en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

唐介,E-mail:tangjie@swjtu.edu.cn

中图分类号:O328

文献标识码:A

文章编号:1672-6553-2023-21(11)-027-008

DOI:10.6052/1672-6553-2022-065

参考文献 1
SHAHRAEENI M,SOROKIN V,MACE B,et al.Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator [J].Journal of Sound and Vibration,2022,526:116822.
参考文献 2
ZUO S,WANG D Y,ZHANG Y S,et al.Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator [J].International Journal of Mechanical Sciences,2022,220:107146.
参考文献 3
徐道临,赵智,周加喜.气动可调式准零刚度隔振器设计及特性分析 [J].湖南大学学报(自然科学版),2013,40(6):47-52.XU D L,ZHAO Z,ZHOU J X.Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Hunan University(Natural Sciences),2013,40(6):47-52.(in Chinese)
参考文献 4
徐道临,张月英,周加喜,等.一种准零刚度隔振器的特性分析与实验研究 [J].振动与冲击,2014,33(11):208-213.XU D L,ZHANG Y Y,ZHOU J X,et al.Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness [J].Journal of Vibration and Shock,2014,33(11):208-213.(in Chinese)
参考文献 5
徐道临,成传望,周加喜.屈曲板型准零刚度隔振器的设计和特性分析 [J].湖南大学学报(自然科学版),2014,41(8):17-22.XU D L,CHENG C W,ZHOU J X.Design and characteristic analysis of a buckling plate vibration isolator with quasi-zero-stiffness [J].Journal of Hunan University(Natural Sciences),2014,41(8):17-22.(in Chinese)
参考文献 6
ZHOU J X,WANG K,XU D L,et al.Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator [J].Journal of Vibration and Control,2018,24(15):3278-3291.
参考文献 7
昌耀鹏,周加喜,徐道临.双层主动隔振系统优化设计方法研究 [J].动力学与控制学报,2022,20(1):35-41.CHANG Y P,ZHOU J X,XU D L.Research on optimization design method of double layer active vibration isolator system [J].Journal of Dynamics and Control,2022,20(1):35-41.(in Chinese)
参考文献 8
尹蒙蒙,丁虎,陈立群.X型准零刚度隔振器动力学设计及分析 [J].动力学与控制学报,2021,19(5):46-52.YIN M M,DING H,CHEN L Q.Dynamic design and analysis of X-shaped quasi-zero stiffness isolator [J].Journal of Dynamics and Control,2021,19(5):46-52.(in Chinese)
参考文献 9
顾栋浩,陆泽琦,丁虎,等.圆环非线性隔振设计和动力学研究 [J].振动工程学报,2021,34(6):1223-1229.GU D H,LU Z Q,DING H,et al.Nonlinear vibration isolation design and dynamic study of circular ring [J].Journal of Vibration Engineering,2021,34(6):1223-1229.(in Chinese)
参考文献 10
刘兴天,陈树海,王嘉登,等.几何非线性摩擦阻尼隔振系统动力学行为研究 [J].力学学报,2019,51(2):371-379.LIU X T,CHEN S H,WANG J D,et al.Anlysis of the dynamic behavior and performance of a vibration isolation system with geometric nonlinear friction damping [J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(2):371-379.(in Chinese)
参考文献 11
PALOMARES E,NIETO A J,MORALES A L,et al.Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system [J].Journal of Sound and Vibration,2018,414:31-42.
参考文献 12
ZENG R,YIN S,WEN G L,et al.A non-smooth quasi-zero-stiffness isolator with displacement constraints [J].International Journal of Mechanical Sciences,2022,225:107351.
参考文献 13
严博,张希农.负电阻电磁分支电路阻尼隔振系统试验技术研究 [J].振动工程学报,2016,29(6):1057-1061.YAN B,ZHANG X N.Experimental investigation of negative resistance shunted electromagnetic damping vibration isolation system [J].Journal of Vibration Engineering,2016,29(6):1057-1061.(in Chinese)
参考文献 14
LIU C C,ZHAO R,YU K P,et al.A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams [J].Energy,2021,233:121146.
参考文献 15
SUN X T,JING X J.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band [J].Mechanical Systems and Signal Processing,2016,80:166-188.
参考文献 16
DONG G X,ZHANG X N,XIE S,et al.Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring [J].Mechanical Systems and Signal Processing,2017,86:188-203.
参考文献 17
ZHU G N,LU K,CAO Q J,et al.An archetypal vibration isolator with quasi-zero stiffness in multiple directions [J].Journal of Nonlinear Mathematical Physics,2022,29(2):190-203.
参考文献 18
张阿舟,姚起航.振动控制工程 [M].北京:航空工业出版社,1989.
参考文献 19
任旭东.空气弹簧准零刚度隔振器的特性分析及应用研究 [D].北京:中国人民解放军军事医学科学院,2017.REN X D.Characteristics analysis and application study of the quasi-zero stiffness isolator using air spring [D].Beijing:Academy of Military Sciences,2017.(in Chinese)
目录contents

