en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

邹鸿翔,E-mail:zouhongxiang@163.com

中图分类号:TP212

文献标识码:A

文章编号:1672-6553-2023-21(10)-058-007

DOI:10.6052/1672-6553-2023-120

参考文献 1
QIAN Y,WU D,BAO W,et al.The internet of things for smart cities:technologies and applications [J].IEEE Network,2019,33(2):4-5.
参考文献 2
徐志刚,李金龙,赵祥模,等.智能公路发展现状与关键技术 [J].中国公路学报,2019,32(8):1-24.XU Z G,LI J L,ZHAO X M,et al.A review on intelligent road and its related key technologies [J].China Journal of Highway and Transport,2019,32(8):1-24.(in Chinese)
参考文献 3
VIZZARI D,BAHRANI N,FULCO G.Coexistence of energy harvesting roads and intelligent transportation systems ITS [J].Infrastructures,2023,8(1):14.
参考文献 4
PANG Y F,ZHU X Y,LEE C K,et al.Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system [J].Nano Energy,2022,97:107219.
参考文献 5
DU R H,XIAO J,CHANG S D,et al.Mechanical energy harvesting in traffic environment and its application in smart transportation [J].Journal of Physics D:Applied Physics,2023,56(37):373002.
参考文献 6
PEI J,GUO F,ZHANG J,et al.Review and analysis of energy harvesting technologies in roadway transportation [J].Journal of Cleaner Production,2021,288:125338.
参考文献 7
PEI J Z,ZHOU B C,LYU L.e-Road:the largest energy supply of the future [J].Applied Energy,2019,241:174-183.
参考文献 8
朱培,任兴民,秦卫阳,等.移动车辆桥梁系统中的振动能量获取 [J].动力学与控制学报,2018,16(4):361-369.ZHU P,REN X M,QIN W Y,et al.Piezoelectric energy harvesting in moving-vehicle bridge system [J].Journal of Dynamics and Control,2018,16(4):361-369.(in Chinese)
参考文献 9
WANG S,WANG C H,YUAN H Z,et al.Design and performance of piezoelectric energy output promotion system for road [J].Renewable Energy,2022,197:443-451.
参考文献 10
邹鸿翔,郭丁华,甘崇早,等.磁力耦合道路能量收集设计与动力学分析 [J].力学学报,2021,53(11):2941-2949.ZOU H X,GUO D H,GAN C Z,et al.Design and dynamic analysis of magnetic coupling road energy harvesting [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):2941-2949.(in Chinese)
参考文献 11
TANG Y Z,XUAN W P,ZHANG C,et al.Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling [J].Nano Energy,2021,89:106429.
参考文献 12
石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真 [J].动力学与控制学报,2017,15(1):68-74.SHI C C,LI X,YUAN T C,et al.Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvester [J].Journal of Dynamics and Control,2017,15(1):68-74.(in Chinese)
参考文献 13
WANG H,JASIM A,CHEN X D.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review [J].Applied Energy,2018,212:1083-1094.
参考文献 14
绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.Shen L J,WANG J L.Research progress of piezoelectric energy harvesting from flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)
参考文献 15
邹鸿翔,张文明,魏克湘.面内压电振动能量采集动力学设计与性能研究 [J].固体力学学报,2019,40(5):381-389.ZOU H X,ZHANG W M,WEI K X.Dynamic design and performance study of in-plane piezoelectric vibration energy harvesting [J].Chinese Journal of Solid Mechanics,2019,40(5):381-389.(in Chinese)
参考文献 16
ZAMEER A,MAJEED M,MIRZA S M,et al.Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures [J].Soft Computing,2019,23(10):3449-3463.
参考文献 17
YESNER G,JASIM A,WANG H,et al.Energy harvesting and evaluation of a novel piezoelectric bridge transducer [J].Sensors and Actuators A:Physical,2019,285:348-354.
参考文献 18
CAO Y S,SHA A M,LIU Z Z,et al.Energy output of piezoelectric transducers and pavements under simulated traffic load [J].Journal of Cleaner Production,2021,279:123508.
参考文献 19
WANG L R,TODARIA P,PANDEY A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.
参考文献 20
HE J,FAN X M,ZHAO D Y,et al.A high-efficient triboelectric-electromagnetic hybrid nanogenerator for vibration energy harvesting and wireless monitoring [J].Science China Information Sciences,2022,65(4):142401.
参考文献 21
CAO J,LIN Y,FU X P,et al.Self-powered overspeed wake-up alarm system based on triboelectric nanogenerators for intelligent transportation [J].Nano Energy,2023,107:108150.
参考文献 22
邹鸿翔,李猛,赵林川,等.抗冲击车路能量收集减速带设计与自供能交通管控 [J].机械工程学报,2022,58(20):72-82.ZOU H X,LI M,ZHAO L C,et al.Design of anti-impact vehicle-road energy harvesting bump and self-powered traffic control [J].Journal of Mechanical Engineering,2022,58(20):72-82.(in Chinese)
参考文献 23
QI L F,PAN H Y,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.
目录contents

