en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘胜,E-mail:komy0714@163.com

中图分类号:TM619

文献标识码:A

文章编号:1672-6553-2023-21(10)-043-008

DOI:10.6052/1672-6553-2023-063

参考文献 1
刘金辉.智慧交通系统的发展与挑战研究[J].建设科技,2022,20:36-39.LIU J H.Research on the development and Challenge of intelligent transportation system [J].Construction Science and Technology,2022,20:36-39.(in Chinese)
参考文献 2
VIZZARI D,BAHRANI N,FULCO G.Coexistence of energy harvesting roads and intelligent transportation systems(ITS)[J].Infrastructures.2023,8(1):14.
参考文献 3
CASTAGNETTI D.Fractal-inspired multifrequency structures for piezoelectric harvesting of ambient kinetic energy [J].Journal of Mechanical Design,2011,133(11):111005.
参考文献 4
KHALIGH A,ZENG P,ZHENG C.Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art [J].IEEE Transactions on Industrial Electronics,2009,57(3):850-860.
参考文献 5
ZOU H X,ZHAO L C,GAO Q H,et al.Mechanical modulations for enhancing energy harvesting:principles,methods and applications [J].Applied Energy,2019,255:113871.
参考文献 6
AFGHAN S A,GÉZA H.Modelling and analysis of energy harvesting in internet of things(IoT):Characterization of a thermal energy harvesting circuit for IoT based applications with LTC3108 [J].Energies,2019,12(20):3873.
参考文献 7
SHARMA A,SHARMA P.Energy harvesting te-chnology for IoT edge applications [J].Smart Manufacturing-When Artificial Intelligence Meets the Internet of Things,2021.
参考文献 8
ZHAO L C,ZOU H X,LIU F R,et al.Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):1-11.
参考文献 9
TAN Q,FAN K,TAO K,et al.A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations [J].Energy,2020,196:117107.
参考文献 10
WANG D W,MO J L,WANG X F,et al.Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration [J].Energy Conversion and Management,2018,171:1134-1149.
参考文献 11
MAAMER B,BOUGHAMOURA A,EL-BAB A M R F,et al.A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes [J].Energy Conversion and Management,2019,199:111973.
参考文献 12
ZHAO L C,ZOU H X,GAO Q H,et al.Design,modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration [J].Science China Technological Sciences,2020,63:2051-2062.
参考文献 13
WANG L,TODARIA P,PANDEY A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.
参考文献 14
QI L,PAN H,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.
参考文献 15
WANG H,JASIM A,CHEN X.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review [J].Applied Energy,2018,212:1083-1094.
参考文献 16
CHEN N,JUNG H J,JABBAR H,et al.A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit [J].Sensors and Actuators A:Physical,2017,254:134-144.
参考文献 17
PATHONI H,PRATIWI D,FUADY S,et al.Design speed bump piezoelectric used pressure method(case study Jambi University gate portal)[J].Journal of Physics Conference Series,2021,1731:012061.
参考文献 18
DONG K,PENG X,WANG Z L.Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence [J].Advanced Materials,2020,32(5):1902549.
参考文献 19
CHANDRASEKARAN S,BOWEN C,ROSCOW J,et al.Micro-scale to nano-scale generators for energy harvesting:Self powered piezoelectric,triboelectric and hybrid devices [J].Physics Reports,2019,792:1-33.
参考文献 20
CHEN B,YANG Y,WANG Z L.Scavenging wind energy by triboelectric nanogenerators [J].Advanced Energy Materials,2018,8(10):1702649.
参考文献 21
WU C,WANG A C,DING W,et al.Triboelectric nanogenerator:a foundation of the energy for the new era [J].Advanced Energy Materials,2019,9(1):1802906.
参考文献 22
肖渊,刘进超,吕晓来,等.CNT/PDMS 介电层微结构成型及摩擦纳米发电机制备 [J].机械工程学报,2021,57(15):177-185.XIAO Y,LIU J C,LV X L,et al.Preparation of Triboelectric Nanogenerators with CNT-Containing and Micro-structure PDMS Composite Films [J].Journal of Mechanical Engineering,2021,57(15):177-185.(in Chinese)
参考文献 23
TANG Y,XUAN W,ZHANG C,et al.Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling [J].Nano Energy,2021,89:106429.
参考文献 24
PANG Y,ZHU X,YU Y,et al.Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring [J].Nano Research,2022,15(6):5450-5460.
参考文献 25
邹鸿翔,李猛,赵林川,等.抗冲击车路能量收集减速带设计与自供能交通管控 [J].机械工程学报,2022,58(20):72-82.ZOU H X,LI M,ZHAO L C,et al.Design of Anti-impact Vehicle-road Energy Harvesting Bump and Self-powered Traffic Control [J].Journal of Mechanical Engineering,2022,58(20):72-82.(in Chinese)
参考文献 26
YUNG K W,LANDECKER P B,VILLANI D D.An analytic solution for the force between two magnetic dipoles [J].Magnetic and Electrical Separation,1970,9.
参考文献 27
STANTON S C,MCGEHEE C C,MANN B P.Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator [J].Physica D,2010,239(10):640-53.
参考文献 28
NIU S,WANG S,LIN L,et al.Theoretical study of contact-mode triboelectric nanogenerators as an effective powersource [J].Energy & Environmental Science,2013,6(12):3576.
目录contents

