en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

周生喜,E-mail:zhoushengxi@nwpu.edu.cn

中图分类号:O322

文献标识码:A

文章编号:1672-6553-2023-21(10)-065-007

DOI:10.6052/1672-6553-2023-099

参考文献 1
PAN H Y,QI L F,ZHANG Z T,et al.Kinetic energy harvesting technologies for applications in land transportation:a comprehensive review [J].Applied Energy,2021,286:116518.
参考文献 2
SUN W,JANG H,SEOK J.Magnetically coupled piezoelectric galloping-based energy harvester using a tandem configuration [J].Mechanical System and Signal Processing,2021,161:107952.
参考文献 3
吴子英,叶文腾,刘蕊.一种新型双稳态电磁式振动能量捕获器动力学特性研究 [J].应用力学学报,2017,34(5):848-854.WU Z Y,YE W T,LIU R.Dynamics of a novel bi-stable electromagnetic vibration energy harvester [J].Chinese Journal of Applied Mechanics,2017,34(5):848-854+1010.(in Chinese)
参考文献 4
严博,马洪业,韩瑞祥,等.可用于大幅值激励的永磁式非线性隔振器 [J].机械工程学报,2019,55(11):169-175.YAN B,MA H Y,HAN R X,et al.Permanent magnets based nonlinear vibration isolator subjected to large amplitude acceleration excitations [J].Journal of Mechanical Engineering,2019,55(11):169-175.(in Chinese)
参考文献 5
绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.SHENG L J,WANG J L.Research progress on piezoelectric energy harvesting of flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)
参考文献 6
MA X Q,ZHOU S X.A review of flow-induced vibration energy harvesters [J].Energy Conversion and Management,2022,254:115223.
参考文献 7
WANG J L,GENG L F,DING L,et al.The state-of-the-art review on energy harvesting from flow-induced vibrations [J].Applied Energy,2020,267:114902.
参考文献 8
HAMLEHDAR M,KASAEIAN A,SAFAEI M R.Energy harvesting from fluid flow using piezoelectrics:a critical review [J].Renewable Energy,2019,143:1826-1838.
参考文献 9
FRANZINI G R,BUNZEL L O.A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom [J].Journal of Fluids and Structures,2018,77:196-212.
参考文献 10
ZOU Q F,DING L,WANG H B,et al.Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder [J].Ocean Engineering,2019,191:106505.
参考文献 11
WANG J L,GU S H,ZHANG C Y,et al.Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping [J].Energy Conversion and Management,2020,213:112835.
参考文献 12
YANG K,QIU T,WANG J L,et al.Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body [J].Smart Material and Structures,2020,29(7):07LT01.
参考文献 13
曹东兴,孙培峰,姚明辉,等.双稳态屈曲梁压电发电结构非线性动力学分析 [J].动力学与控制学报,2016,14(6):520-525.CAO D X,SUN P F,YAO M H,et al.Nonlinear dynamics of bistable buckled beam piezoelectric harvester [J].Journal of Dynamics and Control,2016,14(6):520-525.(in Chinese)
参考文献 14
TANG L H,YANG Y W,SOH C K.Improving functionality of vibration energy harvesters using magnets [J].Journal of Intelligent Material Systems and Structures,2012,23(13):1433-1449
参考文献 15
ZHOU S X,CAO J Y,INMAN D J,et al.Broadband tristable energy harvester:modeling and experiment verification [J].Applied Energy,2014,133:33-39
参考文献 16
ZHOU S X,CAO J Y,INMAN D J,et al.Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement [J].Journal of Sound and Vibration,2016,373:223-235.
参考文献 17
NASEER R,DAI H L,ABDELKEFI A,et al.Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics [J].Applied Energy,2017,203:142-153.
参考文献 18
NASEER R,DAI H L,ABDELKEFI A,et al.Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics [J].Energies,2019,13(1):71.
参考文献 19
MA X X,LI Z Y,ZHANG H,et al.Dynamic modeling and analysis of a tristable vortex-induced vibration energy harvester [J].Mechanical Systems and Signal Processing,2023,187:109924.
参考文献 20
WANG J L,GENG L F,ZHOU S X,et al.Design,modeling and experiments of broadband tristable galloping piezoelectric energy harvester [J].Acta Mechanica Sinica,2020,36(3):592-605
参考文献 21
MEI X T,ZHOU R,YANG B,et al.Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation [J].The Journal of Sound and Vibration,2021,505:116146.
参考文献 22
TAN D,LENG Y G,GAO Y J.Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field [J].European Physical Journal Special Topics,2015,224(14-15):2839-2853.
参考文献 23
ZHOU S X,ZUO L.Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting [J].Communications in Nonlinear Science and Numerical Simulation,2018,61:271-284.
目录contents