    摘要

    本文提出一种柔顺车路能量采集减速带(Flexible vehicle-road energy harvesting bump, FVEHB),用于采集车辆在行驶过程中耗散的机械能,为智能交通系统中的微小型机电系统提供可持续的清洁能源,有益于交通系统朝着更加智能化、多功能化和绿色化的方向发展.通过柔顺变形及柔性线驱动松弛-张紧过滤车辆滚压激励伴随的强冲击且保留较大的驱动力,柔顺变形及柔性线驱动可以容错制造误差和不确定形变,破解车路能量采集强冲击难题;通过升频机制、双向驱动提高机电转换效率.基于FVEHB的工作原理建立机电耦合动力学模型并进行了实验验证,研究不同激励下FVEHB的电学响应.实验结果表明,激励频率为5Hz时外接负载29Ω的峰值电压和峰值功率分别为5.81V和1.16W.探索了自供能交通环境监测及自供能交通管控等应用,验证了FVEHB有潜力为交通系统中的微小型机电系统提供可持续、便捷的清洁能源.

    Abstract

    A flexible vehicle-road energy harvesting bump (FVEHB) has been proposed to collect the mechanical energy dissipated by vehicles during driving, providing sustainable clean energy for micro-electromechanical systems in intelligent transportation systems, which is beneficial for the development of transportation systems towards a more intelligent, multifunctional, and clean way. By using flexible deformation and flexible line drive relaxation tension to filter out strong impacts accompanied by vehicle rolling excitation while retaining a large driving force, flexible deformation and flexible line drive can tolerate manufacturing errors and uncertain deformations, solving the problem of strong impacts in vehicle-road energy collection; Improve electromechanical conversion efficiency through frequency up mechanism and bidirectional drive. Based on the working principle of FVEHB, an electromechanical coupling dynamic model was established and experimentally validated to study the electrical response of FVEHB under different excitations. The experimental results show that the peak voltage and peak power of the external load of 29 Ω at an excitation frequency of 5Hz are 5.81V and 1.16W, respectively. Explored applications such as self powered traffic environment monitoring and self powered traffic control, and verified the potential of FVEHB to provide sustainable and convenient clean energy for micro-electromechanical systems in transportation systems.

  • 引言

  • 随着科技的进步,交通系统朝着智能化、多功能化和绿色化发展[1-3],这些目标的实现依赖于交通系统中布置大量的传感器[4].然而要为这些广泛分布的传感器供电并不简单.传统的电池供电不易更换且污染环境,而有线电缆供电需要铺设电缆,成本高昂,不易维护.交通环境中分布着大量可以被利用的能量[5-8],如果从交通环境中采集能量为传感器提供持续的清洁能源将会是理想的解决方案.

  • 目前车路能量采集主要基于压电效应[9]、电磁感应原理[10]和摩擦电效应等原理进行发电[11].压电车路能量采集利用正压电效应,将机械能转换为电能[12].压电能量采集结构简单、输出电压高,但内阻较大,输出电流小[1314].由于常用的陶瓷压电材料强度较低[15],因此压电车路能量采集装置只能承受小位移的激励.为了提升输出功率,研究人员提出了堆叠式[16]、桥式[17]、弯张式[18]等结构.

  • 基于摩擦电效应的摩擦纳米发电机结构简单、成本低廉[19],但是由于其自身内阻较大,输出电流和功率较低,因此用于车路环境下的摩擦纳米发电机通常在采集能量的同时,也作为自供能传感器用于无线监测传感[20].Cao等人[21]提出了一种基于摩擦纳米发电机的自供能超速唤醒报警系统,可以实现主动超速监测和报警信号传输.

