en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张振,E-mail:chengyuanen@163.com

中图分类号:O327

文献标识码:A

文章编号:1672-6553-2023-21(11)-035-009

DOI:10.6052/1672-6553-2023-006

参考文献 1
ZHAO Y H,GUO Q W,WU S,et al.Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation [J].Mechanical Systems and Signal Processing,2019,134:106367.
参考文献 2
孙伟,李以农,刘万里,等.橡胶隔振器非线性动态特性建模及实验研究 [J].振动与冲击,2012,31(23):71-76.SUN W,LI Y N,LIU W L,et al.Dynamic modeling and test for a nonlinear rubber damper [J].Journal of Vibration and Shock,2012,31(23):71-76.(in Chinese)
参考文献 3
杜香刚.基于隔振器荷载特征的非线性隔振器设计方法研究 [J].振动与冲击,2021,40(21):290-297.DU X G.Design method of nonlinear vibration isolator based on isolator load characteristics [J].Journal of Vibration and Shock,2021,40(21):290-297.(in Chinese)
参考文献 4
刘韦,朱光楠,杜香刚,等.具有高静低动刚度特性的浮置板隔振器设计方法研究 [J].振动与冲击,2022,41(15):1-10+19.LIU W,ZHU G N,DU X G,et al.Study on design method of floating slab vibration isolator with high static and low dynamic stiffness characteristic [J].Journal of Vibration and Shock,2022,41(15):1-10+19.(in Chinese)
参考文献 5
XU K F,ZHANG Y W,ZHU Y P,et al.Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions [J].Acta Mechanica Solida Sinica,2020,33(6):731-743.
参考文献 6
KAMESH D,PANDIYAN R,GHOSAL A.Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform [J].Journal of Sound and Vibration,2012,331(6):1310-1330.
参考文献 7
TANG B,BRENNAN M J.A comparison of two nonlinear damping mechanisms in a vibration isolator [J].Journal of Sound and Vibration,2013,332(3):510-520.
参考文献 8
彭志科,郎自强,孟光,等.一类非线性隔振器振动传递特性分析 [J].动力学与控制学报,2011,9(4):314-320.PENG Z K,LANG Z Q,MENG G,et al.Analysis on transmissibility for a class of nonlinear vibration isolators [J].Journal of Dynamics and Control,2011,9(4):314-320.(in Chinese)
参考文献 9
CARRELLA A,BRENNAN M J,WATERS T P,et al.Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J].International Journal of Mechanical Sciences,2012,55(1):22-29.
参考文献 10
CARRELLA A,BRENNAN M J,KOVACIC I,et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness [J].Journal of Sound and Vibration,2009,322(4/5):707-717.
参考文献 11
GATTI G.Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections [J].Communications in Nonlinear Science and Numerical Simulation,2020,83:105143.
参考文献 12
刘兴天,孔祥森,孙杰,等.隔振对象重量变化对准零刚度隔振器隔振性能的影响 [J].动力学与控制学报,2021,19(1):63-67.LIU X T,KONG X S,SUN J,et al.Effect of load imperfection on vibration isolation performance of a quasi-zero-stiffness isolator [J].Journal of Dynamics and Control,2021,19(1):63-67.(in Chinese)
参考文献 13
麻军徳,王海伟.试验台测控仪器隔振装置振动传递特性分析 [J].动力学与控制学报,2022,20(6):49-57.MA J D,WANG H W.Vibration transmission characteristics analysis of vibration isolation device for measurement and control instrument of test-bed [J].Journal of Dynamics and Control,2022,20(6):49-57.(in Chinese)
参考文献 14
昌耀鹏,周加喜,徐道临.双层主动隔振系统优化设计方法研究 [J].动力学与控制学报,2022,20(1):35-41.CHANG Y P,ZHOU J X,XU D L.Research on optimization design method of double layer active vibration isolator system [J].Journal of Dynamics and Control,2022,20(1):35-41.(in Chinese)
参考文献 15
尹佑旺,郑佩.一种柔性隔振结构的动力学分析及设计方法 [J].动力学与控制学报,2021,19(6):16-24.YIN Y W,ZHENG P.Design and dynamic analysis of a flexible vibration isolation structure [J].Journal of Dynamics and Control,2021,19(6):16-24.(in Chinese)
参考文献 16
DAI H H,JING X J,SUN C,et al.Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture [J].Mechanical Systems and Signal Processing,2018,109:111-133.
参考文献 17
SUN X T,JING X J.Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J].Mechanical Systems and Signal Processing,2016,66-67:723-742.
参考文献 18
LANG Z Q,JING X J,BILLINGS S A,et al.Theoretical study of the effects of nonlinear viscous damping on vibration isolation of SDOF systems [J].Journal of Sound and Vibration,2009,323(1/2):352-365.
参考文献 19
JI J C,ZHANG N.Suppression of super-harmonic resonance response using a linear vibration absorber [J].Mechanics Research Communications,2011,38(6):411-416.
参考文献 20
WEI C F,JING X J.Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics [J].Communications in Nonlinear Science and Numerical Simulation,2017,48:288-306.
参考文献 21
LI Z C,JING X J,YU J Y.Fault detection based on a bio-inspired vibration sensor system [J].IEEE Access,2017,6:10867-10877.
参考文献 22
DAI H H,JING X J,WANG Y,et al.Post-capture vibration suppression of spacecraft via a bio-inspired isolation system [J].Mechanical Systems and Signal Processing,2018,105:214-240.
参考文献 23
HU F Z,JING X J.A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs [J].Nonlinear Dynamics,2018,91(1):157-185.
参考文献 24
尹蒙蒙,丁虎,陈立群.X型准零刚度隔振器动力学设计及分析 [J].动力学与控制学报,2021,19(5):46-52.YIN M M,DING H,CHEN L Q.Dynamic design and analysis of x-shaped quasi-zero stiffness isolator [J].Journal of Dynamics and Control,2021,19(5):46-52.(in Chinese)
参考文献 25
JING X J,ZHANG L L,FENG X,et al.A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J].Mechanical Systems and Signal Processing,2019,118:317-339.
参考文献 26
LI J Y,JING X J,LI Z C,et al.Fuzzy adaptive control for nonlinear suspension systems based on a bioinspired reference model with deliberately designed nonlinear damping [J].IEEE Transactions on Industrial Electronics,2019,66(11):8713-8723.
参考文献 27
WANG Y,JING X J.Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure [J].Mechanical Systems and Signal Processing,2019,125:142-169.
参考文献 28
FENG X,JING X J.Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping & nonlinear inertia [J].Mechanical Systems and Signal Processing,2019,117:786-812.
参考文献 29
MAO X Y,YIN M M,DING H,et al.Modeling,analysis,and simulation of X-shape quasi-zero-stiffness-roller vibration isolators [J].Applied Mathematics and Mechanics,2022,43(7):1027-1044.
目录contents