    摘要

    能量采集技术是发展绿色智能交通系统的重要途径.与电池和电缆供电方式相比,从交通环境中收集机械能并将其转化为电能能为智能交通系统中分布的微机电系统供电,且具有便捷、可持续、绿色低碳等优点.本文设计了一种摩擦-电磁复合式能量回收带(Hybrid Triboelectric-Electromagnetic Energy Harvesting Bump,HTEEHB),主要由电磁发电单元和摩擦发电单元组成,电磁发电单元磁体线圈交错排列,以提高空间利用率和增加功率密度;摩擦电单元采用改性聚二甲基硅氧烷复合材料组装的折叠结构,可显著提高输出功率.通过磁力和弹性体的双重作用力进行复位,可避免传统弹簧复位需要精密导向机构的缺点.基于HTEEHB工作原理,建立机电耦合动力学模型并进行试验验证,证明了磁力复位的有效性.试验结果表明,在激励频率为5Hz,受力为15N时,左右两侧摩擦发电单元产生的最大平均功率分别为353.1μW 和360μW,电磁发电产生的平均功率为6.67μW.该装置收集车辆滚动能量,可为交通环境中的小型器件提供可持续的绿色无碳动力.

    Abstract

    Energy harvesting technology is an important way to develop green intelligent transportation system. In contrast to battery and cable power supply, mechanical energy collected from the traffic environment and converted into electrical energy can be used to power MEMS distributed in intelligent transportation systems. This kind of electricity has the advantages of convenient, sustainable, green and low-carbon. In this paper, a hybrid triboelectric-electromagnetic energy harvesting bump is designed. The device is mainly composed of an electromagnetic generator unit and a triboelectric generator unit. The device 's electromagnetic power generation unit magnet coils are staggered so as to improve space utilization and power density. The triboelectric unit uses a modified polydimethylsiloxane composite film with folded structure, which can significantly increase the output power. The magnetic and elastic dual force reset design can avoid the shortcomings of traditional spring return requiring precision guiding mechanism. Based on the working principle of hybrid energy harvesting bump, the electromechanical coupling dynamic model is established and verified by experiments. The results show that the maximum average power generated by the left and right tribological generating units is 353.1μW and 360μW respectively, and the average power generated by electromagnetic generation is 6.67μW under the excitation frequency of 5Hz and the force of 15N. The device collects vehicle rolling energy and provides sustainable green carbon-free power for small devices in the traffic environment.

  • 引言

  • 现代都市高楼林立,车辆与行人川流不息,随着人口向大城市集聚,所带来的城市交通问题愈发复杂,人们对交通系统的要求也就更高.为了更加快捷、有效处理交通问题,智能交通系统(Intelligent Transportation System,ITS)是传统交通的最佳替代方案[1].ITS面临的主要问题是找到可靠的能源[2].交通环境本身存在大量的能源耗散,如果能有效采集耗散的能量,这些完全清洁的能源就能使投入在智能交通系统中的大量传感器及配套通讯设备持续工作.

  • 在不同形式的环境能量中,动能几乎是无处不在的,而且很容易获得,它总是以振动、规则或随机位移和驱动力的形式存在[3].车辆滚压路面可以产生巨大的机械能量.根据公安部数据统计,截至2022年12月底,全国汽车保有量达3.19亿辆,占机动车总量的76.59%.巨大的车辆数量意味着巨大的机械能量流.收集车辆滚压路面产生的机械能并转化为电能不仅具有可持续、节能、环保的特点,而且还实现了许多自供电的自动化功能,方便、可靠[45].因此,收集汽车运行过程中的机械能量并转化为电能,为智能交通系统中大量分布的如温度传感器[6]、无线传感器[7]等低能耗传感器(mW级)供电,无疑是一种很好的方案.