    摘要

    风致振动能量俘获技术是振动能量俘获技术领域的一个研究重点方向,具有解决无线传感器自供电的潜力.本文研究了非线性三稳态风致振动能量俘获系统的输出特性,并建立了动力学模型,对比分析了具有对称和非对称势能阱的三稳态风致振动能量俘获系统输出特性.分析结果表明,具有非对称势能阱的三稳态风致振动能量俘获系统初始工作风速较低,实现大振幅振荡的工作风速区间较宽.此外,分析了系统在不同外接电阻、等效质量和等效刚度线性项条件下的输出特性,通过分析发现,在定风速条件下,系统的输出电压随着外接电阻的增加而增加,当外接电阻大于10 MΩ时,输出电压的变化趋于平缓.最后,通过分析发现系统的等效质量和等效刚度线性项会对系统初始工作风速和有效工作风速区间产生影响.

    Abstract

    The wind-induced vibration energy harvesting technology plays an important role in the vibration energy harvesting technology, which has the potential to supply electrical energy for the wireless sensors. This paper studies the output response of nonlinear tristable wind-induced vibration energy harvester, establishes the dynamic model of the harvester, and the output response are compared for the harvester with symmetric and asymmetric potential wells. The results indicate that the tristable wind-induced vibration energy harvester with asymmetric potential wells has lower initial working wind speed and wider wind speed region for the large-amplitude oscillation compared with the harvester with symmetric potential wells. In addition, the output responses of the harvester with different external resistance, equivalent mass and stiffness are compared, and the results suggest that at the fixed wind speed, the output voltage increases with the increasing of the external resistance. When the external resistance is larger than 10 MΩ, the changes of the output voltage slow down. Finally, the numerical results indicate that the equivalent mass and the linear stiffness term influence the initial working wind speed and the effective working region of the harvester.

  • 引言

  • 随着世界人口的不断增长,全球资源供给问题越来越紧张,有效利用环境中的能量解决供能问题越来越迫切.环境中具有丰富的水能、风能、机械能和热能,将这些能量合理充分的利用起来是解决能源问题的关键[1-4].风致振动能量俘获技术在解决微型电子设备的能量供给方面具有重要作用,该技术基于流固耦合机理,将设计的机械结构和能量转换材料结合,从而实现将环境中的风能转化为电能,进而为电子设备持续供电.涡激振动是一种常见的流致振动现象,具有独特的频率“锁定”现象,当流体的漩涡脱落频率接近结构的固有频率时,装置会发生振动.涡激振动的振幅不会无限制增大,进而对结构破坏较小,因此其被广泛的应用到风致振动能量俘获技术中,研究者们对其进行了详细综述和分析[5-8].