    摘要

    本文将一种X型结构与线性弹簧阻尼减振器相结合构成一种兼具消振和隔振性能的新型X型减振器.基于拉格朗日方法建立单自由度线性振子耦合消隔组合X型减振器系统的动力学方程,应用谐波平衡法得到系统稳态响应的近似解析解,并通过Runge-Kutta法得到系统的数值解验证解析解的正确性.讨论了不同的基础激励下新型X型减振器对系统的响应幅值以及位移传递率的减振效果.此外,分析了不同参数对系统的幅频响应曲线以及位移传递率的影响.研究结果表明,新型X型减振器不仅可以将线性刚度转化为非线性刚度,还可以为系统提供负刚度,拥有优秀的消振和超低频隔振性能.

    Abstract

    This paper combines an X-Shaped structure with a linear spring and damping absorber to form a new X-Shaped absorber with both vibration dissipation and vibration isolation performance. Based on the Lagrange method, the dynamic equation of the single-degree-of-freedom linear oscillator coupled X-Shaped absorber system is established. The approximate analytical solution of the steady-state response of the system is obtained by the harmonic balance method, and the numerical solution obtained by the Runge-Kutta method verify the correctness of the analytical solution. The vibration reduction effect of the new X-Shaped absorber on the response amplitude and displacement transmissibility of the system for different excitations is discussed. In addition, the influence of different parameters on the amplitude-frequency response curve and displacement transmissibility of the system is analyzed. The results show that the new X-Shaped absorber can not only transform the linear stiffness into nonlinear stiffness, but also provide negative stiffness for the system, and has excellent vibration dissipation and ultra-low frequency vibration isolation performance.

  • 引言

  • 在一般的振动控制问题中,常用的隔振技术包含主动与半主动控制、被动控制.主动控制技术中附加的能源与设备对隔振器配置要求高且难以实现轻量化[1].半主动控制中的控制系统同样较为复杂,因此被动隔振应用较为广泛.传统的隔振器一般通过减小系统刚度来降低其共振频率,在中、高频振动中隔振效果较好,具有成本低、结构简单等优点.但在隔离低频振动和宽频隔振性能方面能力较差[2].

  • 由于线性隔振器的刚度和承载力存在固有矛盾,非线性隔振技术开始受到广泛的应用,如车辆[34]、航天器[5]和精密仪器[6]等.这种隔振方法本质上是利用振动系统的非线性特性,包括非线性刚度和非线性阻尼.研究发现,对于静态的隔振装置,非线性刚度特性能够有效的提高其稳定性以及静态承载能力,而非线性阻尼特性能够提高隔振结构在高频范围内振动的隔离效果.Tang等[7]、彭志科等[8]对一些复杂非线性隔振器的性能进行了实验研究.具有高静低动特性的准零刚度隔振器也是一种常见的非线性刚度的实现方式.Carrella等[910]推导了准零刚度隔振器的力传递率和位移传递率.该“三弹簧”式准零刚度隔振器可以实现负刚度,能降低隔振系统的总刚度,并利用非线性刚度,拓宽隔振系统的隔振频带.Gatti等[11]提出了一种振荡器,通过使用四个适当排列的弹簧,在大挠度下实现低动刚度.但当激励幅值较大偏离相应位移区间后,这些结构形式的准零刚度隔振器不能发挥自身优势.近年来人们从动物身上获得灵感,通过模拟动物肢体结构提出了一种新型X型结构来获得非线性刚度.刘天兴等[12]通过构建负刚度调节结构,设计了平衡位置可调的准零刚度隔振系统,研究了隔振对象重量变化对隔振效果的影响.麻军德等[13]设计了一种精密仪器双层隔振装置,研究了仪器质量、系统结构型式和隔振器参数对隔振装置振动传递特性的影响.昌耀鹏等[14]对双层主动隔振系统进行了隔振性能及主动控制力的优化,大幅降低了隔振对象的位移与中间层的相对位移及主动控制力.尹佑旺等[15]基于柔性曲梁的力学特性提出了一种新型的柔性隔振结构,可以达到扭转方向的准零刚度特性,实现显著的低频隔振.

