en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

赵翔,E-mail:zhaoxiang_swpu@126.com

中图分类号:O32

文献标识码:A

文章编号:1672-6553-2023-21(10)-005-013

DOI:10.6052/1672-6553-2023-093

参考文献 1
WATANABE K.2D static Green’s function for an inhomogeneous elastic solid [J].Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik,2010,90(2):151-160.
参考文献 2
赵翔,李映辉.旋转圆盘上可变摆长的单摆的分岔问题分析 [J].动力学与控制学报,2014,12(4):321-326.ZHAO X,LI Y H.The bifurcation problem of a kind of pendulum physical model [J].Journal of Dynamics and Control,2014,12(4):321-326.(in Chinese)
参考文献 3
罗宸晟,牟瑞勇,黄行蓉,等.涡激旋转下方柱小幅振荡模态的自由流线-边界层理论模型 [J].动力学与控制学报.2023,21(6):55-65.LUO C S,MOU R Y,HUANG X R,et al.Free streamline-boundary layer model for small-amplitude oscillation regime of square cylinder under vortex-induced rotation [J].Journal of Dynamics and Control,2023,21(6):55-65.(in Chinese)
参考文献 4
MOCHIDA Y,ILANKO S.Transient vibration analysis of a completely free plate using modes obtained by Gorman’s superposition method [J].Journal of Sound and Vibration.2010,329(10):1890-1900.
参考文献 5
SUN P X,YANG H,DENG Y J.Complex mode superposition method of nonproportionally damped linear systems with hysteretic damping [J].Journal of Vibration and Control.2021,27(13-14):1453-1465.
参考文献 6
CABADA A,HAMDI Z.Nonlinear fractional differential equations with integral boundary value conditions [J].Applied Mathematics and Computation,2014,228:251-257.
参考文献 7
ROMAN S,STIKONAS A.Green’s functions for stationary problems with nonlocal boundary conditions [J].Lithuanian Mathematical Journal,2009,49(2):190-202.
参考文献 8
KHORRAMI M.Green’s functions of the wave equation in different dimensions [J].Miskolc Mathematical Notes,2021,22(2):721-730.
参考文献 9
HOZHABROSSADATI S M,SANI A A.Deformation of euler-bernoulli beams by means of modified Green’s function:application of fredholm alternative theorem [J].Mechanics Based Design of Structures and Machines,2015,43(3):277-293.
参考文献 10
HAN H S,CAO D Q,LIU L.Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J].Applied Mathematical Modelling,2017,45:621-635.
参考文献 11
CHEN T,SU G Y,SHEN Y S,et al.Unified Green’s functions of forced vibration of axially loaded Timoshenko beam:Transition parameter [J].International Journal of Mechanical Sciences,2016,113:211-220.
参考文献 12
MAZILU T.Numerically stable form of Green’s function for a free-free uniform timoshenko beam[J].Mathematics,2023,11(1):86.
参考文献 13
KURTARAN H.Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method [J].Composite Structures,2015,131:821-831.
参考文献 14
ZHAO X,CHEN B,LI Y H,et al.Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions [J].Journal of Sound and Vibration,2020,464:115001.
参考文献 15
KIDAWA-KUKLA J.Application of the Green functions to the problem of the thermally induced vibration of a beam [J].Journal of Sound and Vibration,2003,262(4):865-876.
参考文献 16
ZHAO X,WANG C F,ZHU W D,et al.Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam [J].International Journal of Mechanical Sciences,2021,206:106600.
参考文献 17
ZHAO X,ZHAO Y R,GAO X Z,et al.Green’s functions for the forced vibrations of cracked Euler-Bernoulli beams [J].Mechanical Systems and Signal Processing,2016,68-69:155-175.
参考文献 18
CHEN Y B,YAN Z.Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity [J].International Journal of Mechanical Sciences,2020,173:105473.
参考文献 19
ERTURK A.Assumed-modes modeling of piezoelectric energy harvesters:Euler-Bernoulli,Rayleigh,and Timoshenko models with axial deformations [J].Computers & Structures,2012,106-107:214-227.
参考文献 20
RONCEVIC G S,RONCEVIC B,SKOBLAR A,et al.Closed form solutions for frequency equation and mode shapes of elastically supported Euler-Bernoulli beams [J].Journal of Sound and Vibration,2019,457:118-138.
参考文献 21
REZAIEE-PAJAND M,AFTABI SANI A,HOZ-HABROSSADATI S M.Analyzing free-free beams by Green’s functions and Fredholm Alternative Theorem [J].Journal of Mechanics,2019,35(1):27-39.
参考文献 22
LIU Y,SHU D W.Free vibration analysis of rotating Timoshenko beams with multiple delaminations [J].Composites Part B:Engineering,2013,44(1):733-739.
参考文献 23
JAFARI-TALOOKOLAEI R A,ABEDI M.Analytical solution for the free vibration analysis of delaminated Timoshenko beams[J].Scientific World Journal,2014,2014:280256.
参考文献 24
ABU-HILAL M.Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].Journal of Sound and Vibration,2003,267(2):191-207.
参考文献 25
LI X Y,ZHAO X,LI Y H.Green’s functions of the forced vibration of Timoshenko beams with damping effect [J].Journal of Sound and Vibration,2014,333(6):1781-1795.
参考文献 26
MAZILU T.Prediction of the interaction between a simple moving vehicle and an infinite periodically supported rail-Green’s functions approach [J].Vehicle System Dynamics,2010,48(9):1021-1042.
参考文献 27
LI Z W,CHEN B,LIN B C,et al.Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler-Pasternak foundation [J].The European Physical Journal Plus,2022,137:153.
参考文献 28
KISS L P,SZEIDL G.Free vibrations of rotationally restrained nonhomogeneous circular beams by means of the Green function [J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40:342.
参考文献 29
KISS L P,SZEIDL G.On the eigenfrequencies of preloaded rotationally restrained extensible circular beams by Green’s functions [J].Acta Mechanica,2019,230(1):137-156.
参考文献 30
赵翔,周扬,邵永波,等.基于Green函数法的Timoshenko曲梁强迫振动分析 [J].工程力学,2020,37(11):12-27.Zhao X,Zhou Y,Shao Y B,et al.Analytical solutions for forced vibrations of Timoshenko curved beam by means of Green’s functions[J].Engineering Mechanics,2020,37(11):12-27.(in Chinese)
参考文献 31
VO D,NANAKORN P,BUI T Q.A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures [J].Acta Mechanica,2020,231(9):3673-3701.
参考文献 32
LUU A T,KIM N I,LEE J.2D vibration analysis of circular arches with constant double symmetric cross-sections using isogeometric approach [J].KSCE Journal of Civil Engineering,2017,21(7):2751-2763.
参考文献 33
ZHAO X,MENG S,ZHU W,et al.A closed-form solution of forced vibration of a double-curved-beam system by means of the Green’s function method [J].Journal of Sound and Vibration,2023,561:117812.
参考文献 34
REZAIEE-PAJAND M,RAJABZADEH-SAFAEI N,HOZHABROSSADATI S M.Three-dimensional deformations of a curved circular beam subjected to thermo-mechanical loading using Green’s function method [J].International Journal of Mechanical Sciences,2018,142-143:163-175.
参考文献 35
赵翔,李思谊,李映辉.含阻尼多裂纹Euler-Bernoulli曲梁强迫振动的Green函数解 [J].力学与实践,2021,43(6):896-904.ZHAO X,LI S Y,LI Y H.Green’s function for forced vibration of multi-cracked Euler-Bernoulli curved beam with damping [J].Mechanics in Engineering,2021,43(6):896-904.
参考文献 36
赵翔,李思谊,李映辉.基于压电振动能量俘获的弯曲结构损伤监测研究 [J].力学学报,2021,53(11):3035-3044.ZHAO X,LI S Y,LI Y H.The research on damage detection of curved beam based on piezoelectric vibration energy harvester [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):3035-3044.(in Chinese)
参考文献 37
