:53-61.

    • [15] NAGHSH A,AZHARI M.Non-linear free vibration analysis of point supported laminated composite skew plates [J].International Journal of Non Linear Mechanics,2015,76:64-76.

    • [16] NARITA Y,HODGKINSON J M.Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates [J].Composite Structures,2005,69(2):127-135.

    • [17] LI W L.Free vibrations of beams with general boundary conditions [J].Journal of Sound and Vibration,2000,237(4):709-725.

    • [18] ZHANG H,SHI D Y,WANG Q S.An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions [J].International Journal of Mechanical Sciences,2017,121:1-20.

    • [19] LIU T,HU G Q,WANG A L,et al.A unified formulation for free in-plane vibrations of arbitrarily-shaped straight-sided quadrilateral and triangular thin plates [J].Applied Acoustics,2019,155:407-422.

    • [20] 鲍四元,沈峰.各向异性矩形板和环扇形板横向自由振动的一种通用解法 [J].固体力学学报,2019,40(6):560-570.BAO S Y,SHEN F.A generalized solution procedure for free transverse vibration of anisotropic rectangular plates and annular sectorial plates [J].Chinese Journal of Solid Mechanics,2019,40(6):560-570.(in Chinese)

    • [21] 张俊,李天匀,朱翔.多开口矩形板自由振动特性分析 [J].振动与冲击,2020,39(14):142-147+155.ZHANG J,LI T Y,ZHU X.Free vibration characteristics analysis on a rectangular plate with multiple cutouts [J].Journal of Vibration and Shock,2020,39(14):142-147+155.(in Chinese)

    • [22] 陆斌,陈跃华,冯志敏,等.基于Chebyshev-变分法的复杂开口形状矩形薄板弯曲振动特性分析 [J].振动与冲击,2020,39(2):178-187.LU B,CHEN Y H,FENG Z M,et al.Bending vibration characteristics analysis of a rectangular plate with complex opening using Chebyshev-variational method [J].Journal of Vibration and Shock,2020,39(2):178-187.(in Chinese)

    • [23] LI W L.Comparison of Fourier sine and cosine series expansions for beams with arbitrary boundary conditions [J].Journal of Sound and Vibration,2002,255(1):185-194.

    • [24] 孙海,李晖,徐忠浩,等.螺栓松动边界下纤维增强复合薄板固有特性分析 [J].中国机械工程,2020,31(10):1213-1218.SUN H,LI H,XU Z H,et al.Inherent characteristics analysis of fiber-reinforced composite plates under bolt looseness boundary [J].China Mechanical Engineering,2020,31(10):1213-1218.(in Chinese)

    • [25] 项贻强,高超奇,杨云深.两端任意约束的弹性支撑梁在移动荷载下的动力响应 [J].哈尔滨工业大学学报,2022,54(3):12-19.XIANG Y Q,GAO C Q,YANG Y S.Dynamic response of elastic supported beams with arbitrary constraints at both ends under moving loads [J].Journal of Harbin Institute of Technology,2022,54(3):12-19.(in Chinese)

    • [26] 冯青松,杨舟,郭文杰,等.基于人工弹簧模型的周期结构带隙计算方法研究 [J].力学学报,2021,53(6):1684-1697.FENG Q S,YANG Z,GUO W J,et al.Research on band gap calculation method of periodic structure based on artificial spring model [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(6):1684-1697.(in Chinese)

    • [27] DU Y,PANG F Z,SUN L P,et al.A unified formulation for dynamic behavior analysis of spherical cap with uniform and stepped thickness distribution under different edge constraints [J].Thin-Walled Structures,2020,146:106445.

    • [28] 单逸峰,向维.虚拟弹簧边界Mindlin板的自由振动和屈曲分析 [J].起重运输机械,2022(1):54-61.SHAN Y F,XIANG W.Free vibration and buckling analysis of Mindlin plate with virtual spring boundaries [J].Hoisting and Conveying Machinery,2022(1):54-61.(in Chinese)

    • [29] 刘开国.能量变分法在现代结构分析中的应用 [J].建筑结构,2012,42(12):78-81.LIU K G.Application of energy variational method in the current structure analysis [J].Building Structure,2012,42(12):78-81.(in Chinese)

    • [30] 刘开国.组合型扁扭网壳结构分析 [J].建筑结构,2016,46(9):86-89.LIU K G.Analysis of combined-type flat twist latticed shell [J].Building Structure,2016,46(9):86-89.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码