  • 生物X型结构作为工程实践中一种典型的非线性应用,具有良好的非线性被动振动控制性能[16].已有很多学者对此进行大量研究,如非线性静刚度与非线性阻尼[1718]、位移透射率[19]、振动能量采集[20]和基于准零刚度的传感器[21]等.Dai等[22]根据袋鼠奔跑时的平滑运动提出了仿生四边形结构,用于抑制自由漂浮航天器在周期或脉冲力作用下的振动.Hu等[23]利用新型X型减振器提供的非线性刚度和非线性阻尼特性,设计了被动六自由度隔振平台,通过改变结构参数来调节系统刚度和阻尼特性,实现良好的稳定性和高静-低动刚度特性,并具有很好的承载能力.尹蒙蒙等[24]将X型结构与准零刚度结合设计了X型准零刚度隔振器,达到了超低频隔振的效果.Jing等[25]模拟动物的肢体,利用生物抗振结构中的非线性优势设计了一种抗振外骨骼,对冲击过程中的振动有显著的抑制效果.Li等[26]提出了基于生物参考模型的主动悬架模糊自适应跟踪控制方法,并设计了一种非线性阻尼来改善阻尼特性.Wang等[27]研究了一种新型的n层垂直非对称X型结构,考虑了重力对系统固有频率的影响以及非线性阻尼对减振性能的影响.Feng等[28]首次提出以人体为灵感,模拟人腿部X型支撑结构和模拟人体行走时手臂和上身旋转运动设计出一种抗振结构,实现可调的超低谐振频率和良好的抗共振特性.Mao等[29]提出了一种结合凸轮推杆-弹簧机构的新型X形QZS隔振器.推杆-弹簧机构可以消除加载质量的重力,斜置弹簧能提供负刚度.

  • 本文将X型结构与传统线性弹簧阻尼减振器相结合,提出了兼具消隔减振性能的新型X型减振器.相比于文献[24]所提出的X型准零刚度隔振器,本文提出的新型X型减振器结构更加简单,利用X型结构特性,将线性刚度转化为所需的非线性刚度并提供负刚度,在保证降低承载力的同时也能提高隔振效果.新型X型减振器的应用范围同样广泛,可以应用在受冲击或周期性激励的在轨卫星当中.其实现方式更为简单,在一般的X型结构中,结合传统弹簧阻尼减振器就能实现.本文基于最大幅值减振百分比、最大传递率减振百分比和最大共振峰频率隔振百分比展示了新型X型减振器的消振和隔振性能.并讨论了新型X型减振器参数变化对其减振性能及系统响应非线性特性的影响.

  • 1 力学模型

  • 系统的力学模型如图1(a)所示.主结构等效为质量为m1,线性弹簧刚度为k1,阻尼为c1的单自由度线性振子.新型X型减振器由两根杆长为2l的长杆铰接而成,忽略铰接处的摩擦力,线性弹簧刚度为k2,阻尼为c2.系统外激励为基础谐波位移激励xe=Acos(ωt),其中,Aω分别为位移激励的幅值和频率.x1是主系统结构的位移响应.

  • 图1 力学模型:(a)带有新型X型减振器的单自由度主结构;(b)新型X型减振器结构变形的几何关系示意图

  • Fig.1 Mechanical model: (a) Single-degree-of-freedom main structure with the new X-Shaped absorber; (b) Geometric diagram of the new X-Shaped absorber

  • 图1(b)为新型X型减振器受到激励影响发生变化时的几何关系.新型X型减振器的杆长为2lφ0为装载时与底座的初始夹角,θ为新型X型减振器受到激励影响时角度的变化量,x为弹簧k2的形变量,y为新型X型减振器竖直方向的位移变化量.由此可以推导出这几个位移变量之间的几何关系:

  • x=lcosφ0-θ-cosφ0y=lsinφ0-sinφ0-θ
    (1)
  • 其中竖直位移形变量y=xe-x12,与式(1)结合起来得到弹簧型变量x为:

  • x=l2-lsinφ0-xe-x222-lcosφ0
    (2)
  • 利用拉格朗日方程推导出带有新型X型减振器的单自由度系统的动力学方程.

  • 该系统的动能为:

  • T=12m1x˙12
    (3)
  • 该系统的势能为:

  • V=12k1xe-x12+k2x2
    (4)
  • 拉格朗日函数为:

  • L=T-V
    (5)
  • 由拉格朗日方程:

  • ddtLx˙1-Lx1=D
    (6)
  • 其中耗散能D可以表示为

  • D=c1x˙e-x˙1+c2x˙
    (7)
  • 将式(2)~式(5)和式(7)代入式计算得到系统的动力学方程为

  • m1x¨1+k1x1-xe+c1x˙1-x˙e-2c2x˙-2k2xdxdx1=0
    (8)
  • 将方程(8)在零点进行三阶泰勒展开为

  • m1x¨1+k1x1-xe+c1x˙1-x˙e-k2q1xb+q2xb2+q3xb3+c2x˙1-x˙ef0+f1xb+f2xb2+f3xb3=0
    (9)
  • 其中:

  • q1=-12tan2φ0,q2=3tanφ01-tan2φ08lcosφ0q3=-1+5tan4φ016l2cos2φ0,f0=tanφ0f1=-1+tanφ02lcosφ0,f2=3tanφ01+tan2φ08l2cos2φ0f3=-1+3tan2φ016l3cos3φ0,xb=xe-x1
    (10)
  • 2 谐波平衡法求解

  • 基于谐波平衡法,方程式(9)的振动响应可以近似一组有限谐波的叠加,设主结构位移x1的谐波假设解的形式为

  • x1=a0+i=in a1,icos(iωt)+i=in b1,isin(iωt)
    (11)
  • 式中,i为谐波阶数,i = 1、2、···、n.a1,ib1,i为对应谐波项的待定系数.

