en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杜荣华,E-mail:csdrh@163.com

中图分类号:TH113

文献标识码:A

文章编号:1672-6553-2023-21(10)-051-007

DOI:10.6052/1672-6553-2023-050

参考文献 1
PEI J Z,ZHOU B Z,LYU L.e-Road:The largest energy supply of the future?[J].Applied Energy,2019,241:174-183.
参考文献 2
CHEN C,XU T B,YAZDANI A,et al.A high density piezoelectric energy harvesting device from highway traffic-system design and road test [J].Applied Energy,2021,299:117331.
参考文献 3
HEO D,CHUNG J,KIM B,et al.Triboelectric speed bump as a self-powered automobile warning and velocity sensor [J].Nano Energy,2020,72:104719.
参考文献 4
Wang L R,Todaria P,Pandey A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.
参考文献 5
绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.SHENG L J,WANG J L.Research progress of piezoelectric energy harvesting from flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)
参考文献 6
朱培,任兴民,秦卫阳,等.移动车辆桥梁系统中的振动能量获取 [J].动力学与控制学报,2018,16(4):361-369.ZHU P,REN X M,QING W Y,et al.Piezoelectric energy harvesting in moving vehicle bridge system [J].Journal of Dynamics and Control,2018,16(4):361-369.(in Chinese)
参考文献 7
SONG G J,KIM K B,CHO J Y,et al.Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system [J].Applied Energy,2019,247:221-227.
参考文献 8
ZHANG Z T,ZHANG X T,RASIM Y,et al.Design,modelling and practical tests on a high-voltage kinetic energy harvesting(EH)system for a renewable road tunnel based on linear alternators [J].Applied Energy,2016,164:152-161.
参考文献 9
PIRISI A,GRIMACCIA F,MUSSETTA M,et al.Novel speed bumps design and optimization for vehicles' energy recovery in smart cities[J].Energies,2012,5(11):4624-4642.
参考文献 10
PIRISI A,MUSSETTA M,GRIMACCIA F,et al.Novel speed-bump design and optimization for energy harvesting from traffic [J].IEEE Transactions on Intelligent Transportation Systems,2013,14(4):1983-1991.
参考文献 11
QI L F,PAN H Y,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.
参考文献 12
李韶华,张兵,黄玉亭.刚柔耦合重型汽车建模及通过连续减速带的平顺性分析 [J].动力学与控制学报,2018,16(5):397-402.LI S H,ZHANG B,HUANG Y T.Modeling of rigid-flexible coupled heavy-duty vehicle and ride comfort analysis when passing through continuous speed bumps [J].Journal of Dynamics and Control,2018,16(5):397-402.(in Chinese)
参考文献 13
STANTON S C,MCGEHEE C C,MANN B P.Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator [J].Physica D:Nonlinear Phenomena,2010,239(10):640-653.
参考文献 14
YUNG K W,LANDECKER P B,VILLANI D D.An analytic solution for the force between two magnetic dipoles [J].Magnetic and Electrical Separation,1998,9(1):39-52.
参考文献 15
石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真 [J].动力学与控制学报,2017,15(1):68-74.SHI C C,LI X,YUAN T C,et al.Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvester [J].Journal of Dynamics and Control,2017,15(1):68-74.(in Chinese)
目录contents

    摘要

    提出了一种磁力耦合的滑动式车路能量收集装置(Magnetic-coupled Sliding Vehicle-road Energy Harvesting device,MSVEH)收集行驶车辆产生的机械能.能量收集装置与路面平齐,在收集能量的同时能有效地减少冲击对车辆行驶过程的影响.磁力耦合驱动方式可以实现非接触运动传递,从而将动密封转换为静密封,全密封设计理念有助于提高装置可靠性.滑动部件在车轮的双向激励下产生水平运动,通过磁力将运动传递到发电单元引起磁铁盘与线圈的相对运动从而发电.使用了单向轴承和换向齿轮联合设计实现装置在复杂交通环境自适应,适应车轮的双向激励并输出单向旋转运动.建立了永磁体间磁力的数学理论公式并进行了计算并得到了磁力曲线.建立了系统的动力学模型研究系统电学特征,探究了在外接负载下的滑动位移和激励频率参数对电学输出的影响.结果表明,滑动位移对装置输出性能影响显著,在负载电阻60Ω,位移20mm和频率5.0Hz时,峰值电压和峰值功率分别为10.2V和1.734W.