  • 电磁车路能量采集输出电流大,功率高,但结构较为复杂,装置体积较大.综合考虑,如果能保证电磁车路能量采集装置的可靠性,并且充分考虑装置对路基的损伤,电磁车路能量采集方式最适合用于车路能量采集.Wang等人[19]设计了一种车路能量采集减速带,通过机械调制将车辆不规则的脉冲激励转化为发电机的单向转动,显著提高了输出功率,但是装置通过齿条-齿轮机构将强冲击的车轮滚压激励转换为发电机的旋转运动,装置的可靠性难以保证.Zou等人[22]提出了一种磁力耦合道路能量采集设计,通过磁力传动实现非接触式传动,隔断了车辆滚压激励的强冲击,有效地提升了装置的可靠性和密封性,但是磁力传动的传动效率较低,装置的机电转换效率相对较低.Qi等人[23]提出了一种水平滑动式的车路能量采集减速带,通过机械调制,将车轮滚压时产生的摩擦力转换为发电机的单向转动,该设计一个显著的优点是无需使路面凸起,因此也有效减小了车轮滚压对装置的冲击,但无法充分利用车轮的滚压激励,且传动结构较为复杂,对加工制造水平要求较高,否则容易出现齿轮损坏或卡顿等情况.

  • 尽管国内外涌现了很多关于车路能量采集方面的研究,但车路能量采集装置在车路环境中适应性较差的问题一直没有得到解决,即装置可靠性不够高且安装往往需要破坏地基,距离实际应用还有一定的距离.针对上述问题,本文提出了一种柔顺车路能量采集减速带装置.受传统思想“以柔克刚”启发,在车辆的滚压激励和关键的发电装置之间采用柔顺传动,通过柔顺变形及柔性线驱动松弛-张紧过滤车辆滚压激励伴随的强冲击且保留较大的驱动力,从而保证装置的可靠性和电学输出;且安装简单,无需破坏地基.通过机械调制、双向驱动等手段提高了装置的机电转换效率,且磁体线圈交错布置,充分利用空间,提高功率密度.建立了装置的机电耦合动力学模型,数值仿真的结果与实验结果基本一致.验证了自供能交通环境监测和交通管控的可行性.

  • 1 设计与工作原理

  • 如图1(a)所示,FVEHB和普通的减速带一样安装在道路上,将车辆驶过时耗散的机械能转换为电能并储存起来.将若干FVEHB产生的电能汇聚起来,为交通环境中的微小型机电系统提供持续的清洁能源.

  • 如图1(b)所示,当车辆驶过,FVEHB的驱动单元在车轮滚压激励下产生形变,从而带动拉绳驱动大齿轮顺时针旋转,大齿轮与升频齿轮啮合,在升频齿轮的驱动下磁铁盘高速旋转,导致线圈盘上的磁通率变化从而发电.两个升频齿轮的单向轴承同向布置,确保磁铁盘始终保持单向旋转;当车辆驶离,车轮滚压激励消失,驱动单元在自身回复力下自动复位,大齿轮在复位弹簧的作用下逆时针旋转,拉绳重新缠绕在卷线盘上.

  • 如图1(c)所示,FVEHB主要由驱动单元、发电单元、安装主体三个部分组成.驱动单元上开有圆槽,因此当驱动单元受到激励时只在圆槽处产生形变;发电单元由单向轴承、复位弹簧、拉绳、大齿轮、升频齿轮、永磁体、磁铁盘、线圈等组成.拉绳缠绕在大齿轮上的卷线盘中,永磁体交错镶嵌在磁铁盘中,线圈安装在壳体中;驱动单元和发电单元安装在安装主体上.

  • 图1 柔顺车路能量采集减速带.(a)应用场景;(b)工作原理;(c)结构简图

  • Fig.1 Flexible vehicle-road energy harvesting bump. (a) Application; (b) Principle; (c) Structure

  • 2 动力学建模

  • 为了研究装置的动力学特性和电学性能,基于装置的工作原理,建立了机电耦合动力学模型,如图2所示.