    摘要

    本文提出一种主要由空气弹簧和永磁体所组成的具有准零刚度特性的非线性隔振器.首先,通过分析空气弹簧和磁体的受力特性,建立隔振器力-位移关系和刚度-位移关系,揭示隔振器静态力学特性,并分析隔振器参数对系统刚度的影响规律.然后,采用谐波平衡法计算隔振器力传递率特性.结果表明,通过在适当范围内调节系统阻尼比或激励幅值,所提出的非线性隔振器在隔振频率范围内优于普通空气弹簧隔振器.最后,通过实验验证隔振器的隔振性能.该研究可为小振幅甚至微振动系统的振动隔离提供新的参考.

    Abstract

    A novel quasi-zero stiffness vibration isolator is presented and tested in this article. The isolator is mainly made of air spring and permanent magnet. The stiffness effect between them is mutually restrained to form a quasi-zero stiffness state. Firstly, the force-displacement relationship and the stiffness-displacement relationship of the isolator is established to reveal the static characteristics. The influences of isolator parameters on the system stiffness are also analyzed. Then, the dynamic transmissibility characteristics are calculated by the harmonic balance method. The results shows that the proposed quasi-zero stiffness isolator is superior to the normal air spring isolator over the isolation frequency range by regulating the damping radio or excitation amplitude in a suitable range. Finally, the dynamic experiments is employed to verify the vibration isolation performance. This research provides a new reference for small amplitude or even micro-vibration isolation.

  • 引言

  • 准零刚度(Quasi Zero Stiffness,QZS)系统一般情况下是一种通过让正刚度结构并联负刚度结构所构成的非线性系统.由于在小幅振动下,这种系统具有高静刚度低动刚度的特性,因此准零刚度结构在解决机械振动中的低频隔振问题方面具有明显的优势.近年来,许多学者不断推陈出新,提出了许多种不同的方式达到准零刚度状态.Shahraeeni等[1]深入研究了阻尼非线性对准零刚度隔振器动力学和性能的影响.Zuo等[2]通过改变凸轮曲面曲率,设计了一种新型抛物型凸轮-滚子准零刚度隔振器.徐道临、周加喜等[3-7]设计了多种满足准零刚度特性的新型隔振器,在各个领域取得了广泛的应用.尹蒙蒙等[8]设计并分析了一种新型的X型准零刚度装置.顾栋浩等[9]设计了一种新型的圆环非线性隔振器,在低频区段具有良好的隔振效果.刘兴天等[10]系统地分析了几何非线性摩擦阻尼隔振系统的动力学行为,研究结果表明,合适的库伦摩擦力可以在保持高频振动衰减效果的前提下,显著降低系统共振峰.Palomares等[11]提出了一种基于双作用气动直线作动器的负刚度系统,与不使用负刚度系统的被动系统相比,隔振效果显著提高.Zeng等[12]设计了一种双层准零刚度装置并引入了位移约束,让装置在大激励幅值下也能有较好的隔振效果.严博等[13]设计了一种圆筒式负电阻电磁分支电路阻尼隔振器,在板壳隔振的隔振问题中得到了有效运用.Liu等[14]设计了一种新型准零刚度隔振器,通过屈曲梁组合提供负刚度,垂直弹簧提供正刚度使整个器件实现准零刚度特性,并且该装置能在隔振的同时又能收集振动产生的能量.Sun等[15]设计了一种由n层剪刀状结构构成的隔振器,该装置表现出高静态低动态特性与阻尼特性,具有良好的隔振性能.Dong等[16]将磁负刚度弹簧与螺旋柔性弹簧并联构造成一种具有高静-低动刚度特性的磁隔振器,该装置能有效地降低隔振器的动刚度,低频隔振性能显著提升.Zhu等[17]设计了一种多方向的准零刚度隔振器,有效降低纵向、剪切和混合波作用下对隔振对象的破坏.