  • 对式(11)进行一阶求导和二阶求导分别得到速度和加速度响应.

  • 考虑到系统响应为对称运动,因此a0=0.这里给出一阶谐波的推导过程.令i = 1,a1,1b1,1定义为常数,谐波系数方程为

  • -45a1, 1k2A2tan4φ064l2cos2φ0+45a1, 12k2Atan4φ064l2cos2φ0+15b1, 12k2Atan4φ064l2cos2φ0-15a1, 1b1, 12k2tan4φ064l2cos2φ0+3b1, 13c2ωtan3φ032l2cos2φ0+k2Atan2φ02-a1, 1k2tan2φ02+3k2A364l2cos2φ0-3k2a1, 1364l2cos2φ0-Ak1+a1, 1k1-15a1, 13k2tan4φ064l2cos2φ0-9a1, 1k2A264l2cos2φ0+9a1, 12k2A64l2cos2φ0+3b1, 12k2A64l2cos2φ0-3a1, 1b1, 12k264l2cos2φ0+3a1, 12b1, 1c2ωtanφ032l2cos2φ0+3b1, 1c2ωA2tan3φ032l2cos2φ0+3a1, 12b1, 1c2ωtan3φ032l2cos2φ0+3b1, 1c2ωA2tanφ032l2cos2φ0-a1, 1ω2m1+b1, 1ωc1+b1, 1ωc2tanφ0+15k2A3tan4φ064l2cos2φ0-3a1, 1b1, 1ωc2Atan3φ016l2cos2φ0-3a1, 1b1, 1ωc2Atanφ016l2cos2φ0=0

  • -b1,1ω2m1+Aωc1-ωa1,1c1-15a1,12b1,1k2tan4φ064l2cos2φ0+3a1,1b1,1k2A32l2cos2φ0-15b1,1k2A2tan4φ064l2cos2φ0-3ωc2A3tan3φ032l2cos2φ0-3a1,13ωc2A3tanφ032l2cos2φ0-3a1,13ωc2A3tan3φ032l2cos2φ0+3ωc2A3tanφ032l2cos2φ0-3b1,13k264l2cos2φ0-b1,1k2tan2φ02+c2ωAtanφ0-a1,1c2ωtanφ0-15b1,13k2tan4φ064l2cos2φ0-3b1,1k2A264l2cos2φ0-3a1,12b1,1k264l2cos2φ0+b1,1k1+3b1,12ωc2Atanφ032l2cos2φ0-9a1,1ωc2A2tanφ032l2cos2φ0+15a1,1b1,1k2Atan4φ032l2cos2φ0+3b1,12ωc2Atan3φ032l2cos2φ0-3a1,1b1,12ωc2tan3φ032l2cos2φ0+9a1,12ωc2Atanφ032l2cos2φ0-3a1,1b1,12ωc2tan032l2cos2φ0-9a1,1ωc2A2tan3φ032l2cos2φ0+9a1,12ωc2Atan3φ032l2cos2φ0=0
    (12)
  • 给定系统参数,由伪弧长连续算法求解式(12),得到系统的稳态幅频响应曲线.通过系统响应最大值与最小值之差的平均值提取系统的幅值为

  • Ax1=maxx1-minx12
    (13)
  • 定义传递率为:

  • T=20lgAx1A
    (14)
  • 3 数值验证

  • 由Runge-Kutta数值方法求得系统响应的时间历程,然后从时间历程中的稳态响应部分提取出系统的响应幅值用以验证谐波平衡近似解析解的精确性,系统参数如表1所示,图2(a)所示的数值解与解析解吻合的很好.

  • 表1 仿真计算参数

  • Table1 Simulation calculation parameters

  • 调整刚度参数k2=4500N/m,得到系统的幅频响应曲线如图2(b)所示.曲线呈现出向左弯曲的软化特性,且数值结果正向扫频和反向扫频的对比显示了非线性跳跃现象.显然,两种方法的结果有很高的吻合度.由此可得,无论是强非线性还是弱非线性响应,一阶和三阶的谐波假设解都可以满足收敛性要求.因此,本文的幅频响应均采用一阶和三阶谐波假设解.

  • 图2 系统幅频曲线的解析解与数值解的比较:(a)基于表1参数;(b)调整刚度k2=4500N/m

  • Fig.2 Comparison of the amplitude-frequency curve of the energy sink based on the analytical and numerical methods: (a) Based on Table1 parameters; (b) Adjust stiffness k2=4500N/m

  • 4 减振效果分析

  • 本节比较并讨论在不同激励幅值下,新型X型减振器对系统响应幅值和位移传递率的减振效果.采用表1的参数进行仿真计算.如图3(a)、图4(a)、图5(a)、图6(a)所示,激励幅值A=0.0001m、0.0005 m、0.0015m、0.0025m时新型X型减振器对频响曲线最大幅值的消振百分比分别为95.38%、95.61%、95.75%、96%.相比于小激励幅值A=0.0001m,后三种激励下,新型X型减振器对系统响应幅值的消振百分比均有小幅度增长,分别增加了0.23%、0.37%,0.62%.由此可见,对于系统响应幅值,新型X型减振器具有高效的消振效果.此外,激励幅值的变化几乎不影响新型X型减振器对系统最大响应幅值的消振性能.