  • 如图2(a)为装置的等效物理模型,m为柔性驱动单元顶部等效质量块的质量,柔性驱动单元为上下等宽,左右对称的六边形结构,其宽为b,边长为a,高为h.k为柔性驱动单元的等效刚度,c为柔性驱动单元的等效阻尼。发电单元直径为d,发电单元的拉绳的长度为l,发电单元到柔性驱动单元底部的距离为e.

  • 图2 机电耦合动力学模型.(a)等效物理模型;(b)传动原理

  • Fig.2 Electromechanical coupling dynamics model. (a) Physical model; (b) Principle of drive conversion

  • O点为坐标坐标原点建立坐标系,竖直向下和水平向右为正方向,ABC点的坐标分别表示为AxayaBxbybCxcyc.在初始条件下h(0)=h0l(0)=l0.

  • 当装置在激励F的作用下时,由图3(a)有:

  • my¨a+cy˙a+kya=Fyah0-e
    (1)
  • 根据柔性驱动单元的几何关系可以得到:

  • h0-ya22+xb-b22=a2
    (2)
  • yb=ya+h2
    (3)
  • 由公式(2)和公式(3),发电单元拉绳的长度可以表示为:

  • l(t)=|BC|=xb-xc2+yb-yc2
    (4)
  • 如图2(b)为装置的传动原理图,拉绳缠绕在大齿轮上的卷线盘中,拉绳以速度V驱动大齿轮旋转,大齿轮驱动升频齿轮带动磁铁盘旋转.拉绳缠绕在大齿轮上的卷线盘中,卷线盘的半径为r2,大齿轮与升频齿轮的传动比为r3/r1.

  • 由公式(4)可以得到:

  • V=dl(t)-l0dt
    (5)
  • 可以得到磁铁盘的角速度为:

  • α˙=r1r2r3V
    (6)
  • 当磁铁盘不受激励时满足转子动力学方程:

  • Jα¨+c1α˙+ξIe=0
    (7)
  • 其中J为磁铁盘的转动惯量,α为磁铁盘的角位移,c1为磁铁盘受到的等效阻尼,为电磁阻尼系数,Ie为线圈的感应电流.当大齿轮的转速大于磁铁盘转速时,大齿轮驱动驱动磁铁盘直到转速相等,反之则几乎不施加力到磁铁盘上.由公式(6)和公式(7)可以得到磁铁盘转动动力学方程:

  • Jα¨+c1α˙+ξIe=0,α˙r1r2r3Vα˙=r1r2r3V,α˙<r1r2r3V
    (8)
  • 如图3为装置的机电转换原理图,当磁铁盘转动时,磁铁产生的磁场随之变化,通过线圈的磁通量产生变化,从而产生感应电流.磁铁盘上均匀布置有8个磁铁,每当磁铁盘转过,穿过线圈的磁场方向就会反向,所以电压的频率为磁铁盘旋转频率的4倍.

  • 图3 机电转换原理

  • Fig.3 Principle of electromechanical conversion

  • 由法拉第定律可以得到感应电压的大小:

  • Ve=-dφdt=dφdtdαdt=-dφdαα
    (9)
  • 可设磁通量为:

  • φ=kcos(4α)
    (10)
  • 磁通量的变化率为:

  • φ˙=-4ksin(4α)
    (11)
  • 当装置连接负载电阻时,根据能量守恒定律,系统的电学输出满足:

  • LI˙e-4kαsin(4α)+Rcoil +ReIe=0
    (12)
  • 其中Rcoil为线圈电阻的值,Re为外接负载电阻的值.

  • 3 数值分析与实验研究

  • 根据装置的机电耦合动力学模型在Matlab/Simulink进行了数值求解,分析了装置在不同频率激励下的输出电压和输出功率,选择可变步长和ODE45求解器.在实验中,通过控制电机转速对装置施加不同频率的连续激励,在外接负载的值为29Ω(与线圈阻值相等)的条件下采集了装置在不同频率下的输出电压.如图4所示,随着激励频率的升高,输出电压波形的频率也随之升高,且频率越高输出电压越大,这是因为随着激励频率的升高,磁铁盘的转速也随之升高.