  • 本文将空气弹簧与永磁铁两种强非线性结构相并联,构建一种新型的电磁-空气弹簧非线性隔振器,该装置可以通过调整空气弹簧的气压或永磁铁之间的距离使系统达到准零刚度状态,具有可调控性,可以适用于各种不同的工况.本文结构安排如下:首先,建立系统静力学模型,得到隔振器刚度特征表达式,并分析气压等参数对刚度特性的影响规律.然后,建立隔振系统动力学方程,采用谐波平衡法求解系统动力学传递特征,并分析各项参数对系统隔振效果的影响规律.最后,通过实验分析,对比本文所提出的隔振器与传统空气弹簧隔振器的隔振性能.实验与理论结果都表明:本文所提出的电磁—空气弹簧型非线性隔振器相比于传统空气弹簧隔振器具有更优的隔振效果.

  • 1 静力学分析

  • 1.1 空气弹簧理论建模

  • 电磁—空气弹簧型非线性隔振器设计如图1所示,该装置利用了空气弹簧的刚度可控性与永磁铁磁力与距离衰减性原理.设空气弹簧长度为d,磁铁之间两两相互吸引,被隔振对象的位移为x,向上为正.空气弹簧上下分别设置永磁铁,磁铁之间两两相互吸引,磁铁的磁场强度为Cm,单个空气弹簧内压为P0,有效承载面积为Ae0,大气压力为Pa,空气弹簧的有效容积为V,定义与空气弹簧几何形状有关的参数有dAe0/dx=αAe0α为轴向变形的形状系数.空气弹簧的刚度表示为[18]:

  • 图1 电磁-空气弹簧非线性隔振器结构图

  • Fig.1 Diagram of electromagnetic-air spring nonlinear isolator

  • Kc=cP0+PaAe02V+αP0Ae0
    (1)
  • 设空气弹簧的有效承载面积随高度线性变化,关系为Ae0 = qx+A0,其中q为承载面积随高度的变化率,A0为初始自然状态下的有效承载面积.代入式(1)并展开,可以得到在平衡位置处,空气弹簧的刚度可以表示为关于工作气压与位移x的2次非线性多项式,空气弹簧的力可以通过对空气弹簧的刚度积分得到,表示为[19]

  • Kc=3k1*x2+2k2*x+k3*1+P0Pα
    (2)
  • Fc=k1*x3+k2*x2+k3*x1+P0Pα+F0
    (3)
  • 其中,k1*k2*k3*分别代表空气弹簧化简后的非线性刚度系数、F0为空气弹簧的预压力.

  • 1.2 非线性隔振器理论建模

  • 永磁铁的磁力大小可以表示为:

  • Fm=Cm/d2
    (4)
  • 联立式(1)~式(4),将永磁铁与空气弹簧并联,可得准零刚度系统在竖直方向上的合力与刚度分别为:

  • F=21+P0Pαk1*x3+k3*x-Cm4dxd2-x22
    (5)
  • K=21+P0Pα3k1*x2+k3*-4Cmdd2+3x2d2-x23
    (6)
  • 系统达到准零刚度状态的条件为,在x=0处,系统总刚度为0,可表示为:

  • k3d3=2Cm
    (7)
  • 对式(5)和式(6)无量纲化,得系统的无量纲表达形式为:

  • F-=λP0*x-3+P0*x--αx-1-x-22
    (8)
  • K-=3λP0*x-2+P0*-α1+3x-21-x-23
    (9)
  • 引入无量纲参数:

  • λ=k1*d2k3*,α=2Cmk3*d3,x-=xdF-=F2k3*d,K-=K2k3*,P0*=1+P0Pα
    (10)
  • 其中,λ为系统三阶刚度系数与一阶刚度系数之比,α为系统无量纲磁通量与一阶刚度系数之比,x-为系统无量纲位移,F-为系统的无量纲力,K-为系统的无量纲刚度,P0*为空气弹簧的无量纲气压.为方便表达与计算,对无量纲力与无量纲刚度项进行泰勒展开,忽略第四阶及之后的展开项对系统的影响,表示为:

  • F-r(1-α)x-+(λ-2α)x-3
    (11)
  • K-r(1-α)+3(λ-2α)x-2
    (12)
  • 1.3 隔振器参数影响分析

  • 图2和图3显示了无量纲力、无量纲刚度与无量纲位移在不同气压环境下的关系.从图中可以看出,系统在x=0时,刚度为0.系统的力与刚度变化曲线与系统的无量纲刚度比有关,并且随着无量纲气压的增大,刚度曲线会逐渐趋于平缓,当无量纲气压继续增大时,系统出现负刚度状态.

  • 图2 系统在不同气压下的无量纲力-位移曲线

  • Fig.2 Non-dimensional stiffness-displacement curve of the system under different air pressures

  • 图3 系统在不同气压下的无量纲刚度-位移曲线

  • Fig.3 Non-dimensional force displacement curve of the system under different air pressures

  • 2 动力学分析

  • 2.1 动力学方程建模

  • 设隔振系统的阻尼系数为c,遭受的外界激励形式为f=Fcos(ωt).根据牛顿第二定律,建立系统的动力学方程为:

  • mu¨+cu˙+Fr=Fcos(ωt)
    (13)
  • 其中:

  • Fr=2k3u3-8Cmd5u3
    (14)
  • 对式(13)进行无量纲化,则系统的无量纲运动微分方程为:

  • u-''+2ξu-'+γ(λ-2)u-3=F-cos(Ωτ)
    (15)
  • 其中:

  • ξ=c2mω0,F-=Fk1d,u-=udτ=ω0t,Ω=ωω0,γ=2k3mω02
    (16)
  • 为了将本文中的电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器进行对比,将上下磁铁(Ⅰ、Ⅱ、Ⅲ)替换为了大小质量相同的其他材料物体,其运动微分方程表示为:

  • mu¨+cu˙+Fs-r=Fcos(ωt)
    (17)
  • 其中Fs-r为空气弹簧的反力,Fs-r的表达式如参考文献[18]所示.参数无量纲化后,得空气弹簧隔振器的运动微分方程为:

  • u-''+2ξu-'+2λu-3+2u-=F-cos(Ωτ)
    (18)
  • 2.2 HBM法求解

  • 利用谐波平衡法(Harmonic Balance Method,HBM)对式(15)进行求解,取系统的位移进行一阶谐波展开,谐波项系数和为零,得到系统的控制方程为:

  • A2Ω4-32γ(λ-2)A4+4ξ2A2Ω2+916γ2(λ-2)2A6-F-2=0
    (19)
  • 其中A为系统的振幅,求解Ω,得到:

  • Ω1,2=32γ(λ-2)A2-4ξ2±TT=1A-3γ(λ-2)ξ2A4+4ξ4A2+F-2
    (20)
  • 其中Ω的两个解代表系统的共振分支与非共振分支.取系统为小阻尼,系统共振峰出现在解相等处,表达式为:

  • 3γ(λ-2)ξ2A4-4ξ4A2-F-2=0
    (21)
  • 求解式(21)的幅值,得到系统的共振峰表达式为:

  • Amax=2ξ4+4ξ8+3γ(λ-2)ξ2F-23γ(λ-2)ξ2
    (22)
  • 对应的共振频率表达式为:

  • Ωmax=2ξ4+4ξ8+3γ(λ-2)ξ2F-22ξ2-4ξ2
    (23)
  • 传递率是评价隔振性能的重要指标,非线性系统的力传递率代表传递到基础上的力幅值与激励力幅值的比值,表示为:Tf=|Ft|/|F|,其中Ft为弹性力与阻尼力共同作用的力,F为激励力的幅值本文采用了力传递率来评价电磁-空气弹簧非线性隔振器的隔振性能,并将其与一般的空气弹簧隔振器进行对比.电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的力传递率表达式分别为:

  • Tf-QZS=4ξ2A2Ω2+916γ2(λ-2)2A6F-
    (24)
  • Tf-s=4ξ2A2Ω2+32λA3+2A2F-
    (25)
  • 2.3 隔振性能对比分析

  • 本小节将探究激振力对电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的传递率的影响.