  • 车路能量收集可以采用电磁能量收集、压电能量收集、摩擦电纳米发电机等方式[8-10].电磁能量收集具有结构简单可靠、输出电流大等优点,但器件体积相对较大,产生的电压较小[1112].Wang等[13]提出了一种基于机械运动整流机制的减速带道路能量收集装置,可以将不规则脉冲转化为发电机的单向旋转,并通过断开低速驱动来保持高速旋转,实现从向下和向上的脉冲中获得更多的能量,显著提高了输出功率;但装置直接承受来自车辆的巨大冲击,对装置设计和制造的要求较高.Qi等[14]提出了一种摩擦滑动式道路能量收集装置,通过与道路平齐的滑板接收来自车轮的激励,将滑板的水平往复滑动转换为发电机输入轴的单向旋转,这种方式有效减小了来自车辆的巨大冲击,从而增加装置的可靠性.

  • 压电材料变形能产生电压,容易集成为压电传感器,其具有设计灵活、结构简单、输出电压较高的优点[15]. Chen等[16]通过车辆滚压使得减速带上下运动,从而碰撞压电悬臂梁振动发电.这种方式可以将脉冲式滚压激励转换为相对较长时间的振动,使得机电转换时间变长;但是并不能充分利用车辆滚压激励,产生的电能也很少.Pathoni等人[17]利用减速带与压电材料结合,收集机械能转化为电能,且能有效保护压电材料及其组件正常工作,充分体现了减速带与压电材料结合的可行性.

  • 摩擦纳米发电机(Triboelectric Nanogenerator,TENG)通过功能材料(一种材料容易得电子,另一种材料容易失电子)的摩擦起电和静电感应而发电,具有结构简单、可微型化、适合低频激励、输出电压高、功率密度大的特点[18-20],应用于道路减速带具有结构简单、成本低廉等优点[2122].Tang等[23]将数个TENG封入常规PVC减速带,开发了一种自供电的无线交通监控系统,可以作为自供电行人和车辆预警系统,以及速度传感器.Pang等[24]以水弹折纸为灵感,提出了一种新型的摩擦电纳米发电机,并进一步开发了全封装自驱动的智能路面,可以准确地评估车辆速度,车辆数量和车辆类型,成功验证了TENG用于交通监控的可行性和稳定性.但是由于车辆滚压产生的冲击和摩擦较大,功能材料容易损坏,影响摩擦纳米发电机的性能和使用寿命[25].

  • 国内外尽管出现了很多关于道路能量收集方面的研究,但是,如何将道路能量收集装置与道路本身结合,优化驾驶员的驾驶体验是一个关键难题,现有能量收集装置体积普遍较大、内部结构复杂,且电学输出性能也不够高,距离应用还有一段距离.针对现有道路能量收集装置输出功率较低和可靠性差等缺点,本文提出了一种摩擦-电磁复合式能量回收带(Hybrid Triboelectric-Electromagnetic Energy Harvesting Bump,HTEEHB),结构简单,无复杂机械机构,对路面改造小,同时利用滑动发电模式和弹性体结构减小冲击力,通过磁力复位,避免传统弹簧复位需要精密导向机构的缺点,且磁铁线圈交错布置,有效利用空间,提高功率密度.此外,滑动部件两侧可以方便地集成摩擦纳米发电机,实现电磁与摩擦两种机电转换机制在滑动和碰撞过程协同发电,有效利用空间和增加输出电能,同时,车辆滚压的巨大激励可以使摩擦纳米发电机充分接触,有利于电荷的转移.装置兼具高电压和大电流的电学特性,能灵活地满足不同用电需求.基于工作原理,建立了机电耦合动力学模型并通过了试验验证,成功验证了磁力复位的可靠性,并在不同工况下进行了实验研究,以期为能量收集系统动力学和电学性能改进提供新的途径.

  • 1 设计与工作原理

  • 摩擦-电磁复合式能量回收带避免了对传统减速带的依赖,可以安装在道路的任何位置.该能量收集装置适用于高速公路、城市快车道、主车道等道路的弯道、匝道口、隧道口等减速路段.如图1(a)所示,若干个HTEEHB密封安装在道路下,车辆经过会激励装置,产生电能供给周围的用电设备或进行存储,并且这些电能绿色环保,不额外消耗能源和排放二氧化碳.如图1(a)所示,能量收集装置包括滑板、永磁体、铜线圈、滑块、导轨、底座及两个对称布置的多层折叠摩擦纳米发电机(TENG)等.滑板和底板内部均交错布置了3组同向布置永磁体和铜线圈.折叠的TENG单元由铜箔、改性的聚二甲基硅氧烷(PDMS)复合薄膜组成.