SAHU S K,DAS P.Experimental and numerical studies on vibration of laminated composite beam with transverse multiple cracks [J].Mechanical Systems and Signal Processing,2020,135:106398.
参考文献 38
WU X W,ZHU L F,WU Z M,et al.Vibrational power flow analysis of Timoshenko microbeams with a crack [J].Composite Structures,2022,289:115483.
参考文献 39
CHEN J W,ZHOU X P.An investigation on the effect of crack lengths and wavelengths on the dynamic cracking behaviours of brittle materials using the improved XFEM [J].Engineering Fracture Mechanics,2023,277:109008.
参考文献 40
KHARAZAN M,IRANI S,ALI NOORIAN M,et al.Nonlinear vibration analysis of a cantilever beam with multiple breathing edge cracks [J].International Journal of Non-Linear Mechanics,2021,136:103774.
参考文献 41
WEI D,LIU Y H,XIANG Z H.An analytical method for free vibration analysis of functionally graded beams with edge cracks [J].Journal of Sound and Vibration,2012,331(7):1686-1700.
参考文献 42
CHEN B,LIN B C,ZHAO X,et al.Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler-Pasternak elastic foundation [J].Thin-Walled Structures,2021,163(15):107688.
参考文献 43
HAN H,LIU L,CAO D.Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam [J].International Journal of Mechanical Sciences,2020,166:105235.
参考文献 44
GHANNADIASL A,KHODAPANAH AJIRLOU S.Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J].Applied Acoustics,2019,148:484-494.
参考文献 45
GHANNADIASL A,KHODAPANAH AJIRLOU S.Dynamic analysis of multiple cracked Timoshenko beam under moving load-analytical method [J].Journal of Vibration and Control,2022,28(3-4):379-395.
参考文献 46
CHEN B,ZHAO X,LI Y H,et al.Forced vibration analysis of multi-cracked Timoshenko beam with the inclusion of damping by virtue of Green’s functions[J].Applied Acoustics,2019,155:477-491.
参考文献 47
SARIGUL M.Parametric vibrations of axially moving beams with multiple edge cracks [J].International Journal of Acoustics and Vibration,2019,24(2):241-252.
参考文献 48
MURPHY K D,ZHANG Y I N.Vibration and stability of a cracked translating beam [J].Journal of Sound and Vibration,2000,237(2):319-335.
参考文献 49
GAYEN D,CHAKRABORTY D,TIWARI R.Transverse vibration and stability of a cracked functionally graded rotating shaft system [C].Proceedings of the International Conference on Advances in Materials and Manufacturing Engineering(ICAMME),Bhubaneswar,INDIA,Singapore:Springer Singapore,2020:625-631.
参考文献 50
张腾,任俊生,张秀凤.基于三维时域Green函数法的船舶在规则波浪中的运动数学模型 [J].交通运输工程学报,2019,19(2):110-121.ZHANG T,REN J S,ZHANG X F.Mathematical model of ship motion in regular wave based on three-dimensional time-domain Green function method [J].Journal of Traffic and Transportation Engineering,2019,19(2):110-121.(in Chinese)
参考文献 51
崔元庆,杨卫,仲政.半无限平面裂纹构型横向应力的Green函数 [J].应用数学和力学,2011,32(8):912-919.CUI Y Q,YANG W,ZHONG Z.Green’s function for T-stress of a semi-infinite plane crack [J].Applied Mathematics and Mechanics,2011,32(8):912-919.(in Chinese)
参考文献 52
赵翔.多场耦合环境下梁横向振动的(半)解析解 [D].成都:西南交通大学,2015.ZHAO X.Research on multi-physics fields coupled vibrations of beam structures [D].Chengdu:Southwest Jiaotong University,2015.(in Chinese)
参考文献 53
ZHAO X,YANG E C,LI Y H.Analytical solutions for the coupled thermoelastic vibrations of Timoshenko beams by means of Green’s functions [J].International Journal of Mechanical Sciences,2015,100:50-67.
参考文献 54
CAO Y L,YU K,FENG K,et al.Analytical solution of squeeze film and thermoelastic damping in bulk resonators [J].Sensors and Actuators A:Physical,2019,297:111530.
参考文献 55
YANG L F,LI P,FANG Y M,et al.Thermoelastic damping in partially covered bilayer microbeam resonators with two-dimensional heat conduction [J].Journal of Sound and Vibration,2021,494:115863.
参考文献 56
ZHAO X,ZHU W D,LI Y H.Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green’s functions [J].Journal of Sound and Vibration,2020,481:115407.
参考文献 57
HAYATI Y,RAHAI A,ESLAMI A.Mixed boundary-value problems and dynamic impedance functions due to vibrations of a rigid disc on a thermoelastic transversely isotropic half-space [J].Engineering Analysis with Boundary Elements,2023,146:636-655.
参考文献 58
LUO Z J,LI P,YANG L F,et al.Thermoelastic damping in bilayered microbeam resonators with annular-cross section [C].2019 IEEE 4th International Conference on Integrated Circuits and Microsystems(ICICM),Beijing,China.IEEE,2019:75-79.
参考文献 59
IBOUROI L A,VIDAL P,GALLIMARD L,et al.Thermal analysis of composite beam structure based on a variable separation method for any volume heat source locations and temporal variations [J].Composite Structures,2022,300:116154.
参考文献 60
CHEN W H,LIANG X,SHEN S P.Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green’s functions [J].Acta Mechanica,2021,232(2):449-460.
参考文献 61
ZHAO X,YANG E C,LI Y H,et al.Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions [J].Journal of Intelligent Material Systems and Structures,2017,28(17):2372-2387.
参考文献 62
DANESH-YAZDI A H,ELVIN N,ANDREOPOULOS Y.Green’s function method for piezoelectric energy harvesting beams [J].Journal of Sound and Vibration,2014,333(14):3092-3108.
参考文献 63
CLAEYSSEN J C R,TONETTO L,CARVALHO J B,et al.Parametric effects in nanobeams and AFM [C].10th International Conference on Mathematical Problems in Engineering,Aerosphce and Science,Narvik,Norway:AZP Conference Proceedings,2014,1637:210-225.
参考文献 64
TAN X,HE J C,XI C,et al.Dynamic modeling for rotor-bearing system with electromechanically coupled boundary conditions [J].Applied Mathematical Modelling,2021,91:280-296.
参考文献 65
FODA M A,ALSAIF K A.Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches [J].Smart Structures and Systems,2012,10(2):111-130.
参考文献 66
BAO Y,TZOU H S,VENKAYYA V B.Analysis of non-linear piezothermoelastic laminated beams with electric and temperature effects [J].Journal of Sound and Vibration,1998,209(3):505-518.
参考文献 67
KAPURIA S,AHMED A,DUMIR P C.Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory [J].Composites Science and Technology,2004,64(16):2463-2475.
参考文献 68
ZHAO X,IEGAINK F J N,ZHU W D,et al.Coupled thermo-electro-elastic forced vibrations of piezoelectric laminated beams by means of Green’s functions [J].International Journal of Mechanical Sciences,2019,156:355-369.
参考文献 69
KUMAR A,KAPURIA S.Wave packet enriched finite elements for thermo-electro-elastic wave propagation problems with discontinuous wavefronts [J].Journal of Thermal Stresses,2023,46(6):503-533.
参考文献 70
ZHANG A B,WANG B L.Crack branching in thermopiezoelectric materials [J].International Journal of Solids and Structures,2013,50(19):2962-2969.
参考文献 71
GUO X Y,JIANG P,CAO D X,et al.Nonlinear vibrations of graphene piezoelectric microsheet under coupled excitations [J].International Journal of Non-Linear Mechanics,2020,124:103498.
参考文献 72
ISAIEV M,ANDRUSENKO D,TYTARENKO A,et al.Photoacoustic signal formation in heterogeneous multilayer systems with piezoelectric detection [J].International Journal of Thermophysics,2014,35(12):2341-2351.
目录contents