  • 图4 不同频率激励下装置仿真和实验电压波形

  • Fig.4 Simulation and experimental voltage under different frequency excitation

  • 图5 不同频率激励下装置电学响应.(a)不同频率激励下的峰值电压;(b)不同频率激励下的峰值功率

  • Fig.5 Electrical performance of devices under different frequency excitation. (a) Peak voltage under different frequency excitation; (b) Peak power under different frequency excitation

  • 如图5所示,装置的峰值电压和峰值功率都随着频率的升高而增加,装置的仿真输出和实验输出都在激励为5Hz时达到最大.最大的仿真输出电压为6.25V,最大的实验输出电压为5.81V;最大的仿真输出功率为1.35W,最大的实验输出功率为1.16W.值得注意的是,装置的电学输出并不是随频率线性变化,这是由于装置的加工装配误差及磁阻尼的变化导致的.

  • 4 自供能交通环境监测及交通管控

  • 交通环境监测是城市环境治理的重要环节.开发了一种自供能交通环境监测系统,如图6(a)所示,用于监测交通环境中的温湿度、噪声和有害气体浓度.该系统由车路能量采集器、电气部分和上位机组成,如图6(b)所示,1~6分别为FVEHB、伺服电机、伺服电机控制器、微控制单元和传感器、PC、蓝牙模块.在电机的驱动下,FVEHB产生交流电,经过整流桥整流后为电容充电,当电容的电压达到供电电压后为单片机和传感器供电,单片机将采集到的数据通过蓝牙无线传输到上位机.电气控制原理如图6(c)所示,主要包括FVEHB、整流电路、超级电容(0.47 F)、调控模块(LTC3588)、微控制单元(NRF52832)、温湿度传感器(SHT20)、噪声监测传感器(LM386)和有害气体浓度监测传感器(MQ-2).

  • 图6 自供能交通环境监测系统.(a)交通环境监测界面;(b)实验设置;(c)电气控制原理.

  • Fig.6 Self-powered traffic environment monitoring system. (a) Working interface; (b) Experiment; (c) Electrical principle.

  • 自供能交通环境系统的实现验证了FVEHB可以为微小型机电系统供电,值得注意的是,本文只是实现原理验证,在实际的交通环境中可以布置多个FVEHB单元.

  • 在夜间照明不好或存在视野盲区的路段容易发生交通事故,通过设立交通警示灯可以有效的提醒行人或车辆提前避让.如图7所示,当车轮滚压FVEHB时,FVEHB产生的交流电可以轻易点亮交通警示灯.

  • 图7 自供能交通控制

  • Fig.7 Self-powered traffic control

  • 5 结论

  • 本文提出了一种柔顺车路能量采集减速带装置,通过柔顺传动隔断车轮滚压激励伴随的强冲击,在保证了较大的发电功率的同时,极大的提升了装置的可靠性.建立了FVEHB的机电耦合动力学模型并进行了实验验证.实验结果表明,在外接负载为29Ω,激励频率为5Hz的时候有最大的峰值电压和峰值功率,分别为5.81V和1.16W.

  • 初步探索了自供能交通环境监测以及自供能交通管控的应用,证明了FVEHB具有为交通系统中的微小型机电系统供电的能力.未来在交通系统中合理的布置FVEHB阵列,可以为智能交通系统广泛提供可持续的清洁能源.

  • 参考文献

    • [1] QIAN Y,WU D,BAO W,et al.The internet of things for smart cities:technologies and applications [J].IEEE Network,2019,33(2):4-5.

    • [2] 徐志刚,李金龙,赵祥模,等.智能公路发展现状与关键技术 [J].中国公路学报,2019,32(8):1-24.XU Z G,LI J L,ZHAO X M,et al.A review on intelligent road and its related key technologies [J].China Journal of Highway and Transport,2019,32(8):1-24.(in Chinese)

    • [3] VIZZARI D,BAHRANI N,FULCO G.Coexistence of energy harvesting roads and intelligent transportation systems ITS [J].Infrastructures,2023,8(1):14.

    • [4] PANG Y F,ZHU X Y,LEE C K,et al.Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system [J].Nano Energy,2022,97:107219.

    • [5] DU R H,XIAO J,CHANG S D,et al.Mechanical energy harvesting in traffic environment and its application in smart transportation [J].Journal of Physics D:Applied Physics,2023,56(37):373002.