  • 图4 不同激振力下电磁-空气弹簧非线性隔振器力传递率

  • Fig.4 Force transmissibility of electromagnetic-air spring nonlinear isolator under different excitation forces

  • 图4和图5分别绘制了电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的传递率曲线,其中参数为λ=2.2,γ=0.2,ξ=0.04.需要说明的是,在本文中,实线和虚线代表系统分别处于稳定和不稳定的平衡状态.

  • 图5 不同激振力下传统空气弹簧隔振器的力传递率

  • Fig.5 Force transmissibility of traditional air spring isolator under different excitation forces

  • 从图4中可以看出,对于电磁-空气弹簧型非线性隔振器,在低激振力的情况下,起始隔振频率低于空气弹簧隔振器的峰值,出现跳跃现象后进入隔振区间.激振力较大时,隔振器的隔振区间逐渐减小,隔振效果下降.从图5中可以看出,对于传统空气弹簧隔振器,随着激振力增加,系统出现了跳跃现象.在激振力较低时,频率比大于峰值频率比时才有隔振效果;激振力较高时,频率在大于跳跃频率时有隔振效果,并且系统的力传递率大幅增加,隔振效果显著降低.此外,从图4和图5可以看出,激振力幅值对隔振器的力传递性能影响较大,激励力幅值越小系统的隔振性能越好,这意味着具有此特征的隔振器非常适用于外激励幅值较微(小)的情形.

  • 图6 电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的力传递率对比图

  • Fig.6 Diagram of force transmissibility between electromagnetic-air spring nonlinear isolator and conventional air spring isolator

  • 图6将相同参数下的电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的力传递率进行对比.从图中可以看出,在系统频率较小时,电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的隔振效果相当,随着激励力的频率增加,电磁-空气弹簧非线性隔振器进入跳跃区间,此时的隔振效果要优于传统空气弹簧隔振器,这表明电磁-空气弹簧非线性隔振器能隔离更低频率的振动.

  • 2.4 参数分析

  • 分析系统的参数对电磁-空气弹簧非线性隔振器隔振效果的影响,取力传递率作为评价指标,图7显示了无量纲刚度系数(即空气弹簧气压)对隔振效果的影响,图8为无量纲阻尼对隔振效果的影响规律.

  • 图7 不同刚度系数下电磁-空气弹簧非线性隔振器力传递率

  • Fig.7 Force transmissibility of air spring QZS isolator under different stiffness coefficients

  • 从图7可以看出,无量纲刚度系数增大时,系统跳跃频率明显增高,幅频响应曲线整体出现右移的趋势,当跳跃现象后,幅频响应曲线收束于一条线,系统隔振效果相同,无量纲刚度系数比较小时,进入隔振区间的频率较低,系统的隔振效果最好.

  • 图8 不同阻尼下电磁-空气弹簧非线性隔振器的力传递率

  • Fig.8 Force transmissibility of air spring QZS isolator under different damping

  • 从图8可以看出,当系统的无量纲阻尼较低时,系统频率在高于振动峰值频率时进入隔振区间,随着无量纲阻尼的逐渐增加,系统出现跳跃现象,频率高于峰值时具有隔振效果.在隔振区间内,系统的无量纲阻尼越高、隔振性能越好.因此,合理选取系统的阻尼大小能更好的提升系统的隔振效果.

  • 3 实验验证对比

  • 对本文提出的电磁-空气弹簧非线性隔振器隔振性能进行试验研究,试验系统如图9所示.在支架上连接由功率放大器驱动的激振器(型号:东华DH301),激振器的作用在于提供水平方向上的激振力.在支架与激振器之间固定一个力传感器(型号:东华3A102).另一个力传感器安装在电磁-空气弹簧非线性隔振器的底座座上,用于收集振动实验中通过隔振器传递到基座上的力.实验过程中隔振器样机与被隔振对象(模拟质量块)通过柔线进行悬吊,使激振器、隔振器样机和被隔振对象(模拟质量块)重心在同一轴线上,此外,为了保证系统没有环向与竖直方向上的干扰,在电磁-空气弹簧非线性隔振器中间设置有直线轴承与导轨,保证系统仅有水平方向上的自由度.