    摘要

    工程系统中梁结构经常处于各种激励的作用,因而梁结构在这种环境下不可避免地发生着各种各样的强迫振动.在梁结构发生振动的过程中,其自身会受到的温度、湿度、电磁场、裂纹等众多内外部因素的影响,而众多内外部因素就构成梁的多物理场耦合环境.在多场耦合环境下,Green函数法作为一种解析方法在研究梁的多场耦合振动问题方面具有优势,有利于讨论力、电、热、裂纹等因素作用下梁的振动特性和多场耦合特性.Green函数法相比于模态叠加法,优点在于能够得到完整且精度较高的解析解,具有收敛性好,运算快的特点.本文主要阐述Green函数在梁的强迫振动、热力耦合振动、力电耦合振动、裂纹梁振动等研究问题上取得了大量的理论和工程研究成果.本文以裂纹为内因,热、力、电为外因进行分类,阐述了在内外因影响下梁的强迫振动问题Green函数解的研究现状,从而让读者进一步系统性的了解Green函数法在振动领域中的广泛应用,以及了解该方法本身的特色和优势奠定基础.

    Abstract

    Beam structures in engineering system are usually suffered by various complex loads, and these loads induces many kinds of forced vibration of beam structures in this environment inevitably. When forced vibrations are occurred, these forced vibrations are affected by many factors such as temperature, humidity, electromagnetic field, cracks, etc., and these factors constitute multi-physical fields of beam structures. In multi-physical fields’ environment, as a good analytical mathematical tool, the Green’s function method has advantages to solve multi-field coupled forced vibrations of beam structures, and has good performances to discuss vibration characteristics and coupled characteristics of beam structures under actions of external forces, electricity, heat and cracks are discussed. Compared with modal superposition method, the Green’s function method has advantages that it can obtain complete and high precision analytical solution, and has characteristics of good convergence and fast operation. This paper mainly reviewed a large number of theoretical and engineering research results of the Green’s function method on research problems of forced vibrations, thermodynamic coupled vibrations, electro-mechanical coupled vibrations, cracked beam vibrations, and so on.

  • 引言

  • 19世纪30年代英国科学家George Green首次提出了Green函数[1]的概念,自此Green函数作为物理学和数学方法被应用于力学、传热学、地震工程、结构工程[2]等诸多领域,并取得了大量的理论和研究成果.在数学物理学中,Green函数被称为点源影响函数,表示一种特定的场和产生这种场的源之间的关系,而通过叠加原理求解任意点源场数学物理方程的方法就被称为Green函数法.

  • 在Green函数法运用于线性问题求解之前,学者们曾提出了各种方法来解决梁的强迫振动问题,例如用无限级数表示解的模态叠加法[3],Mochida等[4]就利用模态叠加法得到了梁固有频率和模态形状,可以准确有效地计算出弯曲振动梁的瞬态响应.Sun等[5]采用模态叠加法计算阻尼线性系统的振动响应,并根据外部激励的特性,求解了相应齐次方程的通解.然而该方法在无限级数的计算过程中会出现截断情况,所以本质上得到的解是一个近似解.与模态叠加法相比,Green函数法能够得到精度较高的解析解,更有利于反应问题中的物理本质.在针对于瞬态Green函数问题上可直接做瞬态叠加(积分),就可直接求出最终结果,而瞬态Green函数分析和稳态Green函数分析从求解方法上来说差别就在于对时间的积分,但无论是瞬态Green函数还是稳态Green函数都常用于处理边值问题,被广泛的用于各种非齐次定解问题.

  • 为了推导出相应的Green函数,学者们付出了大量的努力,Cabada等[6]研究了一类具有积分界高阶微分方程非线性边值问题解的存在性,对相关Green函数的符号作了详尽的研究.Roman等[7]研究了具有非局部边界条件下的各种平稳问题的Green函数,并将具有非局部边界条件的Green函数的性质与经典问题的性质进行了比较.Khorrami等[8]研究了振动方程、拉普拉斯方程、波动方程等不同物理方程的Green函数.Hozhabrossadati等[9]采用Green函数法去求解具有两个导向支承的Euler-Bernoulli梁结构的静力位移.Han等[10]提出了一种基于Green函数的弯曲-扭转耦合Timoshenko梁在分布和集中荷载作用下的稳态动力响应分析方法,求解了具有任意边界条件的梁的Green函数.Chen等[11]研究了不同边界条件下轴向强迫振动Timoshenko梁的稳态动力学问题,运用Green函数法去讨论结构在过渡参数、高长比以及轴力作用下的动态响应.在应用模态分析方法处理梁的高阶模态方面,Mazilu等[12]讨论了包含双曲函数的Green函数标准形式,并将其应用于自由振动Timoshenko梁的数值不稳定性问题,提出了一种基于新的特征函数集(包括指数函数)构造Green函数新方法.在对梁结构的改进和优化方面,Kurtaran等[13]用Green函数法研究了中厚等曲率梯度曲梁的大位移静态和瞬态特性,并利用虚功原理得到了静力响应和动力响应的平衡方程.Zhao等[14]使用Green函数方法研究了轴向压缩荷载下Timoshenko双梁系统的强迫振动,分析了双梁结构的相互作用,讨论高长比、外部频率、剪切效应、转动惯量以及轴向拉力等重要因素对Green函数的影响.