  • 环境中风速是不断变化的,为了提高涡激振动能量俘获系统的环境适应性,拓宽系统的有效工作风速区间,降低阈值风速是该能量俘获技术亟待解决的问题.为此,研究者们提出了各种解决办法,例如构建多自由度能量俘获结构[910]、改变钝体形状[1112]、在能量俘获系统中引入非线性力[13].非线性力的引入可以有效的改变装置的等效刚度和频响特性,从而改变系统的能量俘获特性,可有效提高系统的能量俘获效率.研究者们展开了广泛的研究,Tang等[14]通过实验研究了基于磁力构建的非线性能量俘获系统优越性能,分析了基于磁力的非线性单稳态和双稳态能量俘获系统在不同激励条件下的能量俘获性能,并且分析了不同应用环境中非线性力的最佳配置方式.Zhou等[1516]提出了基于基础激励的非线性三稳态能量俘获系统,建立了系统的动力学模型,通过理论和数值分析验证了系统的宽频特性和在较低激励水平下仍能输出较高能量的工作特性.非线性力在基于基础激励的振动能量俘获系统中展现出来的优良特性,为其在涡激振动能量俘获技术中的应用奠定了基础.Naseer等[1718]分析了具有非线性单稳态和双稳态特性的涡激振动能量俘获系统,构建了系统的集中参数模型,分析了系统在不同参数下的输出位移和频率变化.Ma等[19]分析了非线性三稳态涡激振动能量俘获系统的动力学特性,通过数值仿真和实验发现并且验证了系统多解区的存在,为非线性能量俘获系统实现在高能轨道上运动奠定了基础.此外,非线性多稳态结构在能量俘获系统中的优良特性已经得到了研究者的广泛认可.在非线性振动能量俘获系统中,势能阱的形状对系统俘能特性具有较大影响,大部分涡激振动能量俘获系统势能阱为对称形式,而对于对称形式,研究者未对其进行广泛分析.

  • 基于此,本文提出了一种三稳态涡激振动能量俘获系统,考虑系统的等效非线性回复力特性,建立了系统的动力学模型.对比分析了势能阱的形状为对称和非对称形式系统的输出,分析了不同参数条件下系统的输出特性,为多稳态风致振动能量俘获系统的设计和动力学分析提供参考.

  • 1 三稳态风致振动能量俘获系统动力学建模

  • 1.1 系统结构简图

  • 本文所设计的非线性三稳态涡激振动能量俘获系统如图1所示,圆柱形钝体放置在压电悬臂梁的一端,钝体下方粘贴了一个磁铁,支架上放置了两个磁铁,通过调整磁铁间距构成非线性三稳态结构(上下磁铁间相互排斥).当流体流经钝体表面时会在钝体两侧产生周期性的漩涡脱落,从而使得结构产生横向振动,而压电材料随着悬臂梁的振动发生形变,由于压电效应而产生电能.

  • 图1 非线性三稳态涡激振动能量俘获系统结构示意图

  • Fig.1 Structure diagram of the tristable vortex-induced vibration energy harvester

  • 1.2 系统动力学模型

  • 所设计的三稳态涡激振动能量俘获系统的简化模型如图2所示,在风激励的作用下做横向振动.其中M为三稳态涡激振动能量俘获系统的等效质量,其表达式可以参考文献[20].系统的动力学模型可以根据基尔霍夫定律和牛顿第二定律得到,系统所受到的涡激振动力可以通过公式(2)中的范德波尔方程耦合表示,最终所设计的三稳态涡激振动能量俘获系统的控制方程可表示为[19]

  • My¨+cy˙+Fr-θV=F
    (1)
  • q¨+λωshed q2-1q˙+ωshed 2q=ADy¨
    (2)
  • CpV˙+VR-1+θy˙=0
    (3)
  • 图2 三稳态涡激振动能量俘获系统的简化模型

  • Fig.2 The simplified model of the tristable vortex-induced vibration energy harvester

  • 式中Aλ为实验参数可以通过实验测量得到,R为电阻,为机电耦合系数,Cp为等效电容,y为系统的横向位移,V为电压,q为折合升力系数.

  • F为系统所受到的涡激振动力可以表示为[17]

  • F=ρU2DLCL04q-ρUDLCd2y˙
    (4)
  • 式中CL0Cd分别为升力和阻力参数,可以通过经验和分析得到.ρ为流体的密度,U为风速,D为钝体直径,L为钝体长度,y˙为系统的横向振动位移速度.

  • Fr为效非线性恢复力,其磁力部分表达式可以通过磁偶极子法计算得到[2122].所设计的三稳态涡激振动能量俘获系统中磁铁的几何关系如图3所示,将利用磁偶极子法计算所得的等效非线性恢复力进行泰勒展开,其最终表达式可以表示为:

  • Fr=k1x+k2x2+k3x3+k4x4+k5x5
    (5)
  • 式中k1k2k3k4k5为等效非线性恢复力的多项式系数,当系统为非对称三稳态形式时,k2k4不为零[23].此外,系统的等效非线性恢复力可以通过改变三个磁铁间的距离S1S2H进行调整,从而构造出具有不同工作特性的非线性振动能量俘获系统.