    Abstract

    A Magnetic-coupled Sliding Vehicle-road Energy Harvesting device (MSVEH) is proposed to harvest the mechanical energy generated by moving vehicles. The energy harvesting device is flush with the road surface, which can effectively reduce impact on vehicle while harvesting energy. The magnetic coupling drive mode can realize the non-contact motion transmission, so as to convert the dynamic seal into a static seal, and the idea of full seal design can helps to improve the reliability of the device. The sliding part generates horizontal motion under the bidirectional excitation of the vehicle, and the motion is transmitted to the generating unit through the magnetic force to cause the relative motion of the magnet plate and the coil to generate electricity. The joint design of one-way bearing and reversing gear realizes the adaptive device in complex traffic environment, adapt to the bidirectional excitation of the wheel and outputs one-way rotation. The mathematical formula of magnetic force between permanent magnets is established and calculated and obtained the magnetic force curve. The dynamic model of the system was established to study the electrical characteristics of the system. The influence of the sliding displacement and excitation frequency parameters under external load on the electrical output was explored. The results show that the sliding displacement has significant influence on the output performance of the device. When the load resistance is 60 Ω, the displacement is 20 mm and the frequency is 5.0 Hz, the peak voltage and peak power are 10.2 V and 1.734 W, respectively.

  • 引言

  • 我国“十四五”规划和2035年远景目标纲要提出“打造系统完备、高效实用、智能绿色、安全可靠的现代化基础设施体系”.多功能化、智慧绿色是未来交通系统的发展方向.交通信息感知、无线通讯等技术是实现交通基础设施多功能化、智能化的重要手段,然而传统的数据收集系统需要有线电缆或电池提供电能以维持系统的工作.海量的数据采集系统难免会增加电缆布线成本、维护成本以及环境成本.从车路环境中收集机械能量并转换为电能,为广泛分布的小型机电系统供电,具有便捷、可持续、绿色低碳等优势.

  • 随着人工智能、智能驾驶等技术的发展,道路正朝着多功能、智能化方向发展[1].道路是重要的交通基础设施,收集道路机械能量受到研究人员的广泛关注.目前,常见的道路机械能量收集往往基于压电效应、电磁感应和摩擦电效应[2-4].压电能量收集技术基于压电材料的正压电效应收集车辆路过时的重力势能、动能或由运动产生的气流[56].压电材料的物理特性决定了压电能量收集减速带只能够允许小位移的激励.通常采用堆叠和弯曲结构来增加设备的输出能力[7].基于电磁感应原理的道路能量收集装置具有阻抗小,输出功率高等特点.Wang等人[4]设计了一种齿轮齿条机构传动的能量收集减速带,由于齿轮齿条始终啮合,为了持续让发电机输出单向旋转运动,加入了带有单向超越离合器的机械运动整流(MMR)结构.Zhang等人[8]设计了一种含线性交流发电机的能量收集系统,车辆通过减速带时,永磁体在垂直方向产生线性运动,激发两侧定子线圈中磁场变化从而发电,该系统采用弹簧复位且没有使用机械运动整流结构.Pirisi等人[910]提出了一种管状的直驱线性永磁发电机,它的特点是无需机械传动结构,直接将车辆路过的动能转换为电能,在这项研究中,他们通过算法优化提高了装置的输出能力,并考虑了如何将回收能量进行并网.Qi等人[11]提出了一种水平滑动式的道路能量收集器,通过水平驱动机架带动机械系统发电,这种新颖的方法可以使装置在收集能量的同时,有效减少质量块与车轮碰撞对车辆系统产生的冲击.

  • 车路能量收集装置往往以减速带或填埋式路面能量采集器的形式安装在道路上.传统减速带难免会对车辆驾驶产生影响[12].同时,道路环境需要能量收集装置在复杂工况下具有极强的适应能力和耐冲击能力.为解决车路能量收集装置的适应性和耐冲击问题,设计拟提出一种基于磁力耦合驱动的滑动式车路能量收集装置.为了研究磁力驱动的理论模型,建立了永磁体间的磁力数学表达式.建立系统的机电耦合动力学模型研究装置的电学输出性能,并通过实验对设计进行验证.