  • 装置工作过程如图1(a)和图1(b)所示,车辆行驶通过设置了HTEEHB的道路,前后轮依次滚压顶端的滑板[图1(b)以一个轮胎滚压过程为例],滑板会随着车轮带来的摩擦力移动,此时滑板与底座之间会发生相对运动,嵌装于滑板与底座内部的永磁体与铜线圈相对位移发生变化,使得感应线圈磁通量发生变化,因为电磁感应原理发电.同时滑板移动会压缩一侧的TENG,由于接触起电和静电感应效应的耦合,将导致电负性不同的铜箔和PDMS复合薄膜两种摩擦材料相互接触,材料表面由于接触起电效应,使得PDMS复合薄膜表面带负电荷,而铜箔带正电荷.当车辆离开,磁力作用使滑板回到初始位置.摩擦层相互分离产生电势差,驱动多组正负电极之间的电子在外部回路来回流动以平衡电势差,从而产生电流.嵌装于滑板与底座内部的永磁体与铜线圈相对位移再次发生变化,通过电磁感应发电.随着车辆运动的经过,电磁能量采集器(electromagnetic energy harvester: EMH)和TENG不断工作,收集滚压能量转换为电能.HTEEHB通过磁力复位,显著提高了装置的集成度,从而缩小装置体积.

  • 图1 摩擦-电磁复合能量回收带装置.(a)应用场景,(b)车辆行驶过程,(c)结构简图

  • Fig.1 Hybrid triboelectric-electromagnetic energy harvesting bump (a) application scenario, (b) vehicle running process, (c) structural design of the HTEEHB

  • 2 理论分析

  • 基于HTEEHB的动力学模型简化如图2所示.图2(a)为能量收集装置的动力学模型,k为多层折叠摩擦发电单元的等效刚度,c为滑板的等效阻尼.图2(b)为一组相互作用的永磁体组的几何机构示意图,它们总共有三组,分别嵌装于滑板和底板内部,在此分别称为可移动磁条和固定磁条.规定向右运动为正向.HTEEHB中应用的磁体可以被建模为点偶极子[2627].可移动磁条和固定磁条内的磁体AiBjij=1,2,3,4,5)的磁矩矢量可以写成如下:

  • μAi=μBj=(-1)i-1MVe^y
    (1)
  • 其中,M为磁化矢量的大小,M=Br/μ0Br为剩余磁通密度,μ0为真空磁导率,V是永磁体的体积.可移动磁条运动位移x,固定磁条固定不动,可移动磁条和固定磁条中的永磁体的坐标分别用Ai=[(3-il+xd]和Bj=[(3-jl,0],(ij=1,2,3,4,5)表示.其中d是可移动磁条中的永磁体的中心到x水平轴的垂直距离,其值为6mm,是磁条中相邻两个永磁体的中心间距,其值为45mm,μAiμBi的距离矢量可以表示为:

  • rij={(3-j)l-[(3-i)l+x]}e^x-de^y
    (2)
  • 此外,永磁体Ai在永磁体Bi位置时所产生的磁场公式如下:

  • Bij=-μ04πμAirijrij23
    (3)
  • 其中Δ和‖·‖2分别表示向量的梯度算子和欧式范数.固定磁条内磁体Bj在磁场中的势能可由下式定义:

  • Umij=-BijμBj
    (4)
  • 从势能的角度推导可移动磁条与固定磁条内永磁体间的磁力表达式:

  • 图2 装置运作原理图

  • Fig.2 Schematic diagram of device operation

  • Fmij=--BijμBj=BijμBj
    (5)
  • Fmij=Mrij4r^ijμ^Aiμ^Bj+μ^Air^ijμ^Bj+μ^Bjr^ijμ^Ai-5r^ijr^ijμ^Air^ijμ^Bj
    (6)
  • 其中M=3μ0MAVAMBVB/4πFmij水平分力Fix求和得到可移动磁条所受磁力fmag,在实际情况中,距离对磁力的影响明显,为简化模型,计算磁条中每个磁体对磁铁盘齿轮中与之相邻的两个磁体的力即可,即BiAi-1AiAi+1的磁力.滑板与底板内由三组上述的可移动磁条与固定磁条对组成,故滑板所受磁力Fmag=3fmag.车轮激励装置的摩擦力为Ff,滑板受到底板的总磁力为Fmag,所以滑板的动力学方程为:

  • mx¨+cx˙+2kx=Ff-Fmag-ξIe
    (7)
  • 其中,m是滑板的总质量,c是等效阻尼系数,k是多层折叠TENGs的等效刚度,ξ是电磁阻尼系数,Ie是线圈产生的感应电流.