  • 图3(b)、图4(b)、图5(b)、图6(b)分别表示不同激励下新型X型减振器对位移传递率的减振效果.如图所示,激励幅值A=0.0001m、0.0005m、0.0015m、0.0025m时未控系统的位移传递率几乎没有变化.而新型X型减振器对位移传递率最大值的消振百分比分别达到了73.9%、73.89%、74.73%、76.09%.相比于小激励A=0.0001m,激励幅值A=0.0005m时新型X型减振器对幅值的消振百分比下降了0.01%.当A=0.0015m、0.0025m时新型X型减振器对位移传递率最大值的消振百分比相比于A=0.0001m分别增加了0.83%和2.13%.由此可见,对于系统的位移传递率,新型X型减振器同样具有高效的消振效果,且外激励幅值的变化几乎不影响新型X型减振器对位移传递率的消振性能.

  • 图3 激励幅值A=0.0001m:(a)新型X型减振器对幅值的减振效果;(b)新型X型减振器对位移传递率的减振效果

  • Fig.3 Excitation amplitude A=0.0001m: (a) The damping effect of the new X-shaped absorber on amplitude; (b) Vibration reduction effect of the new X-shaped absorber on displacement transmissibility

  • 图4 激励幅值A=0.0005m:(a)新型X型减振器对幅值的减振效果;(b)新型X型减振器对位移传递率的减振效果

  • Fig.4 Excitation amplitude A=0.0005m: (a) The damping effect of the new X-shaped absorber on amplitude; (b) Vibration reduction effect of the new X-shaped absorber on displacement transmissibility

  • 图5 激励幅值A=0.0015m:(a)新型X型减振器对幅值的减振效果;(b)新型X型减振器对位移传递率的减振效果

  • Fig.5 Excitation amplitude A=0.0015m: (a) The damping effect of the new X-shaped absorber on amplitude; (b) Vibration reduction effect of the new X-shaped absorber on displacement transmissibility

  • 图6 激励幅值A=0.0025m:(a)新型X型减振器对幅值的减振效果;(b)新型X型减振器对位移传递率的减振效果

  • Fig.6 Excitation amplitude A=0.0025m: (a) The damping effect of the new X-shaped absorber on amplitude; (b) Vibration reduction effect of the new X-shaped absorber on displacement transmissibility

  • 此外,如图3~图6所示.不同外激励对未控系统的固有频率是没有影响的.未控系统在频率为29.2rad/s处取得峰值.激励幅值A=0.0001m、0.0005m、0.0015m、0.0025m时,新型X型减振器对系统的隔振百分比分别达到了92.99%、93.28%、93.4%和94.99%.当A=0.0005m、0.0015m、0.0025m时新型X型减振器对系统的隔振百分比相比于A=0.0001m分别增加了0.29%、0.41%、2%.由此可见,新型X型减振器具有良好的低频隔振性能.此外,激励的变化几乎不影响新型X型减振器对系统的隔振性能.

  • 5 参数分析

  • 5.1 刚度影响

  • 保持表1其他参数不变,新型X型减振器的刚度对系统幅频响应曲线的影响如图7(a)所示.可以看到,随着线性刚度值的增大,频响曲线的峰值逐渐减小,增加了减振效果.最大峰值一直向左下方延伸.当刚度k2超过5650N/m时,共振峰消失.此外还可以发现,在刚度增大的过程中,频响曲线先呈现出明显的软化特性,然后软化特性又逐渐消失.图7(b)显示的是新型X型减振器的刚度对系统位移传递率的影响.可以看到,随着线性刚度值的增大,位移传递率的峰值不断减小,系统的固有频率越来越小,隔振范围越来越大.当刚度超过5650N/m时,实现了全频段隔振.频响曲线和位移传递率均呈现出向左弯曲的非线性软特性,由此可见,新型X型减振器对于高频隔振更有优势,高频隔振频带更宽,尤其当刚度增大到一定程度时,能更好的实现全频隔振.

  • 图7 新型X型减振器刚度的影响:(a)不同刚度的幅频响应曲线;(b)不同刚度的位移传递率

  • Fig.7 Influence of stiffness of the new X-Shaped absorber: (a) Amplitude-frequency response curves with different k2; (b) Transmissibility with different k2

  • 5.2 阻尼影响

  • 保持表1其他参数不变,且将刚度参数调整为k2=4500N/m.新型X型减振器的阻尼对幅频响应曲线的影响如图8(a)所示.随着阻尼值的增大,系统幅频响应曲线的峰值逐渐减小,并且频响曲线的软化特性逐渐消失.图8(b)显示的是新型X型减振器的阻尼对位移传递率的影响.可以看到,增大阻尼能有效减小位移传递率的峰值.但在共振区外,随着振动频率增大,较大的阻尼会增大系统的位移传递率.因此,为了保证系统的减振效果,阻尼不宜过大,否则会增加高频段的位移传递率的幅值,从而影响系统在高频段的隔振效果.

  • 图8 新型X型减振器阻尼的影响:(a)不同阻尼的幅频响应曲线;(b)不同阻尼的位移传递率

  • Fig.8 Influence of damping of the new X-Shaped absorber: (a) Amplitude-frequency response curves with different c2; (b) Transmissibility with different c2

  • 5.3 装载角的影响

  • 保持表1其他参数不变,且将刚度参数调整为k2=4500N/m.新型X型减振器的装载角度对幅频响应曲线的影响如图9(a)所示.可以看到,随着装载角度的增大,频响曲线的峰值逐渐减小.另外,装载角度越大,频响曲线向左弯曲的软化特性越明显.图9(b)显示的是新型X型减振器的装载角度对系统位移传递率的影响.随着装载角度的增大,位移传递率的峰值不断减小,系统的固有频率越来越小,隔振频带逐渐变宽.当装载角度增加到一定程度时,位移传递率的固有频率降为0,实现了全频带隔振.但是大的装载角会增加高频段的位移传递率的幅值,从而影响高频段的隔振效果.所以根据实际条件,在条件允许的范围内应选择较大的装载角.