  • 在多场耦合动力学问题方面,学者们也热衷于通过Green函数解决各种复杂的耦合问题.梁热致振动问题一直被认为是经典和长期存在的问题,其中Kidawa-Kukla[15]利用Green函数研究了梁的热致振动问题,分析了热源作用下梁的横向振动问题.

  • Zhao等[16]基于Eringen非局部弹性理论和经典的Euler-Bernoulli梁模型,利用Green函数和特征函数研究了轴向运动中微纳梁的热弹性耦合强迫振动和传热方程,分析了轴向速度、高长比等因素对耦合温度场和位移场的影响,并首次发现了热量旋转效应.其次是对于梁裂纹场的研究,由于裂纹会降低构件承载力以及缩短使用寿命,在动力荷载作用下这种情况更加明显,且其力学行为求解分析困难.Zhao等[17]利用Green函数法比较了不同经典局部柔度模型对梁的动力学特性,给出了裂纹Euler-Bernoulli梁在谐波力作用下稳态响应的显式表达式,分析了裂纹几何形状(深度和位置)对梁力学行为的影响.此外,在梁的力电耦合振动问题中,大多数学者都热衷于研究压电能量收集器,并在此基础上进行大量的改进和创新.Chen等[18]根据柔电理论和Hamilton原理推导出能量收集器在激励下的非线性机电耦合方程.Erturk[19]为基底激励压电能量收集器提出了通用的框架,给出了Euler-Bernoulli梁模型的机电耦合方程级数解.对于压电能量采集问题学者们更多的是看重解耦方法,其次是考虑物理参数对压电能量收集器电力采集效率影响.

  • 本文回顾了以Green函数为研究手段研究梁的强迫振动、裂纹梁的振动、梁的热弹性耦合振动、以及梁的力电耦合振动问题等一些经典文献.通过对近年来一些研究热点问题的Green函数解方面的研究,总结Green函数法在振动领域中一些发展,从而让读者进一步系统性的了解Green函数法在振动领域中的广泛应用,以及了解该方法本身的特色和优势奠定基础,也为Green函数法的进一步发展和推广提供帮助.

  • 1 梁结构振动问题的Green函数解

  • 梁结构是工程系统中的一种基本单元,其在机械、车辆、船舶、飞机、航天器、建筑等结构中广泛存在.由于工程系统经常处于各种激励作用下,因而梁结构不可避免地发生着各种各样的强迫振动.此外,在梁结构发生振动的过程中,其自身会受到的温度、湿度、电磁场、裂纹等众多内外部因素的影响,这些因素使梁的强迫振动问题变得复杂且难以控制.如何更好地控制和利用多物理场环境下梁结构的强迫振动,达到趋利避害的目的成为了越来越多人关心的问题.

  • 1.1 直梁振动问题的Green函数解

  • 系统受到初始扰动的激发所产生的振动称为自由振动,是一种没有外界能量补充的运动.在离散系统线性振动理论逐渐成熟的18世纪中叶,1727年Bernoulli就研究了不计质量弹性弦线上等距分布的等质量点,建立了无阻尼自由振动动力学方程,并求出解析解.之后Euler于1728年建立并求解了单摆在有阻尼介质中运动的微分方程,并研究了无阻尼简谐受迫振动,从理论上也解释了共振现象.经过前两者的实验研究和理论论证,提出了后来经典的Euler-Bernoulli梁模型.之后有Roncevic等[20]研究了由任意数量下不同等刚度平移弹簧支承的Euler-Bernoulli梁自由振动问题,采用Green函数法计算了系统的固有频率和振型.Rezaiee-Pajand等[21]也采用Green函数法对两端为自由边界条件的Euler-Bernoulli梁进行了分析,解析了具有旋转刚体运动的自由简支梁振动问题.研究中利用Fredholm定理,消除了在数学上不能构造普通的Green函数这一矛盾.

  • 由于之前梁结构的研究都忽略了截面转动和剪切应力的影响,为了更好修正模态函数以及频率方程.其中,由美国科学家Timoshenko提出Timoshenko梁力学模型,该模型更有利于某些短梁和层合梁在荷载激励下振动问题的求解.首先Liu等[22]计算得到了具有多重多层分层的旋转Timoshenko梁的自由振动的解析解,其根据Timoshenko梁理论以及自由振动模式所采用分层假设方法,详细的研究了自由振动模式下Timoshenko梁的振型.基于之前所采取的层合梁假设处理办法,Jafari-Talookolaei等[23]提出了一种求解基于不同边界条件下的Timoshenko层合梁自由振动问题精确解的方法,方法就是利用以自由振动问题作为约束变分条件的Lagrange乘数法,该方法较好的诠释了各种Timoshenko梁的固有频率和模态形状.

  • 如今对于梁的振动研究方面,还是主要偏向于强迫振动问题,所谓强迫振动就是由持续周期变化的外激励所引起的响应.其中Abu-Hilal[24]利用动态Green函数提出了一种确定受分布和集中荷载影响下Euler-Bernoulli梁动态响应的方法,还给出了不同边界条件的Green函数用于研究单跨和多跨梁、单载和多载梁以及静定梁的动力学特性.Li等[25]通过Laplace变换和分离变量法求解带阻尼Timoshenko梁的强迫振动稳态Green函数,并通过对Euler-Bernoulli、Rayleigh等经典梁模型进行比较,得到了剪切变形和转动惯量等因素对梁动态特性的影响.梁的Green函数定义,其表示的是在梁上任意一点施加荷载所引起的响应,是力和位移之间的关系函数,用来求解梁结构动态响应问题.以Timoshenko梁的强迫振动稳态Green函数求解为例,将梁稳态动力学问题中的Green函数求解基本过程分为两大步,首先利用叠加原理将解表示为:

  • W(x)=0L fx0Gx,x0dx
    (1)
  • 之后使用狄拉克函数进行推导,再对变量x进行Laplace变换以及逆变换得到Green函数相应的数学形式:

  • Gx,x0=Hx-x0ϕ1x-x0+ϕ2(x)W(0)+ϕ3(x)W'(0)+ϕ4(x)W''(0)+ϕ5(x)W'''(0)
    (2)
  • 其中WW′、W″和W'''是由边界条件确定的常数,而常见的边界条件形式则有铰支座、固定端和自由端,三种边界条件结合不同梁类型共同决定其取值.

  • 在Timoshenko单梁系统的Green函数研究基础上,Mazilu等[26]描述了一个简单的运动车辆与无限周期之间的相互作用的支撑轨道,首次将轮轨的模型看作是一个无限的Timoshenko梁,通过建立时域分析,创建Green函数矩阵,对轮轨进行数值模拟,最后得出由两种激励引起的响应:稳态相互作用和轨道不规则性.基于轴向载荷Timoshenko微纳梁在微纳工程领域广泛的应用,Li等[27]推导了Timoshenko微/纳米梁在轴向张力支撑下的强迫振动解析解.在Winkler-Pasternak谐波荷载、Timoshenko梁理论和非局部应变梯度理论条件基础下,使用过渡参数描述了微纳梁变形过程中的轴向张力方向,采用加权残差法,根据振动情况导出变分一致性边界条件,最后利用Green函数法得到了Timoshenko微纳梁稳态动力响应的解析表达式.