  • 线圈中的感应电压可根据法拉第定律确定:

  • Ve=-dψdt=-dψdxdxdt=-x˙dψdx
    (8)
  • 可移动磁力条装有5个极性交替且线性均布的永磁体与5个线性均布的线圈,且永磁体与线圈间替布置.当可移动磁力条位移分别为-45mm、-22.5mm、0mm、22.5mm和45mm时,线圈磁通量分别为0、最小值、0、最大值和0,因此可设磁通量为:

  • ψ=asinxπ0.045
    (9)
  • ψ˙=πa0.045cosxπ0.045
    (10)
  • 式中,a是线圈参数确定的常量,可通过理论和实验估计.若电路接入负载,RLoad为外部负载的电阻,RCoil为输出线圈的电阻,根据基尔霍夫电压定律,统的电学输出满足:

  • LI˙e-π45acosxπ0.045+RCoil +RLoad Ie=0
    (11)
  • 单个折叠TENG在一个工作周期内的工作机制如图3所示,发电过程分为四个步骤:初始时两介质板相互接触,夹角θ=0°,由于接触起电作用,铜箔和复合薄膜的表面将产生密度为σ的等量相反的静摩擦电荷.两个摩擦电层在外力作用下相互分离时,θ增大,由于接触电极产生的电位比背电极高,电子通过外部电路从背电极流向接触电极,以中和接触电极中的正摩擦电荷,方向如图3(ⅱ)所示.接下来,电子流持续到两个摩擦电层之间的θ达到最大值,此时达到电平衡[如图3(ⅲ)所示].最后,随着θ减小,电平衡被打破,导致电子从接触电极回流到后电极[如图3(ⅳ)所示].最后两摩擦电层重新接触,回到最初θ=0°的状态,金属电极上不带电.两摩擦电层周期性如此往复运动时,就能输出周期性变化的电流[28].

  • 图3 TENG的工作机理.(ⅰ)接触,(ⅱ)分离,(ⅲ)最大接触角的相位,(ⅳ)摩擦层靠近

  • Fig.3 Working mechanism of the TENG. (ⅰ) contact, (ⅱ) separating, (ⅲ) a phase at the maximum separation angle, (ⅳ) approaching

  • 图4 TENG两电极间不同角度电势梯度数值分析

  • Fig.4 Numerical analysis of the potential gradient between two electrodes at a different angle for TENG

  • 图5 单次激励下滑板的位移仿真

  • Fig.5 Displacement simulation of sliding plate under single excitation

  • 图6 单次激励下电磁发电单元的电学输出

  • Fig.6 Electrical output of EMH under single excitation

  • 图4展示了摩擦发电单元的工作机理.在该模型中,构建了与实际相同的结构和尺寸.由于器件处于开路状态,因此在两个电极之间没有电子转移.可以发现,随着分离角(θ)的增大,电势梯度(V)逐渐增大,这一现象与所提出的理论模型相吻合,从而验证了仿真模型和理论模型的可靠性.但值得注意的是,随着角度(θ)的增大,电势梯度V的增长率逐渐减小.其中,当θ小于15°时,增长速度最快;当θ在15°~45°之间时,增长速度减缓;当夹角大于45°时,增长速度最慢.输出的电势梯度V在3°~90°之间的6个角度的电势分布也如图4所示,分离角(θ)在3°~15°的范围内,输出的峰值电势梯度V从9.74V增加到了31.42V,增长率达到223%.但在15°~45°和45°~90°的范围内,增长速率快速衰减为110%和39%.

  • 3 结果与讨论

  • 为了验证HTEEHB的动力学模型和探究电学输出性能,同时为了进一步验证磁力复位的可靠性,进行了数值仿真和试验平台试验.基于建立的机电耦合动力学模型,在Matlab的Simulink模块进行数值仿真,选择可变步长和Ode45求解器.