  • 图9 新型X型减振器装载角的影响(a)不同装载角的幅频响应曲线;(b)不同装载角的位移传递率

  • Fig.9 Influence of loading angle of the new X-Shaped absorber: (a) Amplitude-frequency response curves with different φ0; (b) Transmissibility with different φ0

  • 5.4 参数优化

  • 对于不同的阻尼c2=1N·s/m、5N·s/m、10N·s/m,当X型结构的刚度和装载角度同时变化时,主结构的位移传递率的最大幅值变化二维等高线分别如图10(a)、(b)、(c)所示.图中深蓝色区域为可以实现全频带隔振的最优参数取值范围.比较发现,图(b)的最优值范围明显比图(a)的大,而图(c)的最优值范围虽然比图(b)的大,但其增大程度非常小.也就是说,随着阻尼变大,实现全频带隔振最优参数取值范围会逐渐变大到一定程度后达到相对稳定.

  • 图10 X型结构的刚度和装载角度同时变化时对主结构的位移传递率最大幅值的影响:(a)c2=1N·s/m;(b)c2=5N·s/m;(c)c2=10N·s/m

  • Fig.10 The influence of the stiffness and loading angle of the X-shape on the maximum amplitude of the displacement transfer rate of the main structure: (a) c2=1N·s/m; (b) c2=5N·s/m; (c) c2=10N·s/m

  • 图11 阻尼的影响

  • Fig.11 Effect of damping

  • 在全频带隔振范围内,选取一组刚度和装载角k2=3600N/m,φ0=π/3rad/s,不同阻尼对位移传递率的影响如图11所示.能够发现,当阻尼越来越大时,高频段的隔振效果会越来越差.也就是说,当实现全频段隔振以后,阻尼越小越好.

  • 在全频段隔振范围内,选取阻尼c2=1N·s/m.当受到的冲击激励为0.02m时,系统自由衰减的时间历程图如图13所示.可以看到,在全频段隔振范围内,面对冲击性激励,新型X型减振器也可以实现高效的减振效果.

  • 图12 冲击激励为0.02m,系统自由衰减的时间历程图

  • Fig.12 The impact excitation is 0.02 m, and the time history diagram of the free attenuation of the system is obtained

  • 6 结论

  • 本文将X型结构与线性弹簧阻尼减振器结合得到一种新型消隔组合X型减振装置.新型X型减振器不仅能将线性刚度转化为非线性刚度,还可以为系统提供负刚度.研究了新型X型减振器的减振性能,并讨论了参数变化的影响.主要结论如下

  • 新型X型减振器具有很好的消振和隔振性能.另外,外激励幅值的变化对新型X型减振器的减振性能几乎没有影响.

  • 参数研究表明,较大的刚度、阻尼以及装载角度都可以有效提高X型减振器对系统的减振性能,达到高效消振与超低频隔振的效果.当实现全频段隔振之后,阻尼越小,隔振效果会越好.

  • 参考文献

    • [1] ZHAO Y H,GUO Q W,WU S,et al.Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation [J].Mechanical Systems and Signal Processing,2019,134:106367.

    • [2] 孙伟,李以农,刘万里,等.橡胶隔振器非线性动态特性建模及实验研究 [J].振动与冲击,2012,31(23):71-76.SUN W,LI Y N,LIU W L,et al.Dynamic modeling and test for a nonlinear rubber damper [J].Journal of Vibration and Shock,2012,31(23):71-76.(in Chinese)

    • [3] 杜香刚.基于隔振器荷载特征的非线性隔振器设计方法研究 [J].振动与冲击,2021,40(21):290-297.DU X G.Design method of nonlinear vibration isolator based on isolator load characteristics [J].Journal of Vibration and Shock,2021,40(21):290-297.(in Chinese)

    • [4] 刘韦,朱光楠,杜香刚,等.具有高静低动刚度特性的浮置板隔振器设计方法研究 [J].振动与冲击,2022,41(15):1-10+19.LIU W,ZHU G N,DU X G,et al.Study on design method of floating slab vibration isolator with high static and low dynamic stiffness characteristic [J].Journal of Vibration and Shock,2022,41(15):1-10+19.(in Chinese)

    • [5] XU K F,ZHANG Y W,ZHU Y P,et al.Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions [J].Acta Mechanica Solida Sinica,2020,33(6):731-743.

    • [6] KAMESH D,PANDIYAN R,GHOSAL A.Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform [J].Journal of Sound and Vibration,2012,331(6):1310-1330.

    • [7] TANG B,BRENNAN M J.A comparison of two nonlinear damping mechanisms in a vibration isolator [J].Journal of Sound and Vibration,2013,332(3):510-520.

    • [8] 彭志科,郎自强,孟光,等.一类非线性隔振器振动传递特性分析 [J].动力学与控制学报,2011,9(4):314-320.PENG Z K,LANG Z Q,MENG G,et al.Analysis on transmissibility for a class of nonlinear vibration isolators [J].Journal of Dynamics and Control,2011,9(4):314-320.(in Chinese)

    • [9] CARRELLA A,BRENNAN M J,WATERS T P,et al.Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J].International Journal of Mechanical Sciences,2012,55(1):22-29.