  • 1.2 曲梁的振动Green函数解

  • 在很多实际工程问题中,由于受场地、工程地质条件以及优化设计等影响,直梁结构不再能满足工程需求,因此出现了很多曲梁结构.目前对于曲梁的结构的研究主要集中在振动模式、结构多样化、多物理场等方面.

  • 1.2.1 不同振动模式下曲梁Green函数研究

  • 针对曲梁的自由振动问题,Kiss等[28]建立了一维线性模型,在力学模型中考虑了中心线的延伸性,以此确定相关问题的Green函数矩阵.在矩阵建立的基础上,采用数值技术(基于Fredholm理论)来解决振动问题.这套方法不仅可以得到特征频率,而且可以找出模型中弹簧刚度如何影响梁的动力行为.在非均匀曲梁振动问题研究的基础上,Kiss等[29]又研究了具有中心线可拓性的非均质弯曲梁的振动问题.模型支座的端部均考虑为旋转约束销,其具有一定的中心作用,特点是此约束可任意压缩或拉伸,使得约束中的力(预载荷)被纳入模型.数值计算部分通过虚功原理导出耦合控制问题的微分方程,使用微分方程构造出Green函数矩阵,确定矩阵的特征值并对系统进行数值求解.为更深入研究曲梁的动力学行为,赵翔等[30]通过将半径R设置为无穷大的方法,将曲梁结构退化为Timoshenko直梁振动模型,之后运用Green 函数法求解了Timoshenko曲梁在强迫振动下的解析解,通过分析曲梁截面的力学平衡,建立了Timoshenko曲梁的振动方程.依次采用分离变量法和Laplace变换法,对不同边界的Timoshenko曲梁求解出了相应的Green函数.

  • 1.2.2 曲梁结构Green函数研究

  • 在Timoshenko曲梁强迫振动Green函数和一维线性模型的基础之上,Vo等[31]利用Green-Lagrange法对曲梁进行描述,提出一种新的等几何Timoshenko梁公式,用于空间梁的几何非线性分析.对于空间曲梁结构的多变形式发展,Luu等[32]介绍了双对称等截面圆弯曲梁自由振动的等几何分析方法.与传统基于有限元方法的不同,该方法采用Green函数,能够精确定义圆形弯曲梁的几何形状,以此来作为有限元分析的基础.研究采用剪切变形曲线梁理论,考虑轴向拉伸、剪切变形和转动惯量的影响,详细研究了等几何单元的收敛性.基于经典的Euler-Bernoulli梁曲梁模型,Zhao等[33]用Green函数法求解双弯曲梁系统强迫振动.研究中利用Green函数和Laplace变换方法,得到了双弯曲梁振动方程的基本解,由于该基本解是通解的原由,适用于任何边界条件.最后基于不同边界条件下所得的通解,讨论了一些重要的几何和物理参数对振动响应的影响,以及弹性层刚度与双弯曲梁之间的相互作用.

  • 1.2.3 曲梁的多物理场Green函数研究

  • 对于曲梁研究不单单仅限于得到一些简单边界条件下的强迫振动理论结果,更多是去考虑多物理场下曲梁所表现出来的响应.Rezaiee-Pajand等[34]用Green函数法研究了受热机械载荷作用下弯曲曲梁的三维变形,运用Green函数法去呈现曲梁的精确热力学静态响应.在此研究中值得注意的是,出现横向温度分布会导致面内和面外变形的情况,这一点在以前的研究中都没有被提及,使得对之后曲梁热力耦合研究起到一定的推进作用.在带阻尼效应Euler-Bernoulli梁强迫振动研究基础之上,赵翔等[35]研究了多裂纹Euler-Bernoulli曲梁的非线性强迫振动,利用Green函数推导出了多裂纹曲梁稳态强迫振动的解析解.在推导的过程中基于Green函数的数学结构,提出了一种新的传递矩阵,即反坐标两步传递矩阵(OCTM)方法.利用OCTM方法和Laplace变换方法,可得到了具有多裂纹的Euler-Bernoulli梁的Green函数.基于曲梁裂纹的研究,赵翔等[36]又建立了含裂纹损伤的曲梁压电能量俘获系统在强迫振动下的动力学模型.通过运用Prescott型压电曲梁力电耦合振动方程的解析解和裂纹截面处的连续性条件,求解了含裂纹损伤的压电曲梁的Green函数,再根据线性叠加原理,对含裂纹的力电耦合模型的系统方程解耦,得到强迫振动下含裂纹损伤曲梁压电俘能器的输出电压.在得到模型的强迫振动解析解后,提出了新方法来检测结构中的裂纹损伤,并将这一检测方法推广适用于处于振动状态下一系列梁、管等结构.

  • 2 裂纹梁振动问题及其Green函数解

  • 在土木工程与机械行业中,裂纹是一个普遍存在的问题,初期的细小裂纹一般难以发现,但是随着在振动环境中的疲劳裂纹会不断扩展,从而引起构件失稳甚至破坏.由于裂纹带来的危害不容小觑,对此从事裂纹研究就成为了一个热门课题,研究裂纹梁的动力学特性和动力响应就具有了重要的理论意义和应用价值.

  • 2.1 不带运动效应的裂纹梁Green函数

  • 基于裂纹梁局部刚度模型的考虑,Sahu等[37]将裂纹截面等效为无质量扭转弹簧,研究了多个横向裂纹层合梁的振动特性,讨论了固有频率对不同边界条件、裂纹深度和位置的影响,发现自然频率随着裂纹和纤维取向的增加而降低的现象.Wu等[38]基于修正耦合应力理论和Timoshenko梁模型,研究了裂纹微梁的振动动力流,讨论了功率流的传输特性.Chen等[39]采用改进的扩展有限元方法(XFEM)研究了裂纹长度和波长对动态开裂行为的影响,发现当动荷载与裂纹的夹角由直角变锐角时,能量的突然下降的现象,得出了裂纹长度对动态开裂行为影响较小,而波长对动态开裂行为影响较大的结论.Kharazan等[40]采用Weierstrass连续多项式函数来模拟呼吸裂缝的双线性行为,找到了多条呼吸裂缝悬臂梁的非线性振动特性,讨论了梁的非线性响应对不同呼吸裂纹数目和不同裂纹深度的敏感性,发现了裂缝数量较多或较深的梁具有明显软化行为,即在响应中会出现更明显的跳跃的现象.Wei等[41]提出了一种解决轴向荷载、旋转惯性和剪切变形的裂纹功能分级材料(FGM)梁自由振动问题的分析方法,讨论了裂纹的位置、数量、材料特性、轴向荷载、惯性和端部支撑对FMG梁的自然频率和振动模态的影响.