  • 图5通过仿真给出了对装置滑板施加瞬时的激励后,滑板位移与时间的关系.图6则给出了单次激励后仿真和试验得到的HTEEHB输出电压波形.从图中可知,在初始时的瞬时激励过后,电压的波形图对应生成一对极其尖锐的正负波峰,在滑板受到瞬时激励后,滑板运动到某一端,此时滑板在弹力和磁力的双重作用下,会从该端朝向另一端滑动,此过程的位移方向为负方向.当滑板位移从45 mm运动到0 mm,此时滑板所受磁力在水平方向上的力为0,此后会因为惯性继续朝位移为负的方向滑动,因为磁力、摩擦和阻尼的作用,当滑板的动能耗尽时,滑板会在位移为0~-45 mm的范围内停止,接着在磁力作用下反向滑动,如此循环往复,动能逐渐减低,滑板会在某一时刻位移无法经过磁通量绝对值最大的点,即位移为-22.5 mm与22.5 mm的两个点,因此在靠后端的波形中与前端相比缺失了一个波.随着时间推移,生成的电压波形发生频率逐渐降低,最终滑板会停止运动,回到初始点.仿真和实验的结果验证了磁力复位的有效性.

  • 图7 HTEEHB电学输出.(a)TENG-1、(b)TENG-2和(c)EMH单元的平均功率与外部负载电阻的关系.(d)TENG-1和(e)TENG-2在1-5Hz激励频率和不同压力下输出平均功率,(f)EMH在1-5Hz激励频率下输出平均功率

  • Fig.7 Electrical output performance of the HTEEHB. Dependence of the average power of (a) TENG-1, (b) TENG-2, (c) EMH on the external load resistances. Average power of (d) TENGs1, (e) TENGs2 in the excitation frequency range of 1-5 Hz and different pressure. Average power of (f) EMH in the excitation frequency range of 1-5 Hz

  • 图7显示了HTEEHB的电输出性能.TENG-1和TENG-2分别表示两侧对称的多层折叠摩擦纳米发电机.TENG-1、TENG-2和EMH的平均功率分别在55 MΩ、55 MΩ和17 Ω达到最大值.图7(d,e,f)分别表示TENG-1、TENG-2和EMH在55 MΩ、55 MΩ和17 Ω的负载下,激励频率为1、2、3、4和5 Hz,TENGs所受压力为5、10、15 N时的平均功率,在相同的激励频率下,TENG输出的平均功率随受力的增加而增加.在相同的受力下,激励频率越大,平均功率越大.这是因为高频的激励下TENG输出电压周期缩短,单位时间内转移产生的电荷量增加,从而导致电流增大,最终表现为平均功率增大.在激励频率为5 Hz,受力为15 N时,左右两侧TENG产生的最大平均功率分别为353.1 μW和360 μW,EMH产生的平均功率为6.67μW,可以为智能交通系统中的温度传感器、无线传感器等低能耗(mW级)传感器供电.

  • 4 结论

  • 本文提出了一种适用于任何道路的摩擦-电磁复合式能量回收带装置,通过磁力和弹性体的双重作用力进行复位,减小装置的冲击,有效提高密封性.集成了摩擦发电和电磁发电单元,有效提高空间利用率和增加功率密度,且摩擦电单元采用改性聚二甲基硅氧烷复合材料组装的折叠结构,可显著提高功率.建立了机电耦合动力学模型,证实了磁力复位的有效性.电学性能测试表明,在激励频率为5Hz,受力为15N时,左右两侧摩擦发电单元产生的最大平均功率分别为353.1μW 和360μW,电磁发电产生的平均功率为6.67μW.摩擦-电磁复合式能量回收带系统集成后,可为未来智能交通系统的传感器及配套通讯设备持续工作提供零碳电力.

  • 参考文献

    • [1] 刘金辉.智慧交通系统的发展与挑战研究[J].建设科技,2022,20:36-39.LIU J H.Research on the development and Challenge of intelligent transportation system [J].Construction Science and Technology,2022,20:36-39.(in Chinese)

    • [2] VIZZARI D,BAHRANI N,FULCO G.Coexistence of energy harvesting roads and intelligent transportation systems(ITS)[J].Infrastructures.2023,8(1):14.

    • [3] CASTAGNETTI D.Fractal-inspired multifrequency structures for piezoelectric harvesting of ambient kinetic energy [J].Journal of Mechanical Design,2011,133(11):111005.

    • [4] KHALIGH A,ZENG P,ZHENG C.Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art [J].IEEE Transactions on Industrial Electronics,2009,57(3):850-860.

    • [5] ZOU H X,ZHAO L C,GAO Q H,et al.Mechanical modulations for enhancing energy harvesting:principles,methods and applications [J].Applied Energy,2019,255:113871.

    • [6] AFGHAN S A,GÉZA H.Modelling and analysis of energy harvesting in internet of things(IoT):Characterization of a thermal energy harvesting circuit for IoT based applications with LTC3108 [J].Energies,2019,12(20):3873.