    • [6] PEI J,GUO F,ZHANG J,et al.Review and analysis of energy harvesting technologies in roadway transportation [J].Journal of Cleaner Production,2021,288:125338.

    • [7] PEI J Z,ZHOU B C,LYU L.e-Road:the largest energy supply of the future [J].Applied Energy,2019,241:174-183.

    • [8] 朱培,任兴民,秦卫阳,等.移动车辆桥梁系统中的振动能量获取 [J].动力学与控制学报,2018,16(4):361-369.ZHU P,REN X M,QIN W Y,et al.Piezoelectric energy harvesting in moving-vehicle bridge system [J].Journal of Dynamics and Control,2018,16(4):361-369.(in Chinese)

    • [9] WANG S,WANG C H,YUAN H Z,et al.Design and performance of piezoelectric energy output promotion system for road [J].Renewable Energy,2022,197:443-451.

    • [10] 邹鸿翔,郭丁华,甘崇早,等.磁力耦合道路能量收集设计与动力学分析 [J].力学学报,2021,53(11):2941-2949.ZOU H X,GUO D H,GAN C Z,et al.Design and dynamic analysis of magnetic coupling road energy harvesting [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):2941-2949.(in Chinese)

    • [11] TANG Y Z,XUAN W P,ZHANG C,et al.Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling [J].Nano Energy,2021,89:106429.

    • [12] 石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真 [J].动力学与控制学报,2017,15(1):68-74.SHI C C,LI X,YUAN T C,et al.Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvester [J].Journal of Dynamics and Control,2017,15(1):68-74.(in Chinese)

    • [13] WANG H,JASIM A,CHEN X D.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review [J].Applied Energy,2018,212:1083-1094.

    • [14] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.Shen L J,WANG J L.Research progress of piezoelectric energy harvesting from flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)

    • [15] 邹鸿翔,张文明,魏克湘.面内压电振动能量采集动力学设计与性能研究 [J].固体力学学报,2019,40(5):381-389.ZOU H X,ZHANG W M,WEI K X.Dynamic design and performance study of in-plane piezoelectric vibration energy harvesting [J].Chinese Journal of Solid Mechanics,2019,40(5):381-389.(in Chinese)

    • [16] ZAMEER A,MAJEED M,MIRZA S M,et al.Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures [J].Soft Computing,2019,23(10):3449-3463.

    • [17] YESNER G,JASIM A,WANG H,et al.Energy harvesting and evaluation of a novel piezoelectric bridge transducer [J].Sensors and Actuators A:Physical,2019,285:348-354.

    • [18] CAO Y S,SHA A M,LIU Z Z,et al.Energy output of piezoelectric transducers and pavements under simulated traffic load [J].Journal of Cleaner Production,2021,279:123508.

    • [19] WANG L R,TODARIA P,PANDEY A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.

    • [20] HE J,FAN X M,ZHAO D Y,et al.A high-efficient triboelectric-electromagnetic hybrid nanogenerator for vibration energy harvesting and wireless monitoring [J].Science China Information Sciences,2022,65(4):142401.

    • [21] CAO J,LIN Y,FU X P,et al.Self-powered overspeed wake-up alarm system based on triboelectric nanogenerators for intelligent transportation [J].Nano Energy,2023,107:108150.

    • [22] 邹鸿翔,李猛,赵林川,等.抗冲击车路能量收集减速带设计与自供能交通管控 [J].机械工程学报,2022,58(20):72-82.ZOU H X,LI M,ZHAO L C,et al.Design of anti-impact vehicle-road energy harvesting bump and self-powered traffic control [J].Journal of Mechanical Engineering,2022,58(20):72-82.(in Chinese)

    • [23] QI L F,PAN H Y,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.

  • 参考文献

    • [1] QIAN Y,WU D,BAO W,et al.The internet of things for smart cities:technologies and applications [J].IEEE Network,2019,33(2):4-5.

    • [2] 徐志刚,李金龙,赵祥模,等.智能公路发展现状与关键技术 [J].中国公路学报,2019,32(8):1-24.XU Z G,LI J L,ZHAO X M,et al.A review on intelligent road and its related key technologies [J].China Journal of Highway and Transport,2019,32(8):1-24.(in Chinese)

    • [3] VIZZARI D,BAHRANI N,FULCO G.Coexistence of energy harvesting roads and intelligent transportation systems ITS [J].Infrastructures,2023,8(1):14.