  • 对比前面的研究方法,Green函数法具有着其独特的研究优势.Chen等[42]通过数值计算方法研究了粘弹性层裂纹双梁系统动力学特性,其中每段的基本动力响应采用了Green函数法.讨论了裂纹几何形状和连接层刚度等重要参数对开裂双梁系统动力学性能的影响,得到了裂纹深度和位置对系统固有频率和动力响应有显著影响的结论.Han等[43]研究了含裂纹梁和受外谐波荷载作用的阻尼效应,并采用了Green函数法得到解析解.研究考虑梁是由于裂缝的存在而分裂成几段,每个部分的Green函数边界常数未知,通过引入裂纹梁的局部刚度模型结合使用Laplace变换法,得到了含一条或多条裂缝的整条裂缝梁的解析解.研究着重说明裂缝对解的影响,讨论了裂纹深度、位置和数量对固有频率的影响.Ghannadiasl等[44]利用动态Green函数公式计算Euler-Bernoulli梁多跨度裂缝的强迫振动问题,描述了一种确定多跨裂缝梁在集中载荷作用下裂纹梁行为.采用基于动态Green函数公式的分析方法,对多跨裂缝梁的振动分析进行了实验验证,给出梁上裂纹的存在会对梁的动态产生响应这一观点,并对裂缝数量和位置对梁的动态响应的影响进行了评估.在对集中荷载下的Euler-Bernoulli梁做出性能评估之后,Ghannadiasl等[45]又对单跨和多跨阻尼梁的动力响应进行了研究,基于Timoshenko理论,研究了具有多裂纹和弹性边界条件的移动荷载作用.讨论当裂缝开始在结构的周围区域出现时,它们会产生局部柔软区这一情况,并对结构产生影响结构的动力响应采用Green函数法进行了计算,给出微分方程的解,分析了各种情况及其对梁性能的影响.同样在Timoshenko理论基础之上,Chen等[46]运用Green函数得到了多裂纹Timoshenko梁在阻尼作用下的稳态强迫振动解析解(如图1所示),通过将梁两端支座考虑为一个旋转弹簧和一个横向弹簧模型,来描述了Timoshenko梁的裂纹部分的力学性能.首先推导了单裂纹Timoshenko梁的Green函数,借助单裂纹的Green函数解和传递矩阵法,得到了多裂纹Timoshenko梁的Green函数,揭示了剪切效应对振动的影响,清楚描述了单裂纹Timoshenko模型和多裂纹情况下的性能.

  • 图1 Green函数法计算出的多裂纹梁强迫振动响应

  • Fig.1 Forced vibration response of multi-crack beam calculated by Green function method

  • 2.2 带运动效应的裂纹梁Green函数

  • 在轴向运动梁领域的裂纹梁研究远少于不带运动效应的梁,但是仍有一些学者做出了以下研究.Sarigul[47]研究了有多条裂缝轴向运动梁的非线性横向振动,发现固有频率随着裂纹深度的增加而降低的现象,得出了梁在高速运动的情况下,裂纹深度对自然频率的影响可以被忽略的结论.Murphy等[48]利用 Hamilton原理和初级断裂力学建立了梁的振动方程,研究了固定支持之间水平移动裂纹梁的振动和稳定特性,发现波动的大小随着轴向运动速度和裂缝深度的变化而变化,并被映射到控制参数空间.Gayen等[49]研究了轴向速度、材料性能变化指数、位置和裂缝深度对振动特性的影响,发现固有频率随着轴向速度、裂缝深度和材料性能指数的上升而下降的现象.

  • 国外对于带运动效应裂纹梁Green函数主要集中在理论推导和运动方程的建立,主要参考指数性能的结果,对裂纹的不稳定行为以及扩展方式研究较少.而国内张腾等[50]运用三维时域法Green函数为航海模拟器建立可靠、实用的船舶运动数学模型,探讨了海水压力、船底裂纹等对船舶运行时的影响,崔元庆等[51]针对各向同性弹性裂纹梁,用解析函数方法求解了裂纹处横向应力的Green函数.通过加载任意集中力作用于任意一点处,用叠加法求解了复势,通过渐近分析抽取复势的非奇异部分,最终得到了轴向位移下裂纹梁的解.对于轴向运动梁在横向裂纹作用下Green函数解的研究中,赵翔[52]求解了轴向运动梁在弹簧边界条件下的解析解,分析了轴向速度、转动惯量、弹簧刚度对Green函数的影响,在得到轴向运动梁解析解的基础之上,推导多个裂纹的Green函数解,分析轴向速度、裂纹深度、裂纹位置、裂纹数量以及两个裂纹相互作用对Green函数的影响,给出裂纹数量对Green的影响有:三裂纹>双裂纹>单裂纹,且三裂纹挠度影响数值远大于双裂纹和单裂纹,可已看出裂纹影响并非单纯的数值叠加.

  • 3 梁的多物理场强迫振动问题的Green函数解

  • 实际工程中梁结构的强迫振动是多物理环境下的强迫振动,梁结构处于这些多物理场坏境在现实生活中普遍常见且又不可避免,为了降低环境因素所带来的危害程度.通过研究一些梁多物理场耦合振动过程中关键参数(活动荷载,温度,电势等)对振动的影响,可以对工程中遇到的一些梁的多场耦合强迫振动进行合理的控制以便人们对其加以利用.而Green函数就是将这些关键参数数值化的重要工具,通过Green的变化程度就可得到相应参数对梁的强迫振动影响大小.

  • 3.1 梁热力耦合强迫振动问题的Green函数解

  • 梁热应力和热致振动问题一直被认为是经典和长期存在的问题,在高速飞机、反应堆容器、涡轮、微机电系统(MEMS)等应用中具有实际意义,因为这些应用都受到可变加热,因此许多学者对梁的热力耦合进行了研究.

  • Zhao等[53]求解了Timoshenko梁作用简谐力荷载和简谐热激励的热力耦合强迫振动问题,并给出了二维温度场和位移场的解析表达式.研究中使用特征函数展开和Laplace变换等方法,分别得到了各种边界下稳态传热方程和稳态强迫振动方程的Green函数(如图2所示),并结合线性系统的叠加原理对Timoshenko梁热力耦合强迫振动系统问题进行了解耦.

  • 热机耦合谐振器是对热力梁振动的改进,Cao等[54]基于大体积微谐振器在高质量系数和高频的定时和频率控制方面具有潜在的发展前景,考虑挤压膜阻尼(SFD)和热弹性阻尼(TED)影响的体谐振器面内振动模型,采用改进的傅立叶级数方法提出了TED,用Green函数法求解方程,计算振动位移和温度分布,通过参数分析解释了SFD和TED对谐振器影响的数值结果.在微型谐振器有关振动Green函数研究的背景下,进入微纳米机电系统(MEMSs/NEMSs)研究领域,引入以及热弹性阻尼(TED)是微机电系统(MEMS)谐振腔能量耗散的内在机制.Yang等[55]推导了部分覆盖双层微梁的解析TED模型,其中通过研究双层梁在纯弯曲模态下进行的小幅度振动,再经Euler-Bernoulli梁动力学理论得到该研究的模态振型.研究还涉及了Green函数在傅里叶定律的框架内求解沿厚度和长度方向的热传导问题,以此得到耦合温度场.对于后来耦合温度场的深入研究,Zhao等[56]又利用Green函数计算微纳梁非局部耦合热弹性强迫振动的解析解,探讨微纳环境下振动热的多模态耦合问题.主要基于Rayleigh梁理论的微/纳米梁热弹性强迫振动;Eringen非局部弹性理论;以及III型Green-Naghdi理论得到的热导率方程.组合得到耦合热弹性动力学方程,通过利用Green函数法和位移、温度场的表达式推导了微/纳米梁的热矩.