  • 1 设计

  • 滑动式磁力耦合机械能量收集装置(MSVEH)适用于停车场,限速路段、隧道等特殊道路,用于收集道路上行驶车辆路过时的动能,通过机电转换手段将动能转换为电能,为特殊路段或自供能传感系统提供低碳、可持续的电能,从而为道路多功能化提供新的供电思路和选择.如图1所示,能量收集装置安装在路基中,安装高度与路面平齐.

  • 如图2(a)所示,装置整体结构主要包括:驱动单元、发电单元和机壳三个部分.如图2(b)所示,驱动单元包括驱动滑块、磁条、从动磁铁盘、小齿轮(2个)、换向齿轮以及弹簧等,其中磁条和从动磁铁盘中各安装有5个15*15*15mm3的永磁体,永磁体在磁条中磁极交替非等距安装,在从动磁铁盘中交替均布安装,这种设计的目的是提高旋转过程中磁条与从动磁铁盘的啮合度.

  • 图1 MSVEH安装示意图

  • Fig.1 Installation diagram of MSVEH

  • 图2(a)MSVEH整体结构

  • Fig.2 (a) Overall structure of MSVEH

  • 如图2(b)描述了MSVEH驱动单元结构与运动传递路径,直线箭头表示驱动滑块在车轮激励下带动磁条水平滑动,弯曲箭头描述了从动磁铁盘中在磁力的作用下发生转动,车轮离开后弹簧驱动滑块与磁条复位.

  • 图2(b)MSVEH驱动单元结构

  • Fig.2 (b) Driving unit structure of MSVEH

  • 图2(c)和图2(d)描述了基于两个单向轴承适应车辆双向激励的运动原理.如图2(c),磁条通过磁力驱动从动磁铁盘顺时针转动,小齿轮通过键连接传递扭矩与转速,大齿轮与发电磁铁盘齿轮啮合,触发线圈中的磁场变化,闭合线圈产生交流感应电流.右侧换向齿轮虽然参与运动,由于右侧大齿轮单向轴承处于断开状态,所以不传递扭矩.

  • 图2(c)从动磁铁盘顺时针工作

  • Fig.2 (c) Clockwise operation of the driven magnet disk

  • 如图2(d)描述了从动磁铁盘逆时针转动的工作情况,与从动磁铁盘顺时针转动的区别在于右侧大齿轮中单向轴承工作,左侧大齿轮中单向轴承断开.由于磁铁盘齿轮始终和两个大齿轮啮合,为了保证运动互不干涉,左右两个单向轴承应同向布置,保证磁铁盘齿轮始终输出单向旋转.

  • 图2(d)从动磁铁盘逆时针工作

  • Fig.2 (d) Counter-clockwise operation of the driven magnet disk

  • 2 工作原理与动力学建模

  • 为了研究装置的动力学和电学性能,对系统的机电耦合动力学方程进行了推导,首先以从动磁铁盘中心O为原点建立了坐标系,向右运动为正方向.磁力耦合系统的磁力计算方法参照了文献[1314]中两个点偶极子的作用力的解法,A组永磁体的磁偶极矩矢量可表示为如式(1),方向由图3(a)可见.

  • 图3(a)磁力驱动模型

  • Fig.3 (a) Model of magnetic drive

  • 图3(b)各齿轮分度圆半径

  • Fig.3 (b) Radius of the gears

  • 磁矩矢量可用μ=MV表示,其中磁化矢量M表示铁磁材料内部的所有微观磁矩的矢量和,V为永磁体体积.

  • μA=μA1μA2μA3μA4μA5=MAVAe^y-MAVAe^yMAVAe^y-MAVAe^yMAVAe^y
    (1)
  • 其中,MA为磁化矢量的大小,其值可用Br来估计,MA=Br/μ0VA是磁体的体积.B组磁体的磁矩矢量可表示为:

  • μB=μB1μB2μB3μB4μB5=MBVBsin(2ϕ+α)e^x+MBVBcos(2ϕ+α)e^y-MBVBsin(ϕ+α)e^x-MBVBcos(ϕ+α)e^yMBVBsinαe^x+MBVBcosαe^y-MBVBsin(α-ϕ)e^x-MBVBcos(α-ϕ)e^yMBVBsin(α-2ϕ)e^x+MBVBcos(α-2ϕ)e^y
    (2)
  • 其中,MB为磁化矢量的大小,MB=Br/μ0VB是永磁体的体积.φ是相邻两个永磁体的夹角,其值为π/12,主动磁条运动位移x,磁铁盘齿轮产生角位移α.