    • [7] SHARMA A,SHARMA P.Energy harvesting te-chnology for IoT edge applications [J].Smart Manufacturing-When Artificial Intelligence Meets the Internet of Things,2021.

    • [8] ZHAO L C,ZOU H X,LIU F R,et al.Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):1-11.

    • [9] TAN Q,FAN K,TAO K,et al.A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations [J].Energy,2020,196:117107.

    • [10] WANG D W,MO J L,WANG X F,et al.Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration [J].Energy Conversion and Management,2018,171:1134-1149.

    • [11] MAAMER B,BOUGHAMOURA A,EL-BAB A M R F,et al.A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes [J].Energy Conversion and Management,2019,199:111973.

    • [12] ZHAO L C,ZOU H X,GAO Q H,et al.Design,modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration [J].Science China Technological Sciences,2020,63:2051-2062.

    • [13] WANG L,TODARIA P,PANDEY A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.

    • [14] QI L,PAN H,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.

    • [15] WANG H,JASIM A,CHEN X.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review [J].Applied Energy,2018,212:1083-1094.

    • [16] CHEN N,JUNG H J,JABBAR H,et al.A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit [J].Sensors and Actuators A:Physical,2017,254:134-144.

    • [17] PATHONI H,PRATIWI D,FUADY S,et al.Design speed bump piezoelectric used pressure method(case study Jambi University gate portal)[J].Journal of Physics Conference Series,2021,1731:012061.

    • [18] DONG K,PENG X,WANG Z L.Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence [J].Advanced Materials,2020,32(5):1902549.

    • [19] CHANDRASEKARAN S,BOWEN C,ROSCOW J,et al.Micro-scale to nano-scale generators for energy harvesting:Self powered piezoelectric,triboelectric and hybrid devices [J].Physics Reports,2019,792:1-33.

    • [20] CHEN B,YANG Y,WANG Z L.Scavenging wind energy by triboelectric nanogenerators [J].Advanced Energy Materials,2018,8(10):1702649.

    • [21] WU C,WANG A C,DING W,et al.Triboelectric nanogenerator:a foundation of the energy for the new era [J].Advanced Energy Materials,2019,9(1):1802906.

    • [22] 肖渊,刘进超,吕晓来,等.CNT/PDMS 介电层微结构成型及摩擦纳米发电机制备 [J].机械工程学报,2021,57(15):177-185.XIAO Y,LIU J C,LV X L,et al.Preparation of Triboelectric Nanogenerators with CNT-Containing and Micro-structure PDMS Composite Films [J].Journal of Mechanical Engineering,2021,57(15):177-185.(in Chinese)

    • [23] TANG Y,XUAN W,ZHANG C,et al.Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling [J].Nano Energy,2021,89:106429.

    • [24] PANG Y,ZHU X,YU Y,et al.Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring [J].Nano Research,2022,15(6):5450-5460.

    • [25] 邹鸿翔,李猛,赵林川,等.抗冲击车路能量收集减速带设计与自供能交通管控 [J].机械工程学报,2022,58(20):72-82.ZOU H X,LI M,ZHAO L C,et al.Design of Anti-impact Vehicle-road Energy Harvesting Bump and Self-powered Traffic Control [J].Journal of Mechanical Engineering,2022,58(20):72-82.(in Chinese)

    • [26] YUNG K W,LANDECKER P B,VILLANI D D.An analytic solution for the force between two magnetic dipoles [J].Magnetic and Electrical Separation,1970,9.

    • [27] STANTON S C,MCGEHEE C C,MANN B P.Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator [J].Physica D,2010,239(10):640-53.

    • [28] NIU S,WANG S,LIN L,et al.Theoretical study of contact-mode triboelectric nanogenerators as an effective powersource [J].Energy & Environmental Science,2013,6(12):3576.

  • 参考文献

    • [1] 刘金辉.智慧交通系统的发展与挑战研究[J].建设科技,2022,20:36-39.LIU J H.Research on the development and Challenge of intelligent transportation system [J].Construction Science and Technology,2022,20:36-39.(in Chinese)

    • [2] VIZZARI D,BAHRANI N,FULCO G.Coexistence of energy harvesting roads and intelligent transportation systems(ITS)[J].Infrastructures.2023,8(1):14.

    • [3] CASTAGNETTI D.Fractal-inspired multifrequency structures for piezoelectric harvesting of ambient kinetic energy [J].Journal of Mechanical Design,2011,133(11):111005.

    • [4] KHALIGH A,ZENG P,ZHENG C.Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art [J].IEEE Transactions on Industrial Electronics,2009,57(3):850-860.