  • 图2 不同激发频率Ω=0.9,Ω0.(a)、Ω=3.6,Ω0;(b)和 Ω=7.2,Ω0;(c)下裂缝的温度耦合效应

  • Fig.2 Different excitation frequency Ω=0.9, Ω0. (a) 、Ω=3.6, Ω0; (b) and Ω=7.2, Ω0; (c) the temperature of the cracks under the coupling effect

  • 对于一些复杂的特殊结构研究,Green函数也能发挥其重要作用,Hayati等[57]首次给出了热弹性各向同性半空间上刚盘强迫振动的混合边值问题和阻抗函数.采用了作用于热弹性各向同性半空间表面的均匀圆盘载荷的动态Green函数,去求解圆盘与热弹性半空间的动力相互作用问题,研究了圆盘结构的水平振动、垂直振动、摇摆振动和扭转振动.关于环形截面微梁的热力耦合问题研究,Luo等[58]提出了一种求解双层TED环形截面微梁模型的Green函数方法,该方法有助于工程微梁的热弹性阻尼特性研究.Ibouroi等[59]也提出一种计算任意热源位置和随时间变化的复合梁热力耦合解析的有效方法.通过计算相关的Green函数,运用一种专用的迭代算法来控制这五个一维函数的计算,对空间坐标xyz以及时间t和脉冲热源位置xs)都进行了一维积分推导,最后通过执行一个正规的程序,计算出Green函数,从而得到任意热源构型的温度场,对复杂的复合梁结构的热源耦合效应做出了客观评价.

  • 3.2 压电梁力电耦合强迫振动问题的Green函数解

  • 振动对于结构而言通常是不利的因素,在实际生活中会引起建筑的共振垮塌、机械精度降低、构件的疲劳等问题.但是,如果采用特定方法去处理这些因素,可以达到趋利避害的效果,其中基于正逆压电效应建立的力电耦合梁模型能量收集器,就能实现这一目的,因此,力电耦合梁的研究受到了广大学者的关注.

  • 其中Chen等[60]就提出了压电Euler-Bernoulli梁的强迫振动Green函数,推导出机电耦合行为较为精确的解析解.Zhao等[61]得到了基于悬臂Timoshenko梁模型压电俘能器强迫振动的解析解(如图3所示),考虑了两种阻尼效应,即横向阻尼效应和旋转阻尼效应,采用了Green函数法和Laplac变换技术求解机电耦合振动系统.

  • 图3 悬臂式压电能梁收集器模型

  • Fig.3 Model of cantilever piezoelectric energy beam harvester

  • 对于压电梁多形式的发展,Danesh-Yazdi等[62]发展了基于梁模型压电俘能器,提出了一种由傅里叶变换-Green函数(FTGF)去求解任意外部横向力激发压电梁的方法,验证了压电俘能器数学模型的发展在压电行业的重要性,给出后期压电俘能器性能可以得到预测,机电耦合行为也可以被我们所洞察的提议.Claeyssen等[63]考虑了在纳米技术中使用的强迫振动压电式悬臂梁,通过输入负载与时域Green矩阵函数的卷积,得到了强制响应矩阵微分方程,以此可以推导出多跨悬臂梁对应的矩阵传递函数和模态,解释带有压电贴片为主体梁结构的压电效应.Tan等[64]提出了一种基于Green函数的动力分析方法,将该方法融入到一个具有机电耦合边界条件的转子-轴承系统当中去,利用Laplace变换得到了不平衡转子系统的Green函数解,解析过程通过数值模拟结果表明,压电阻尼器在特定临界速度附近具有较高的减振性能,使得该研究中所采用环形压电阻尼器得到较好发展.Foda等[65]研究了带有柔性轻型太阳能电池板的卫星对内部执行器(如用于控制卫星姿态的反作用轮或动量轮)所引起的振动作用.在此研究工作中,采用一阶剪切变形叠合板理论,考虑旋转惯性和剪切变形效应,将面板建模为叠合组合梁,其中通过压电材料粘接位置来实现振动抑制,建立系统的控制方程,并利用动态Green函数给出了问题的精确而简单的解析解.

  • 3.3 梁的热力电强迫振动问题的Green函数解

  • 利用第1节所介绍的Timoshenko梁强迫振动Green函数,结合第3.1节中Timoshenko梁热力耦合强迫振动和3.2节中Timoshenko梁力电耦合强迫振动的经验和方法,进一步研究了Euler-Bernoulli、Timoshenko梁等为模型的压电俘能器热力电三场耦合强迫振动问题的解析解.

  • 对于压电层合结构的热力电耦合问题的建模,按照结构各个方向位移的假设方式不同,压电层合结构的热力电耦合模型分为经典层合梁理论模型(CLT)、一阶剪切理论模型(FSDT)、高阶剪切理论模型(HOT)、离散层理论模型(DLT)等.Bao等[66]采用CLT模型,即不考虑梁内的剪切效应,以及采用Von Karman几何非线性模型研究了压电层合梁的大变形热力电耦合动力学问题,并分析了温度和外部可控制电压对压电层合梁前三阶固有频率的影响.Kapuria等[67]利用DLT模型提出了一种新的Zigzag理论对杂交压电层合梁的热力电耦合动力学问题进行了研究.通过假设压电层合梁中的电势和温度为分段线性分布,直接把电势场和温度场对位移场的影响加入到压电层合梁的FSDT模型中,利用Hamilton原理得到该问题的控制方程,得到了杂交压电层合梁的固有频率,分析了温度和电势对频率的影响.