  • 磁条和磁铁盘齿轮中的永磁体的坐标分别用Bj=(rBsin[(3-jφ+α],rBcos[(3-jφ+α])和Ai=(3-il+xd)(ij=1,2,3,4,5)表示.其中rB是磁铁盘齿轮中的永磁体的中心到原点O的距离,d是磁条中的永磁体的中心到x水平轴的垂直距离,其值为79 mm,l是磁条中相邻两个永磁体的中心间距,μAiμBj的距离矢量可以表示为rijij=1,2,3,4,5).

  • rij={rBsin[(3-j)ϕ+α]-[(3-i)l+x]e^x+rBcos[(3-j)ϕ+α]-de^y
    (3)
  • 磁体Ai在磁体Bj位置产生的磁场可由下式给出:

  • Bij=-μ04πμAirijrij23
    (4)
  • 其中和‖·‖2分别表示向量的梯度算子和欧式范数.磁场势能:

  • Umij=-BijμBj
    (5)
  • 用矢量微分方法从势能的角度推导磁力表达式:

  • Fmij=--BijμBj=BijμBj
    (6)
  • Fmij=Mrij4r^ijμ^Aiμ^Bj+μ^Air^ijμ^Bj+μ^Bjr^ijμ^Ai-5r^ijr^ijμ^Air^ijμ^Bj
    (7)
  • Fmij的水平分力求和得到磁力Fmag,其中M=3μ0MAVAMBVB/4π.由于距离对磁力的影响明显,可等效简化模型,计算磁条中每个磁体对磁铁盘齿轮中与之相邻的两个磁体的力即可,即AiBi-1BiBi+1的磁力:

  • Fmag =i=1,j=i-1,i,i+15 Fmij
    (8)
  • 通过Maple数学计算工具对磁力进行了计算,通过曲线拟合方法得到了磁力曲线[15].水平磁力Fmijx和竖直磁力Fmijy的磁力曲线,如图4所示.Δ d表示驱动磁条和从动磁铁盘最近距离,这里计算了三组不同距离下的磁力大小,并拟合了磁力曲线:

  • 图4 磁力曲线

  • Fig.4 Magnetic curves

  • 通过拟合的方法得到磁力曲线后,在仿真中可以用一个余弦函数等效磁力函数:

  • Fmag =Kcos50πx
    (9)
  • 车轮冲击装置的力为F,磁条和磁铁盘齿轮的磁力为Fmag,根据动力学模型:

  • mx¨+cx¨+kx=F-Fmag
    (10)
  • 磁铁盘齿轮的转子动力学方程为:

  • J1α¨1+c1α˙1=Fmag rB
    (11)
  • 其中,J1是磁铁盘齿轮的转动惯量,c1是等效阻尼系数,α˙1是角速度(α˙1=α˙).规定顺时针转动为正方向,根据运动传递路径,磁铁盘转动的角速度α˙2可表示为:

  • α˙2=α˙1r1r5r5r6r7r4η3,α10-α˙1r1r2r3r4η2,α1<0
    (12)
  • ri为各传动齿轮分度圆半径,η为齿轮传动效率.磁铁盘的转子动力学方程为:

  • J2α¨2+c2α˙2+ξIe=0
    (13)
  • J2是磁铁盘的转动惯量,α¨是磁铁盘的角加速度,c2是磁铁盘的阻尼系数,ξ是电磁阻尼系数,Ie是线圈产生的感应电流.

  • 线圈中的感应电压可根据法拉第定律确定:

  • Ve=-dψdx=-dψdα2dα˙2dt=-α˙2dψdα2
    (14)
  • 磁铁盘装有10个极性交替且圆周均布的永磁体,线圈盘安装10个线圈.磁铁盘转动时,线圈磁通量发生变化.可设磁通量为:

  • ψ=kcos5α2
    (15)
  • 则磁通量变化率为:

  • ψ˙=-5kα˙2sin5α2
    (16)
  • 其中k是线圈参数确定的常量,可通过理论和实验估计.若电路接入负载,Re为外部负载的电阻,Rcoil为输出线圈的电阻,根据基尔霍夫电压定律,系统的电学输出满足:

  • LI˙e-5kα˙2sin5α2+Rcoil +ReIe=0
    (17)
  • 3 数值分析与实验研究

  • 根据工作原理建立了系统的动力学模型,在Simulink环境下搭建了仿真模型,分析能量收集系统在不同车速、不同滑动位移输入条件下的输出电压和输出功率,输入激励选择脉冲信号,根据不同车速输入不同的时钟参数,时长T=2L/VL是从原点到最远滑动位移,V为车速.系统主要仿真参数由表1给出.