  • 图3 磁铁的几何关系示意图

  • Fig.3 Schematic diagram of the geometric relationship for the magnets

  • 2 数值分析

  • 2.1 对称和非对称三稳态涡激振动能量系统输出特性对比分析

  • 三稳态涡激振动能量俘获系统有五个平衡点,其中三个是稳定平衡点,两个是不稳定平衡点.系统的对称性会随着三个磁铁之间的间距S1S2H的变化而发生改变.为了进一步分析非对称三稳态涡激振动能量俘获系统的输出电压特性,分析了结构为对称和非对称形式下的输出电压和工作特性,系统在分析过程中所用到的参数值表1中列出.

  • 表1 部分参数值

  • Table1 Calculate Structural Parameters

  • H为固定值,S1=S2时系统为对称三稳态涡激振动能量俘获系统,当S1S2时系统为非对称三稳态涡激振动能量俘获系统.结构对称和非对称三稳态涡激振动能量俘获系统等效非线性回复力和势能曲线如图4所示.

  • 图4 对称和非对称三稳态涡激振动能量俘获系统的等效回复力和势能曲线

  • Fig.4 The equivalent nonlinear restoring force and potential energy curves of the harvester (where the blue color represents the asymmetric structure and red color represents the symmetric structure)

  • 图5 对称和非对称三稳态涡激振动能量俘获系统输出电压对比

  • Fig.5 The comparison of output voltage between symmetric and asymmetric tristable vortex-induced vibration energy harvester

  • 对称和非对称三稳态涡激振动能量俘获系统的输出电压随风速的变化如图5所示,数值仿真结果所选用的参数值如表1所示.由图5的分析结果可知,非对称三稳态涡激振动能量俘获系统的起始工作风速为1.6m/s,而对称三稳态涡激振动能量俘获系统的起始工作风速为2.2m/s,由此可见非对称三稳态涡激振动能量俘获系统的起始风速低于对称三稳态涡激振动能量俘获系统.此外,由图5可知,非对称三稳态涡激振动能量俘获系统的输出较大的工作风速区间为2.8~7.0m/s,而对称三稳态涡激振动能量俘获系统输出较大的工作风速区间为3.2-5.2m/s,非对称三稳态涡激振动能量俘获系统输出较高的风速范围约为对称形式的2.1倍.

  • 图6 风速为3.0m/s的时对称三稳态涡激振动能量俘获系统输出特性

  • Fig.6 The output performance of the symmetric vortex-induced vibration energy harvesting system, when the wind speed is 3.0m/s

  • 图7 风速为3.0m/s的时非对称三稳态输出

  • Fig.7 The output performance of the asymmetric vortex-induced vibration energy harvesting system, when the wind speed is 3.0m/s

  • 图8 风速为3.2m/s时对称三稳态涡激振动能量俘获系统输出电压及响应速度

  • Fig.8 The output voltage and response velocity of the symmetric vortex-induced vibration energy harvester at the wind speed of 3.2m/s

  • 图9 风速为3.2 m/s时非对称三稳态涡激振动能量俘获系统输出电压及响应速度

  • Fig.9 The output voltage and response velocity of the asymmetric vortex-induced vibration energy harvester at the wind speed of 3.2m/s

  • 在表1的参数条件下,分析了两个能量俘获系统在风速为3.0m/s和3.2m/s条件下的输出特性,结果如图6~9所示.由图7(a)可知,当风速为3.0m/s时,非对称三稳态涡激振动能量俘获系统实现了阱间大振幅振荡,系统输出电压较高.而在该风速条件下对称三稳态涡激振动能量俘获系统则在中间势阱内小幅振荡,输出电压较低,如图6(a)所示.由图8和图9可知,当风速为3.2m/s时,对称和非对称三稳态涡激振动能量俘获系统都实现了大振幅阱间振振荡,两个系统的输出电压较高.综合以上分析可知,在该参数配置下,非对称三稳态涡激振动能量俘获系统的输出优于对称三稳态涡激振动能量俘获系统,在相同工作条件下,非对称三稳态涡激振动能量俘获系统的工作风速区间大,并且其初始工作风速较低.