    • [10] CARRELLA A,BRENNAN M J,KOVACIC I,et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness [J].Journal of Sound and Vibration,2009,322(4/5):707-717.

    • [11] GATTI G.Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections [J].Communications in Nonlinear Science and Numerical Simulation,2020,83:105143.

    • [12] 刘兴天,孔祥森,孙杰,等.隔振对象重量变化对准零刚度隔振器隔振性能的影响 [J].动力学与控制学报,2021,19(1):63-67.LIU X T,KONG X S,SUN J,et al.Effect of load imperfection on vibration isolation performance of a quasi-zero-stiffness isolator [J].Journal of Dynamics and Control,2021,19(1):63-67.(in Chinese)

    • [13] 麻军徳,王海伟.试验台测控仪器隔振装置振动传递特性分析 [J].动力学与控制学报,2022,20(6):49-57.MA J D,WANG H W.Vibration transmission characteristics analysis of vibration isolation device for measurement and control instrument of test-bed [J].Journal of Dynamics and Control,2022,20(6):49-57.(in Chinese)

    • [14] 昌耀鹏,周加喜,徐道临.双层主动隔振系统优化设计方法研究 [J].动力学与控制学报,2022,20(1):35-41.CHANG Y P,ZHOU J X,XU D L.Research on optimization design method of double layer active vibration isolator system [J].Journal of Dynamics and Control,2022,20(1):35-41.(in Chinese)

    • [15] 尹佑旺,郑佩.一种柔性隔振结构的动力学分析及设计方法 [J].动力学与控制学报,2021,19(6):16-24.YIN Y W,ZHENG P.Design and dynamic analysis of a flexible vibration isolation structure [J].Journal of Dynamics and Control,2021,19(6):16-24.(in Chinese)

    • [16] DAI H H,JING X J,SUN C,et al.Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture [J].Mechanical Systems and Signal Processing,2018,109:111-133.

    • [17] SUN X T,JING X J.Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J].Mechanical Systems and Signal Processing,2016,66-67:723-742.

    • [18] LANG Z Q,JING X J,BILLINGS S A,et al.Theoretical study of the effects of nonlinear viscous damping on vibration isolation of SDOF systems [J].Journal of Sound and Vibration,2009,323(1/2):352-365.

    • [19] JI J C,ZHANG N.Suppression of super-harmonic resonance response using a linear vibration absorber [J].Mechanics Research Communications,2011,38(6):411-416.

    • [20] WEI C F,JING X J.Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics [J].Communications in Nonlinear Science and Numerical Simulation,2017,48:288-306.

    • [21] LI Z C,JING X J,YU J Y.Fault detection based on a bio-inspired vibration sensor system [J].IEEE Access,2017,6:10867-10877.

    • [22] DAI H H,JING X J,WANG Y,et al.Post-capture vibration suppression of spacecraft via a bio-inspired isolation system [J].Mechanical Systems and Signal Processing,2018,105:214-240.

    • [23] HU F Z,JING X J.A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs [J].Nonlinear Dynamics,2018,91(1):157-185.

    • [24] 尹蒙蒙,丁虎,陈立群.X型准零刚度隔振器动力学设计及分析 [J].动力学与控制学报,2021,19(5):46-52.YIN M M,DING H,CHEN L Q.Dynamic design and analysis of x-shaped quasi-zero stiffness isolator [J].Journal of Dynamics and Control,2021,19(5):46-52.(in Chinese)

    • [25] JING X J,ZHANG L L,FENG X,et al.A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J].Mechanical Systems and Signal Processing,2019,118:317-339.

    • [26] LI J Y,JING X J,LI Z C,et al.Fuzzy adaptive control for nonlinear suspension systems based on a bioinspired reference model with deliberately designed nonlinear damping [J].IEEE Transactions on Industrial Electronics,2019,66(11):8713-8723.

    • [27] WANG Y,JING X J.Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure [J].Mechanical Systems and Signal Processing,2019,125:142-169.

    • [28] FENG X,JING X J.Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping & nonlinear inertia [J].Mechanical Systems and Signal Processing,2019,117:786-812.

    • [29] MAO X Y,YIN M M,DING H,et al.Modeling,analysis,and simulation of X-shape quasi-zero-stiffness-roller vibration isolators [J].Applied Mathematics and Mechanics,2022,43(7):1027-1044.

  • 参考文献

    • [1] ZHAO Y H,GUO Q W,WU S,et al.Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation [J].Mechanical Systems and Signal Processing,2019,134:106367.

    • [2] 孙伟,李以农,刘万里,等.橡胶隔振器非线性动态特性建模及实验研究 [J].振动与冲击,2012,31(23):71-76.SUN W,LI Y N,LIU W L,et al.Dynamic modeling and test for a nonlinear rubber damper [J].Journal of Vibration and Shock,2012,31(23):71-76.(in Chinese)

    • [3] 杜香刚.基于隔振器荷载特征的非线性隔振器设计方法研究 [J].振动与冲击,2021,40(21):290-297.DU X G.Design method of nonlinear vibration isolator based on isolator load characteristics [J].Journal of Vibration and Shock,2021,40(21):290-297.(in Chinese)

    • [4] 刘韦,朱光楠,杜香刚,等.具有高静低动刚度特性的浮置板隔振器设计方法研究 [J].振动与冲击,2022,41(15):1-10+19.LIU W,ZHU G N,DU X G,et al.Study on design method of floating slab vibration isolator with high static and low dynamic stiffness characteristic [J].Journal of Vibration and Shock,2022,41(15):1-10+19.(in Chinese)

    • [5] XU K F,ZHANG Y W,ZHU Y P,et al.Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions [J].Acta Mechanica Solida Sinica,2020,33(6):731-743.