  • 表1 仿真参数设置

  • Table1 Parameters of simulation

  • 在实验中,通过设置直线滑台的电机运行参数控制电机转速和滑动位移.不同车速对应不同激励频率,输入不同激励时间,通过仿真模型输出电压波形,并与实验的单次脉冲激励进行了验证,如图5所示.结果表明,在相同的滑动距离下,设置激励频率越高,系统工作时间会越短,产生的电压波形幅值越小.

  • 图5 单次激励实验与仿真波形图

  • Fig.5 Voltage waveform of experiment and simulation under single excitation

  • 图6 位移-频率变化下的峰值电压曲线

  • Fig.6 Peak voltage curve under displacement-frequency change

  • 图6和图7分别为装置在位移-频率变化测得的峰值电压、峰值功率曲线,实验在持续激励,外加负载为60 Ω的条件下进行.实验结果表明,峰值电压和峰值功率都会随着频率和位移的增加而增加,但增加的趋势逐渐缓慢.从曲线图可以看出,相比激励频率,位移对输出影响更显著.

  • 图7 位移-频率变化下的峰值功率曲线

  • Fig.7 Peak power curve under displacement-frequency change

  • 4 结论

  • 本文设计了一种滑动式磁力耦合车路能量收集装置,采用滑动式设计是为了减少道路驼峰对驾驶的冲击.基于磁力耦合驱动的设计可以实现非接触的运动和能量传递,为全密封设计提供了可行的思路.首先,根据工作原理建立了系统的动力学建模,建立了磁力计算理论模型并画出了磁力曲线.通过Simulink进行了数值仿真分析,并通过搭建实验平台采集了不同频率,不同位移激励下的电压数据,得到了在实验环境条件下的电压、功率的输出曲线.结果表明,在频率5.0Hz,位移20mm,外接负载60Ω的条件下,峰值电压、峰值功率分别为10.3V和1.734W.

  • 参考文献

    • [1] PEI J Z,ZHOU B Z,LYU L.e-Road:The largest energy supply of the future?[J].Applied Energy,2019,241:174-183.

    • [2] CHEN C,XU T B,YAZDANI A,et al.A high density piezoelectric energy harvesting device from highway traffic-system design and road test [J].Applied Energy,2021,299:117331.

    • [3] HEO D,CHUNG J,KIM B,et al.Triboelectric speed bump as a self-powered automobile warning and velocity sensor [J].Nano Energy,2020,72:104719.

    • [4] Wang L R,Todaria P,Pandey A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.

    • [5] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.SHENG L J,WANG J L.Research progress of piezoelectric energy harvesting from flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)

    • [6] 朱培,任兴民,秦卫阳,等.移动车辆桥梁系统中的振动能量获取 [J].动力学与控制学报,2018,16(4):361-369.ZHU P,REN X M,QING W Y,et al.Piezoelectric energy harvesting in moving vehicle bridge system [J].Journal of Dynamics and Control,2018,16(4):361-369.(in Chinese)

    • [7] SONG G J,KIM K B,CHO J Y,et al.Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system [J].Applied Energy,2019,247:221-227.

    • [8] ZHANG Z T,ZHANG X T,RASIM Y,et al.Design,modelling and practical tests on a high-voltage kinetic energy harvesting(EH)system for a renewable road tunnel based on linear alternators [J].Applied Energy,2016,164:152-161.

    • [9] PIRISI A,GRIMACCIA F,MUSSETTA M,et al.Novel speed bumps design and optimization for vehicles' energy recovery in smart cities[J].Energies,2012,5(11):4624-4642.

    • [10] PIRISI A,MUSSETTA M,GRIMACCIA F,et al.Novel speed-bump design and optimization for energy harvesting from traffic [J].IEEE Transactions on Intelligent Transportation Systems,2013,14(4):1983-1991.