  • 图9 实验设备汇总

  • Fig.9 Summary of experimental equipment

  • 需要说明的是,本文采取悬吊法进行水平隔振试验的目的,是为了尽可能消除被隔振对象重力对实验的影响,因为本文中的电磁-空气弹簧非线性隔振器是一个自平衡的准零刚度系统,水平方向上的测量更加符合该隔振器的实际使用工况.本实验采用对比实验的方式,分别测量电磁-空气弹簧非线性隔振器的力传递率与传统空气弹簧隔振器的力传递率.通过对比两者的传递率曲线,验证电磁-空气弹簧非线性隔振器的性能.图10为本文提出的电磁-空气弹簧非线性隔振器与传统空气弹簧隔振器的扫频实验对比结果,其中QZS代表电磁-空气弹簧非线性隔振器的力传递率,AS代表传统空气弹簧隔振器的力传递率,激振力的幅值为45N.图11显示了时域下电磁-空气弹簧非线性隔振器在定频激励时隔振前后的力幅值,其中取激振力的频率为30.14Hz.

  • 图10 频域力传递率曲线对比

  • Fig.10 Comparison of force transmissibility in frequency domain

  • 图11 时域下传感器的力幅值对比

  • Fig.11 Comparison of force in time domain

  • 从实验结果可以看出,电磁-空气弹簧非线性隔振器相比与传统空气弹簧隔振器,隔振起始频率更低,这符合电磁-空气弹簧非线性隔振器的理论分析结果,说明了本文提出的新型非线性隔振器具有更好的隔振效果,能大大降低隔振系统力的传递.

  • 4 结论

  • 本文提出了一种由空气弹簧与永磁铁并联组成的新型非线性隔振器.该装置基于工程中常用的空气弹簧隔振器,相比与一般的准零刚度隔振器,具有优秀的承载能力和可调控性,可以满足不同工况的需求.本文建立了电磁-空气弹簧非线性隔振器模型,并探究了空气弹簧气压与刚度之间的关系,运用谐波平衡法求解得到了模型的控制方程以及在简谐力下的响应.从系统的力传递率曲线中可以看出,电磁-空气弹簧非线性隔振器的隔振效果要明显优于传统空气弹簧隔振器,其起始隔振频率更低,并且在高频段也有相对更好的隔振效果.参数分析表明,电磁-空气弹簧非线性隔振器的隔振性能主要受到空气弹簧的刚度与阻尼影响,其中阻尼为主要的影响因素,在阻尼较大的情况下甚至会出现跳跃现象消失的情况,但在高频段的隔振效果会变差,因此选取合适的结构参数是影响隔振器隔振性能的关键.最后,本文通过对比实验,验证了本文所提出的非线性隔振器相比传统空气弹簧隔振器的隔振性能效果,实验结果与理论分析相符.

  • 参考文献

    • [1] SHAHRAEENI M,SOROKIN V,MACE B,et al.Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator [J].Journal of Sound and Vibration,2022,526:116822.

    • [2] ZUO S,WANG D Y,ZHANG Y S,et al.Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator [J].International Journal of Mechanical Sciences,2022,220:107146.

    • [3] 徐道临,赵智,周加喜.气动可调式准零刚度隔振器设计及特性分析 [J].湖南大学学报(自然科学版),2013,40(6):47-52.XU D L,ZHAO Z,ZHOU J X.Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Hunan University(Natural Sciences),2013,40(6):47-52.(in Chinese)

    • [4] 徐道临,张月英,周加喜,等.一种准零刚度隔振器的特性分析与实验研究 [J].振动与冲击,2014,33(11):208-213.XU D L,ZHANG Y Y,ZHOU J X,et al.Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness [J].Journal of Vibration and Shock,2014,33(11):208-213.(in Chinese)

    • [5] 徐道临,成传望,周加喜.屈曲板型准零刚度隔振器的设计和特性分析 [J].湖南大学学报(自然科学版),2014,41(8):17-22.XU D L,CHENG C W,ZHOU J X.Design and characteristic analysis of a buckling plate vibration isolator with quasi-zero-stiffness [J].Journal of Hunan University(Natural Sciences),2014,41(8):17-22.(in Chinese)

    • [6] ZHOU J X,WANG K,XU D L,et al.Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator [J].Journal of Vibration and Control,2018,24(15):3278-3291.