  • 3 参数分析

  • 为了进一步探究三稳态涡激振动能量俘获系统的输出特性,分析了参数变化对能量俘获系统的工作性能的影响.三稳态涡激振动能量俘获系统的输出会随着电阻的变化发生改变,图10和图11分析了对称和非对称三稳态涡激振动能量俘获系统在不同外接电阻条件下系统的输出电压.由图10可知,在风速为3.0m/s和3.2m/s时,对称和非对称三稳态涡激振动能量俘获系统的输出电压随着电阻的增加而增加,并且当外接电阻大于10MΩ时,输出电压随着电阻的增加趋于平缓.

  • 图10 风速为3.0m/s时,输出电压随电阻的变化

  • Fig.10 The variation of output voltage versus resistance at the wind speed of 3.0m/s

  • 此外,分析了非对称三稳态涡激振动能量俘获系统的输出随着系统的等效质量和等效线性刚度项的变化,结果如图12和图13所示.由图12可知,当系统的等效质量为7g时候,出现大振幅振荡的初始工作风速最低,能实现大振幅振动的风速区间范围最宽.当系统的等效质量为9g和10g时,系统能实现大振幅振荡的初始工作风速相同,但是它们的有效工作风速区间不同.由图12分析结果发现,系统实现大振幅振荡的工作风速区间随系统的等效质量的改变而发生变化.图13分析了非对称三稳态涡激振动能量俘获系统的输出随着等效非线性回复力的线性项k1的变化.由图13可知,系统的初始工作风速随着k1的减小而降低,并且系统实现大振幅振荡的风速区间随着k1的增加而增加.

  • 图11 风速为3.2m/s时,输出电压随电阻的变化

  • Fig.11 The variation of output voltage versus resistance at the wind speed of 3.2m/s

  • 图12 非对称三稳态涡激振动能量俘获系统输出电压随着质量的变化

  • Fig.12 The variation of output voltage of the asymmetric vortex-induced vibration energy harvester versus wind speeds when the equivalent mass of the system is different

  • 图13 当等效非线性回复力的k1值不同时非对称三稳态能量俘获系统输出电压

  • Fig.13 The variation of output voltage versus wind speeds when the equivalent linear stiffness of the system is different

  • 4 结论

  • 本文设计了一个非线性三稳态涡激振动能量俘获系统,建立了动力学模型,分析了系统在不同风速条件下的输出特性.利用所建立的动力学模型,对比分析了三稳态涡激振动能量俘获系统在势能阱对称和非对称形式下的输出.由仿真结果可知,非对称三稳态涡激振动能量俘获系统的工作风速区间比对称三稳态涡激振动能量俘获系统的工作风速区间宽.此外,在相同工作条件下,非对称三稳态涡激振动能量俘获系统的初始工作风速低于对称三稳态涡激振动能量俘获系统,具有较好的环境适应性.为了进一步的探究三稳态涡激振动能量俘获系统的工作特性,分析了系统接入不同外接电阻时的输出情况.分析结果发现,在定风速条件下,输出电压随着外接电阻的增加而增加,当外接电阻大于10MΩ时,输出电压趋于平缓.最后,分析了系统的等效质量和非线性力等效刚度项线性项k1不同时,系统的输出电压随风速的变化.分析结果表明,这两个参数对三稳态涡激振动能量俘获系统的初始工作风速和有效工作风速区间都有影响.

  • 本研究为非线性风致振动能量俘获系统的设计和模型建立提供理论依据,并且为进一步的提高风致振动能量俘获系统的环境适应性和能量俘获效率提供借鉴.

  • 参考文献

    • [1] PAN H Y,QI L F,ZHANG Z T,et al.Kinetic energy harvesting technologies for applications in land transportation:a comprehensive review [J].Applied Energy,2021,286:116518.

    • [2] SUN W,JANG H,SEOK J.Magnetically coupled piezoelectric galloping-based energy harvester using a tandem configuration [J].Mechanical System and Signal Processing,2021,161:107952.