    • [11] QI L F,PAN H Y,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.

    • [12] 李韶华,张兵,黄玉亭.刚柔耦合重型汽车建模及通过连续减速带的平顺性分析 [J].动力学与控制学报,2018,16(5):397-402.LI S H,ZHANG B,HUANG Y T.Modeling of rigid-flexible coupled heavy-duty vehicle and ride comfort analysis when passing through continuous speed bumps [J].Journal of Dynamics and Control,2018,16(5):397-402.(in Chinese)

    • [13] STANTON S C,MCGEHEE C C,MANN B P.Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator [J].Physica D:Nonlinear Phenomena,2010,239(10):640-653.

    • [14] YUNG K W,LANDECKER P B,VILLANI D D.An analytic solution for the force between two magnetic dipoles [J].Magnetic and Electrical Separation,1998,9(1):39-52.

    • [15] 石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真 [J].动力学与控制学报,2017,15(1):68-74.SHI C C,LI X,YUAN T C,et al.Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvester [J].Journal of Dynamics and Control,2017,15(1):68-74.(in Chinese)

  • 参考文献

    • [1] PEI J Z,ZHOU B Z,LYU L.e-Road:The largest energy supply of the future?[J].Applied Energy,2019,241:174-183.

    • [2] CHEN C,XU T B,YAZDANI A,et al.A high density piezoelectric energy harvesting device from highway traffic-system design and road test [J].Applied Energy,2021,299:117331.

    • [3] HEO D,CHUNG J,KIM B,et al.Triboelectric speed bump as a self-powered automobile warning and velocity sensor [J].Nano Energy,2020,72:104719.

    • [4] Wang L R,Todaria P,Pandey A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.

    • [5] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展 [J].动力学与控制学报,2022,20(4):12-23.SHENG L J,WANG J L.Research progress of piezoelectric energy harvesting from flow-induced vibration [J].Journal of Dynamics and Control,2022,20(4):12-23.(in Chinese)

    • [6] 朱培,任兴民,秦卫阳,等.移动车辆桥梁系统中的振动能量获取 [J].动力学与控制学报,2018,16(4):361-369.ZHU P,REN X M,QING W Y,et al.Piezoelectric energy harvesting in moving vehicle bridge system [J].Journal of Dynamics and Control,2018,16(4):361-369.(in Chinese)

    • [7] SONG G J,KIM K B,CHO J Y,et al.Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system [J].Applied Energy,2019,247:221-227.

    • [8] ZHANG Z T,ZHANG X T,RASIM Y,et al.Design,modelling and practical tests on a high-voltage kinetic energy harvesting(EH)system for a renewable road tunnel based on linear alternators [J].Applied Energy,2016,164:152-161.

    • [9] PIRISI A,GRIMACCIA F,MUSSETTA M,et al.Novel speed bumps design and optimization for vehicles' energy recovery in smart cities[J].Energies,2012,5(11):4624-4642.

    • [10] PIRISI A,MUSSETTA M,GRIMACCIA F,et al.Novel speed-bump design and optimization for energy harvesting from traffic [J].IEEE Transactions on Intelligent Transportation Systems,2013,14(4):1983-1991.

    • [11] QI L F,PAN H Y,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.

    • [12] 李韶华,张兵,黄玉亭.刚柔耦合重型汽车建模及通过连续减速带的平顺性分析 [J].动力学与控制学报,2018,16(5):397-402.LI S H,ZHANG B,HUANG Y T.Modeling of rigid-flexible coupled heavy-duty vehicle and ride comfort analysis when passing through continuous speed bumps [J].Journal of Dynamics and Control,2018,16(5):397-402.(in Chinese)

    • [13] STANTON S C,MCGEHEE C C,MANN B P.Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator [J].Physica D:Nonlinear Phenomena,2010,239(10):640-653.

    • [14] YUNG K W,LANDECKER P B,VILLANI D D.An analytic solution for the force between two magnetic dipoles [J].Magnetic and Electrical Separation,1998,9(1):39-52.

    • [15] 石朝成,李响,袁天辰,等.双梁磁力压电振动能量采集器的实验和仿真 [J].动力学与控制学报,2017,15(1):68-74.SHI C C,LI X,YUAN T C,et al.Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvester [J].Journal of Dynamics and Control,2017,15(1):68-74.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码