    • [5] ZOU H X,ZHAO L C,GAO Q H,et al.Mechanical modulations for enhancing energy harvesting:principles,methods and applications [J].Applied Energy,2019,255:113871.

    • [6] AFGHAN S A,GÉZA H.Modelling and analysis of energy harvesting in internet of things(IoT):Characterization of a thermal energy harvesting circuit for IoT based applications with LTC3108 [J].Energies,2019,12(20):3873.

    • [7] SHARMA A,SHARMA P.Energy harvesting te-chnology for IoT edge applications [J].Smart Manufacturing-When Artificial Intelligence Meets the Internet of Things,2021.

    • [8] ZHAO L C,ZOU H X,LIU F R,et al.Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):1-11.

    • [9] TAN Q,FAN K,TAO K,et al.A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations [J].Energy,2020,196:117107.

    • [10] WANG D W,MO J L,WANG X F,et al.Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration [J].Energy Conversion and Management,2018,171:1134-1149.

    • [11] MAAMER B,BOUGHAMOURA A,EL-BAB A M R F,et al.A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes [J].Energy Conversion and Management,2019,199:111973.

    • [12] ZHAO L C,ZOU H X,GAO Q H,et al.Design,modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration [J].Science China Technological Sciences,2020,63:2051-2062.

    • [13] WANG L,TODARIA P,PANDEY A,et al.An electromagnetic speed bump energy harvester and its interactions with vehicles [J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1985-1994.

    • [14] QI L,PAN H,BANO S,et al.A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic [J].Energy Conversion and Management,2018,165:748-760.

    • [15] WANG H,JASIM A,CHEN X.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review [J].Applied Energy,2018,212:1083-1094.

    • [16] CHEN N,JUNG H J,JABBAR H,et al.A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit [J].Sensors and Actuators A:Physical,2017,254:134-144.

    • [17] PATHONI H,PRATIWI D,FUADY S,et al.Design speed bump piezoelectric used pressure method(case study Jambi University gate portal)[J].Journal of Physics Conference Series,2021,1731:012061.

    • [18] DONG K,PENG X,WANG Z L.Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence [J].Advanced Materials,2020,32(5):1902549.

    • [19] CHANDRASEKARAN S,BOWEN C,ROSCOW J,et al.Micro-scale to nano-scale generators for energy harvesting:Self powered piezoelectric,triboelectric and hybrid devices [J].Physics Reports,2019,792:1-33.

    • [20] CHEN B,YANG Y,WANG Z L.Scavenging wind energy by triboelectric nanogenerators [J].Advanced Energy Materials,2018,8(10):1702649.

    • [21] WU C,WANG A C,DING W,et al.Triboelectric nanogenerator:a foundation of the energy for the new era [J].Advanced Energy Materials,2019,9(1):1802906.

    • [22] 肖渊,刘进超,吕晓来,等.CNT/PDMS 介电层微结构成型及摩擦纳米发电机制备 [J].机械工程学报,2021,57(15):177-185.XIAO Y,LIU J C,LV X L,et al.Preparation of Triboelectric Nanogenerators with CNT-Containing and Micro-structure PDMS Composite Films [J].Journal of Mechanical Engineering,2021,57(15):177-185.(in Chinese)

    • [23] TANG Y,XUAN W,ZHANG C,et al.Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling [J].Nano Energy,2021,89:106429.

    • [24] PANG Y,ZHU X,YU Y,et al.Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring [J].Nano Research,2022,15(6):5450-5460.

    • [25] 邹鸿翔,李猛,赵林川,等.抗冲击车路能量收集减速带设计与自供能交通管控 [J].机械工程学报,2022,58(20):72-82.ZOU H X,LI M,ZHAO L C,et al.Design of Anti-impact Vehicle-road Energy Harvesting Bump and Self-powered Traffic Control [J].Journal of Mechanical Engineering,2022,58(20):72-82.(in Chinese)

    • [26] YUNG K W,LANDECKER P B,VILLANI D D.An analytic solution for the force between two magnetic dipoles [J].Magnetic and Electrical Separation,1970,9.

    • [27] STANTON S C,MCGEHEE C C,MANN B P.Nonlinear dynamics for broadband energy harvesting:investigation of a bistable piezoelectric inertial generator [J].Physica D,2010,239(10):640-53.

    • [28] NIU S,WANG S,LIN L,et al.Theoretical study of contact-mode triboelectric nanogenerators as an effective powersource [J].Energy & Environmental Science,2013,6(12):3576.

  • 微信公众号二维码

    手机版网站二维码