    • [6] KAMESH D,PANDIYAN R,GHOSAL A.Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform [J].Journal of Sound and Vibration,2012,331(6):1310-1330.

    • [7] TANG B,BRENNAN M J.A comparison of two nonlinear damping mechanisms in a vibration isolator [J].Journal of Sound and Vibration,2013,332(3):510-520.

    • [8] 彭志科,郎自强,孟光,等.一类非线性隔振器振动传递特性分析 [J].动力学与控制学报,2011,9(4):314-320.PENG Z K,LANG Z Q,MENG G,et al.Analysis on transmissibility for a class of nonlinear vibration isolators [J].Journal of Dynamics and Control,2011,9(4):314-320.(in Chinese)

    • [9] CARRELLA A,BRENNAN M J,WATERS T P,et al.Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J].International Journal of Mechanical Sciences,2012,55(1):22-29.

    • [10] CARRELLA A,BRENNAN M J,KOVACIC I,et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness [J].Journal of Sound and Vibration,2009,322(4/5):707-717.

    • [11] GATTI G.Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections [J].Communications in Nonlinear Science and Numerical Simulation,2020,83:105143.

    • [12] 刘兴天,孔祥森,孙杰,等.隔振对象重量变化对准零刚度隔振器隔振性能的影响 [J].动力学与控制学报,2021,19(1):63-67.LIU X T,KONG X S,SUN J,et al.Effect of load imperfection on vibration isolation performance of a quasi-zero-stiffness isolator [J].Journal of Dynamics and Control,2021,19(1):63-67.(in Chinese)

    • [13] 麻军徳,王海伟.试验台测控仪器隔振装置振动传递特性分析 [J].动力学与控制学报,2022,20(6):49-57.MA J D,WANG H W.Vibration transmission characteristics analysis of vibration isolation device for measurement and control instrument of test-bed [J].Journal of Dynamics and Control,2022,20(6):49-57.(in Chinese)

    • [14] 昌耀鹏,周加喜,徐道临.双层主动隔振系统优化设计方法研究 [J].动力学与控制学报,2022,20(1):35-41.CHANG Y P,ZHOU J X,XU D L.Research on optimization design method of double layer active vibration isolator system [J].Journal of Dynamics and Control,2022,20(1):35-41.(in Chinese)

    • [15] 尹佑旺,郑佩.一种柔性隔振结构的动力学分析及设计方法 [J].动力学与控制学报,2021,19(6):16-24.YIN Y W,ZHENG P.Design and dynamic analysis of a flexible vibration isolation structure [J].Journal of Dynamics and Control,2021,19(6):16-24.(in Chinese)

    • [16] DAI H H,JING X J,SUN C,et al.Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture [J].Mechanical Systems and Signal Processing,2018,109:111-133.

    • [17] SUN X T,JING X J.Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J].Mechanical Systems and Signal Processing,2016,66-67:723-742.

    • [18] LANG Z Q,JING X J,BILLINGS S A,et al.Theoretical study of the effects of nonlinear viscous damping on vibration isolation of SDOF systems [J].Journal of Sound and Vibration,2009,323(1/2):352-365.

    • [19] JI J C,ZHANG N.Suppression of super-harmonic resonance response using a linear vibration absorber [J].Mechanics Research Communications,2011,38(6):411-416.

    • [20] WEI C F,JING X J.Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics [J].Communications in Nonlinear Science and Numerical Simulation,2017,48:288-306.

    • [21] LI Z C,JING X J,YU J Y.Fault detection based on a bio-inspired vibration sensor system [J].IEEE Access,2017,6:10867-10877.

    • [22] DAI H H,JING X J,WANG Y,et al.Post-capture vibration suppression of spacecraft via a bio-inspired isolation system [J].Mechanical Systems and Signal Processing,2018,105:214-240.

    • [23] HU F Z,JING X J.A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs [J].Nonlinear Dynamics,2018,91(1):157-185.

    • [24] 尹蒙蒙,丁虎,陈立群.X型准零刚度隔振器动力学设计及分析 [J].动力学与控制学报,2021,19(5):46-52.YIN M M,DING H,CHEN L Q.Dynamic design and analysis of x-shaped quasi-zero stiffness isolator [J].Journal of Dynamics and Control,2021,19(5):46-52.(in Chinese)

    • [25] JING X J,ZHANG L L,FENG X,et al.A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J].Mechanical Systems and Signal Processing,2019,118:317-339.

    • [26] LI J Y,JING X J,LI Z C,et al.Fuzzy adaptive control for nonlinear suspension systems based on a bioinspired reference model with deliberately designed nonlinear damping [J].IEEE Transactions on Industrial Electronics,2019,66(11):8713-8723.

    • [27] WANG Y,JING X J.Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure [J].Mechanical Systems and Signal Processing,2019,125:142-169.

    • [28] FENG X,JING X J.Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping & nonlinear inertia [J].Mechanical Systems and Signal Processing,2019,117:786-812.

    • [29] MAO X Y,YIN M M,DING H,et al.Modeling,analysis,and simulation of X-shape quasi-zero-stiffness-roller vibration isolators [J].Applied Mathematics and Mechanics,2022,43(7):1027-1044.

  • 微信公众号二维码

    手机版网站二维码