    • [3] 吴子英,叶文腾,刘蕊.一种新型双稳态电磁式振动能量捕获器动力学特性研究 [J].应用力学学报,2017,34(5):848-854.WU Z Y,YE W T,LIU R.Dynamics of a novel bi-stable electromagnetic vibration energy harvester [J].Chinese Journal of Applied Mechanics,2017,34(5):848-854+1010.(in Chinese)

    • [4] 严博,马洪业,韩瑞祥,等.可用于大幅值激励的永磁式非线性隔振器 [J].机械工程学报,2019,55(11):169-175.YAN B,MA H Y,HAN R X,et al.Permanent magnets based nonlinear vibration isolator subjected to large amplitude acceleration excitations [J].Journal of Mechanical Engineering,2019,55(11):169-175.(in Chinese)

    • [5] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.SHENG L J,WANG J L.Research progress on piezoelectric energy harvesting of flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)

    • [6] MA X Q,ZHOU S X.A review of flow-induced vibration energy harvesters [J].Energy Conversion and Management,2022,254:115223.

    • [7] WANG J L,GENG L F,DING L,et al.The state-of-the-art review on energy harvesting from flow-induced vibrations [J].Applied Energy,2020,267:114902.

    • [8] HAMLEHDAR M,KASAEIAN A,SAFAEI M R.Energy harvesting from fluid flow using piezoelectrics:a critical review [J].Renewable Energy,2019,143:1826-1838.

    • [9] FRANZINI G R,BUNZEL L O.A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom [J].Journal of Fluids and Structures,2018,77:196-212.

    • [10] ZOU Q F,DING L,WANG H B,et al.Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder [J].Ocean Engineering,2019,191:106505.

    • [11] WANG J L,GU S H,ZHANG C Y,et al.Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping [J].Energy Conversion and Management,2020,213:112835.

    • [12] YANG K,QIU T,WANG J L,et al.Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body [J].Smart Material and Structures,2020,29(7):07LT01.

    • [13] 曹东兴,孙培峰,姚明辉,等.双稳态屈曲梁压电发电结构非线性动力学分析 [J].动力学与控制学报,2016,14(6):520-525.CAO D X,SUN P F,YAO M H,et al.Nonlinear dynamics of bistable buckled beam piezoelectric harvester [J].Journal of Dynamics and Control,2016,14(6):520-525.(in Chinese)

    • [14] TANG L H,YANG Y W,SOH C K.Improving functionality of vibration energy harvesters using magnets [J].Journal of Intelligent Material Systems and Structures,2012,23(13):1433-1449

    • [15] ZHOU S X,CAO J Y,INMAN D J,et al.Broadband tristable energy harvester:modeling and experiment verification [J].Applied Energy,2014,133:33-39

    • [16] ZHOU S X,CAO J Y,INMAN D J,et al.Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement [J].Journal of Sound and Vibration,2016,373:223-235.

    • [17] NASEER R,DAI H L,ABDELKEFI A,et al.Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics [J].Applied Energy,2017,203:142-153.

    • [18] NASEER R,DAI H L,ABDELKEFI A,et al.Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics [J].Energies,2019,13(1):71.

    • [19] MA X X,LI Z Y,ZHANG H,et al.Dynamic modeling and analysis of a tristable vortex-induced vibration energy harvester [J].Mechanical Systems and Signal Processing,2023,187:109924.

    • [20] WANG J L,GENG L F,ZHOU S X,et al.Design,modeling and experiments of broadband tristable galloping piezoelectric energy harvester [J].Acta Mechanica Sinica,2020,36(3):592-605

    • [21] MEI X T,ZHOU R,YANG B,et al.Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation [J].The Journal of Sound and Vibration,2021,505:116146.

    • [22] TAN D,LENG Y G,GAO Y J.Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field [J].European Physical Journal Special Topics,2015,224(14-15):2839-2853.

    • [23] ZHOU S X,ZUO L.Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting [J].Communications in Nonlinear Science and Numerical Simulation,2018,61:271-284.

  • 参考文献

    • [1] PAN H Y,QI L F,ZHANG Z T,et al.Kinetic energy harvesting technologies for applications in land transportation:a comprehensive review [J].Applied Energy,2021,286:116518.