    • [7] 昌耀鹏,周加喜,徐道临.双层主动隔振系统优化设计方法研究 [J].动力学与控制学报,2022,20(1):35-41.CHANG Y P,ZHOU J X,XU D L.Research on optimization design method of double layer active vibration isolator system [J].Journal of Dynamics and Control,2022,20(1):35-41.(in Chinese)

    • [8] 尹蒙蒙,丁虎,陈立群.X型准零刚度隔振器动力学设计及分析 [J].动力学与控制学报,2021,19(5):46-52.YIN M M,DING H,CHEN L Q.Dynamic design and analysis of X-shaped quasi-zero stiffness isolator [J].Journal of Dynamics and Control,2021,19(5):46-52.(in Chinese)

    • [9] 顾栋浩,陆泽琦,丁虎,等.圆环非线性隔振设计和动力学研究 [J].振动工程学报,2021,34(6):1223-1229.GU D H,LU Z Q,DING H,et al.Nonlinear vibration isolation design and dynamic study of circular ring [J].Journal of Vibration Engineering,2021,34(6):1223-1229.(in Chinese)

    • [10] 刘兴天,陈树海,王嘉登,等.几何非线性摩擦阻尼隔振系统动力学行为研究 [J].力学学报,2019,51(2):371-379.LIU X T,CHEN S H,WANG J D,et al.Anlysis of the dynamic behavior and performance of a vibration isolation system with geometric nonlinear friction damping [J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(2):371-379.(in Chinese)

    • [11] PALOMARES E,NIETO A J,MORALES A L,et al.Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system [J].Journal of Sound and Vibration,2018,414:31-42.

    • [12] ZENG R,YIN S,WEN G L,et al.A non-smooth quasi-zero-stiffness isolator with displacement constraints [J].International Journal of Mechanical Sciences,2022,225:107351.

    • [13] 严博,张希农.负电阻电磁分支电路阻尼隔振系统试验技术研究 [J].振动工程学报,2016,29(6):1057-1061.YAN B,ZHANG X N.Experimental investigation of negative resistance shunted electromagnetic damping vibration isolation system [J].Journal of Vibration Engineering,2016,29(6):1057-1061.(in Chinese)

    • [14] LIU C C,ZHAO R,YU K P,et al.A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams [J].Energy,2021,233:121146.

    • [15] SUN X T,JING X J.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band [J].Mechanical Systems and Signal Processing,2016,80:166-188.

    • [16] DONG G X,ZHANG X N,XIE S,et al.Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring [J].Mechanical Systems and Signal Processing,2017,86:188-203.

    • [17] ZHU G N,LU K,CAO Q J,et al.An archetypal vibration isolator with quasi-zero stiffness in multiple directions [J].Journal of Nonlinear Mathematical Physics,2022,29(2):190-203.

    • [18] 张阿舟,姚起航.振动控制工程 [M].北京:航空工业出版社,1989.

    • [19] 任旭东.空气弹簧准零刚度隔振器的特性分析及应用研究 [D].北京:中国人民解放军军事医学科学院,2017.REN X D.Characteristics analysis and application study of the quasi-zero stiffness isolator using air spring [D].Beijing:Academy of Military Sciences,2017.(in Chinese)

  • 参考文献

    • [1] SHAHRAEENI M,SOROKIN V,MACE B,et al.Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator [J].Journal of Sound and Vibration,2022,526:116822.

    • [2] ZUO S,WANG D Y,ZHANG Y S,et al.Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator [J].International Journal of Mechanical Sciences,2022,220:107146.