    • [4] PANG Y F,ZHU X Y,LEE C K,et al.Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system [J].Nano Energy,2022,97:107219.

    • [5] DU R H,XIAO J,CHANG S D,et al.Mechanical energy harvesting in traffic environment and its application in smart transportation [J].Journal of Physics D:Applied Physics,2023,56(37):373002.

    • [6] PEI J,GUO F,ZHANG J,et al.Review and analysis of energy harvesting technologies in roadway transportation [J].Journal of Cleaner Production,2021,288:125338.

    • [7] PEI J Z,ZHOU B C,LYU L.e-Road:the largest energy supply of the future [J].Applied Energy,2019,241:174-183.

    • [8] 朱培,任兴民,秦卫阳,等.移动车辆桥梁系统中的振动能量获取 [J].动力学与控制学报,2018,16(4):361-369.ZHU P,REN X M,QIN W Y,et al.Piezoelectric energy harvesting in moving-vehicle bridge system [J].Journal of Dynamics and Control,2018,16(4):361-369.(in Chinese)

    • [9] WANG S,WANG C H,YUAN H Z,et al.Design and performance of piezoelectric energy output promotion system for road [J].Renewable Energy,2022,197:443-451.

    • [10] 邹鸿翔,郭丁华,甘崇早,等.磁力耦合道路能量收集设计与动力学分析 [J].力学学报,2021,53(11):2941-2949.ZOU H X,GUO D H,GAN C Z,et al.Design and dynamic analysis of magnetic coupling road energy harvesting [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):2941-2949.(in Chinese)

    • [11] TANG Y Z,XUAN W P,ZHANG C,et al.Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling [J].Nano Energy,2021,89:106429.

    • [12] 石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真 [J].动力学与控制学报,2017,15(1):68-74.SHI C C,LI X,YUAN T C,et al.Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvester [J].Journal of Dynamics and Control,2017,15(1):68-74.(in Chinese)

    • [13] WANG H,JASIM A,CHEN X D.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review [J].Applied Energy,2018,212:1083-1094.

    • [14] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.Shen L J,WANG J L.Research progress of piezoelectric energy harvesting from flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)

    • [15] 邹鸿翔,张文明,魏克湘.面内压电振动能量采集动力学设计与性能研究 [J].固体力学学报,2019,40(5):381-389.ZOU H X,ZHANG W M,WEI K X.Dynamic design and performance study of in-plane piezoelectric vibration energy harvesting [J].Chinese Journal of Solid Mechanics,2019,40(5):381-389.(in Chinese)

    • [16] ZAMEER A,MAJEED M,MIRZA S M,et al.Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures [J].Soft Computing,2019,23(10):3449-3463.

    • [17] YESNER G,JASIM A,WANG H,et al.Energy harvesting and evaluation of a novel piezoelectric bridge transducer [J].Sensors and Actuators A:Physical,2019,285:348-354.

    • [18] CAO Y S,SHA A M,LIU Z Z,et al.Energy output of piezoelectric transducers and pavements under simulated traffic load [J].Journal of Cleaner Production,2021,279:123508.

    • [19] WANG L R,TODARIA P,PANDEY A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.

    • [20] HE J,FAN X M,ZHAO D Y,et al.A high-efficient triboelectric-electromagnetic hybrid nanogenerator for vibration energy harvesting and wireless monitoring [J].Science China Information Sciences,2022,65(4):142401.

    • [21] CAO J,LIN Y,FU X P,et al.Self-powered overspeed wake-up alarm system based on triboelectric nanogenerators for intelligent transportation [J].Nano Energy,2023,107:108150.

    • [22] 邹鸿翔,李猛,赵林川,等.抗冲击车路能量收集减速带设计与自供能交通管控 [J].机械工程学报,2022,58(20):72-82.ZOU H X,LI M,ZHAO L C,et al.Design of anti-impact vehicle-road energy harvesting bump and self-powered traffic control [J].Journal of Mechanical Engineering,2022,58(20):72-82.(in Chinese)

    • [23] QI L F,PAN H Y,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.

  • 微信公众号二维码

    手机版网站二维码