    • [2] SUN W,JANG H,SEOK J.Magnetically coupled piezoelectric galloping-based energy harvester using a tandem configuration [J].Mechanical System and Signal Processing,2021,161:107952.

    • [3] 吴子英,叶文腾,刘蕊.一种新型双稳态电磁式振动能量捕获器动力学特性研究 [J].应用力学学报,2017,34(5):848-854.WU Z Y,YE W T,LIU R.Dynamics of a novel bi-stable electromagnetic vibration energy harvester [J].Chinese Journal of Applied Mechanics,2017,34(5):848-854+1010.(in Chinese)

    • [4] 严博,马洪业,韩瑞祥,等.可用于大幅值激励的永磁式非线性隔振器 [J].机械工程学报,2019,55(11):169-175.YAN B,MA H Y,HAN R X,et al.Permanent magnets based nonlinear vibration isolator subjected to large amplitude acceleration excitations [J].Journal of Mechanical Engineering,2019,55(11):169-175.(in Chinese)

    • [5] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.SHENG L J,WANG J L.Research progress on piezoelectric energy harvesting of flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)

    • [6] MA X Q,ZHOU S X.A review of flow-induced vibration energy harvesters [J].Energy Conversion and Management,2022,254:115223.

    • [7] WANG J L,GENG L F,DING L,et al.The state-of-the-art review on energy harvesting from flow-induced vibrations [J].Applied Energy,2020,267:114902.

    • [8] HAMLEHDAR M,KASAEIAN A,SAFAEI M R.Energy harvesting from fluid flow using piezoelectrics:a critical review [J].Renewable Energy,2019,143:1826-1838.

    • [9] FRANZINI G R,BUNZEL L O.A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom [J].Journal of Fluids and Structures,2018,77:196-212.

    • [10] ZOU Q F,DING L,WANG H B,et al.Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder [J].Ocean Engineering,2019,191:106505.

    • [11] WANG J L,GU S H,ZHANG C Y,et al.Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping [J].Energy Conversion and Management,2020,213:112835.

    • [12] YANG K,QIU T,WANG J L,et al.Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body [J].Smart Material and Structures,2020,29(7):07LT01.

    • [13] 曹东兴,孙培峰,姚明辉,等.双稳态屈曲梁压电发电结构非线性动力学分析 [J].动力学与控制学报,2016,14(6):520-525.CAO D X,SUN P F,YAO M H,et al.Nonlinear dynamics of bistable buckled beam piezoelectric harvester [J].Journal of Dynamics and Control,2016,14(6):520-525.(in Chinese)

    • [14] TANG L H,YANG Y W,SOH C K.Improving functionality of vibration energy harvesters using magnets [J].Journal of Intelligent Material Systems and Structures,2012,23(13):1433-1449

    • [15] ZHOU S X,CAO J Y,INMAN D J,et al.Broadband tristable energy harvester:modeling and experiment verification [J].Applied Energy,2014,133:33-39

    • [16] ZHOU S X,CAO J Y,INMAN D J,et al.Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement [J].Journal of Sound and Vibration,2016,373:223-235.

    • [17] NASEER R,DAI H L,ABDELKEFI A,et al.Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics [J].Applied Energy,2017,203:142-153.

    • [18] NASEER R,DAI H L,ABDELKEFI A,et al.Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics [J].Energies,2019,13(1):71.

    • [19] MA X X,LI Z Y,ZHANG H,et al.Dynamic modeling and analysis of a tristable vortex-induced vibration energy harvester [J].Mechanical Systems and Signal Processing,2023,187:109924.

    • [20] WANG J L,GENG L F,ZHOU S X,et al.Design,modeling and experiments of broadband tristable galloping piezoelectric energy harvester [J].Acta Mechanica Sinica,2020,36(3):592-605

    • [21] MEI X T,ZHOU R,YANG B,et al.Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation [J].The Journal of Sound and Vibration,2021,505:116146.

    • [22] TAN D,LENG Y G,GAO Y J.Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field [J].European Physical Journal Special Topics,2015,224(14-15):2839-2853.

    • [23] ZHOU S X,ZUO L.Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting [J].Communications in Nonlinear Science and Numerical Simulation,2018,61:271-284.

  • 微信公众号二维码

    手机版网站二维码