    • [3] 徐道临,赵智,周加喜.气动可调式准零刚度隔振器设计及特性分析 [J].湖南大学学报(自然科学版),2013,40(6):47-52.XU D L,ZHAO Z,ZHOU J X.Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Hunan University(Natural Sciences),2013,40(6):47-52.(in Chinese)

    • [4] 徐道临,张月英,周加喜,等.一种准零刚度隔振器的特性分析与实验研究 [J].振动与冲击,2014,33(11):208-213.XU D L,ZHANG Y Y,ZHOU J X,et al.Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness [J].Journal of Vibration and Shock,2014,33(11):208-213.(in Chinese)

    • [5] 徐道临,成传望,周加喜.屈曲板型准零刚度隔振器的设计和特性分析 [J].湖南大学学报(自然科学版),2014,41(8):17-22.XU D L,CHENG C W,ZHOU J X.Design and characteristic analysis of a buckling plate vibration isolator with quasi-zero-stiffness [J].Journal of Hunan University(Natural Sciences),2014,41(8):17-22.(in Chinese)

    • [6] ZHOU J X,WANG K,XU D L,et al.Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator [J].Journal of Vibration and Control,2018,24(15):3278-3291.

    • [7] 昌耀鹏,周加喜,徐道临.双层主动隔振系统优化设计方法研究 [J].动力学与控制学报,2022,20(1):35-41.CHANG Y P,ZHOU J X,XU D L.Research on optimization design method of double layer active vibration isolator system [J].Journal of Dynamics and Control,2022,20(1):35-41.(in Chinese)

    • [8] 尹蒙蒙,丁虎,陈立群.X型准零刚度隔振器动力学设计及分析 [J].动力学与控制学报,2021,19(5):46-52.YIN M M,DING H,CHEN L Q.Dynamic design and analysis of X-shaped quasi-zero stiffness isolator [J].Journal of Dynamics and Control,2021,19(5):46-52.(in Chinese)

    • [9] 顾栋浩,陆泽琦,丁虎,等.圆环非线性隔振设计和动力学研究 [J].振动工程学报,2021,34(6):1223-1229.GU D H,LU Z Q,DING H,et al.Nonlinear vibration isolation design and dynamic study of circular ring [J].Journal of Vibration Engineering,2021,34(6):1223-1229.(in Chinese)

    • [10] 刘兴天,陈树海,王嘉登,等.几何非线性摩擦阻尼隔振系统动力学行为研究 [J].力学学报,2019,51(2):371-379.LIU X T,CHEN S H,WANG J D,et al.Anlysis of the dynamic behavior and performance of a vibration isolation system with geometric nonlinear friction damping [J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(2):371-379.(in Chinese)

    • [11] PALOMARES E,NIETO A J,MORALES A L,et al.Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system [J].Journal of Sound and Vibration,2018,414:31-42.

    • [12] ZENG R,YIN S,WEN G L,et al.A non-smooth quasi-zero-stiffness isolator with displacement constraints [J].International Journal of Mechanical Sciences,2022,225:107351.

    • [13] 严博,张希农.负电阻电磁分支电路阻尼隔振系统试验技术研究 [J].振动工程学报,2016,29(6):1057-1061.YAN B,ZHANG X N.Experimental investigation of negative resistance shunted electromagnetic damping vibration isolation system [J].Journal of Vibration Engineering,2016,29(6):1057-1061.(in Chinese)

    • [14] LIU C C,ZHAO R,YU K P,et al.A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams [J].Energy,2021,233:121146.

    • [15] SUN X T,JING X J.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band [J].Mechanical Systems and Signal Processing,2016,80:166-188.

    • [16] DONG G X,ZHANG X N,XIE S,et al.Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring [J].Mechanical Systems and Signal Processing,2017,86:188-203.

    • [17] ZHU G N,LU K,CAO Q J,et al.An archetypal vibration isolator with quasi-zero stiffness in multiple directions [J].Journal of Nonlinear Mathematical Physics,2022,29(2):190-203.

    • [18] 张阿舟,姚起航.振动控制工程 [M].北京:航空工业出版社,1989.

    • [19] 任旭东.空气弹簧准零刚度隔振器的特性分析及应用研究 [D].北京:中国人民解放军军事医学科学院,2017.REN X D.Characteristics analysis and application study of the quasi-zero stiffness isolator using air spring [D].Beijing:Academy of Military Sciences,2017.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码