  • 可以看出在过去的几十年里,人们对于智能结构的研究还存在着较大发展空间,Green函数法的引入使得智能结构的发展空间进一步扩大,并逐渐迈向微纳尺度这一方向.Zhao等[68]就给出了压电梁的热-电-弹性耦合强迫振动的稳态解析解,并在耦合振动系统介绍了两种阻尼,分别是材料阻尼和空气阻尼.通过在基地激励压电能量采集器的情况之上,提出了一种新的电路模型.对于该模型,将电因子引入到经典的耦合热塑性振动问题中.利用解耦的方法,通过发展Green函数的广义形式来解决耦合问题的三个领域,分析得到了热力电因素之间的相互作用.侧重讨论了电学-荷载电阻对温度场和位移场的影响以及热学-对流换热系数对电压的影响.Kumar等[69]研究了富集谐波对系统矩阵调理的影响问题,提出了一种波的热机电有限元公式,将传统的位移场、温度场和力场的 Lagrange插值方法加入其中,最后利用Hamilton原理、Lord-Shulman理论和Green-Lindsay广义压热弹性力学的本构关系,导出耦合系统的运动方程,采用Newmark-β直接时间积分格式求解,对所提出的元件进行了多物理场性能评估.Zhang等[70]基于Stroh理论,提出了在热电-机电载荷作用下,热力电渗透裂纹在其压电介质中向裂纹面分支的解.建立了裂纹与热压电位相互作用的Green函数,函数通过分支裂纹相关的热压电电位密度函数的耦合奇异积分方程来表示.最终给出了外加热通量影响的数值结果,显示了荷载和电场对裂纹扩展路径的影响.Guo等[71]研究了石墨烯压电微片在多场耦合激励下的非线性振动问题.建立了微片的非线性控制方程,根据动力学能量守恒原理以及Green函数法对控制方程进行求解,结合广义热弹性理论以及石墨烯的正压电效应,得到了微片热弹性压电的耦合常微分方程.最后,采用多尺度法推导了微片的尺寸,利用全局剩余谐波平衡方法,从非局部角度讨论了MFC-GP微片的非线性振动特性.Isaiev等[72]描述一种光声(PA)信号形成的压电检测新模型,是对经典层合梁理论模型的一种改进,由结构层-缓冲层-压电俘能器三个层次组成.缓冲层用于热弹性力矩的空间再分布,结构层发挥其力学性能作用,压电层布置压电片,在结构框架的布置后,基于Kirchhoff-Love理论框架引入相对简单的线性Green函数,最后求解了所建立模型的实验曲线,可靠的评估了热纳米结构多孔硅层的电导率.

  • 4 结论

  • 本文围绕Green函数法在梁结构上的发展历程进行详细综述,先后阐述了梁的振动Green函数问题、裂纹梁强迫振动Green函数问题以及梁的多物理场强迫振动Green函数问题.给出多种Green函数表达形式,结合不同理论,形成各具特色的Green函数研究方法.

  • (1)梁的振动的Green函数问题,给出了直型Euler-Bernoulli、Rayleigh以及Timoshenko梁模型下Green函数的解析解,讨论了剪切变形、阻尼效应、外部频率、高长比、转动惯量等一系列因素对Green函数的影响.提出层合梁、曲梁、双梁等多种梁结构的改进方法,其中曲梁这一特殊结构类型得到合理有效的理论数据支持,证实曲梁结构在某些方面优于直型梁结构,例如强迫振动过程中对曲梁隧道裂纹的研究,对比直型梁结构的裂纹效应发现,曲梁单一裂纹以及多裂纹之间的影响相对较小.其次是曲梁Green函数参与压电场的耦合研究,与传统直梁压电俘能器模型解相比,类比验证了曲梁压电俘能器解的有效性,通过探究阻尼、负载电阻、材料的弹性模量等多因素对Green函数动态响应结果的影响,得到各自相应的优化电路以及最优负载电阻.对比两者发电效率发现,曲梁俘能器工作效率远远高于直梁俘能器.

  • (2)裂纹梁的Green函数研究,阐述不带运动效应的裂纹梁动态响应问题,讨论了裂纹位置、多跨度、裂纹数量、材料特性、裂纹深度等重要参数对裂纹梁系统动力学性能影响,得到裂缝位置对系统固有频率存在显著影响的结论,发现多条呼吸裂缝数量与深度对梁的软化行为.另一方面是带运动效应裂纹梁动态响应问题,研究发现众多轴向运动裂纹梁独特的运动效应.首先梁随着轴向速度增加,表现出裂纹效应减弱,振幅减小的特性.其次是轴向运动导致挠度最大位置由跨中向裂纹处转移.

  • (3)梁的多物理场耦合强迫振动Green函数问题,得到了Green函数在热力场、力电场、热力电场的解析解.得到了细长结构能较好表现热力耦合特性的结论,通过梁结构尺寸和阻尼效应进行结论推导,首先通过高长比的增大去反映梁的厚度的增加,从而引起梁段吸热能力的减弱,导致耦合温度的降低.其次是利用Green计算热弹性阻尼(TED)对振动问题的影响,发现了TED在结构振动产生温度不均匀波动的优势,将其成功纳入微机电系统(MEMS)谐振腔能量耗散的内在机制.另外力电耦合问题通过对电阻峰值功率的输出,找到了最优压电能量收集器的负载电阻.发现结构刚度增加,耦合电压增大,峰值间间距增大的结论.再通过大量压电实验结论对比看出,压电常数的增加,耦合电压的幅值逐渐增加,但并不呈现出一致的单调性.

  • 最后采用Green函数法结合压电学相关理论去推导应变、电势以及温度相关性的热力电耦合问题,给出在高阶位移场和高阶温度场下各项异性压电材料高内聚的特性.发现压电薄片结构具有非线性的热力电耦合特性,且在温度场和电场作用效果差异较大,薄片结构受温度场的影响较强.

  • 目前从文献检索的内容来看,Green函数法多数用于梁结构的振动研究以及简单的边界条件问题,后期对于复杂边界条件和多场耦合因素,我们应该保持重视,只有将边界条件与结构复杂化以及多物理场联合起来讨论,才能使未来的智能结构、研究方法等得到全面发展.

  • 参考文献

    • [1] WATANABE K.2D static Green’s function for an inhomogeneous elastic solid [J].Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik,2010,90(2):151-160.

    • [2] 赵翔,李映辉.旋转圆盘上可变摆长的单摆的分岔问题分析 [J].动力学与控制学报,2014,12(4):321-326.ZHAO X,LI Y H.The bifurcation problem of a kind of pendulum physical model [J].Journal of Dynamics and Control,2014,12(4):321-326.(in Chinese)

    • [3] 罗宸晟,牟瑞勇,黄行蓉,等.涡激旋转下方柱小幅振荡模态的自由流线-边界层理论模型 [J].动力学与控制学报.2023,21(6):55-65.LUO C S,MOU R Y,HUANG X R,et al.Free streamline-boundary layer model for small-amplitude oscillation regime of square cylinder under vortex-induced rotation [J].Journal of Dynamics and Control,2023,21(6):55-65.(in Chinese)

    • [4] MOCHIDA Y,ILANKO S.Transient vibration analysis of a completely free plate using modes obtained by Gorman’s superposition method [J].Journal of Sound and Vibration.2010,329(10):1890-1900.

    • [5] SUN P X,YANG H,DENG Y J.Complex mode superposition method of nonproportionally damped linear systems with hysteretic damping [J].Journal of Vibration and Control.2021,27(13-14):1453-1465.

    • [6] CABADA A,HAMDI Z.Nonlinear fractional differential equations with integral boundary value conditions [J].Applied Mathematics and Computation,2014,228:251-257.

    • [7] ROMAN S,STIKONAS A.Green’s functions for stationary problems with nonlocal boundary conditions [J].Lithuanian Mathematical Journal,2009,49(2):190-202.

    • [8] KHORRAMI M.Green’s functions of the wave equation in different dimensions [J].Miskolc Mathematical Notes,2021,22(2):721-730.

    • [9] HOZHABROSSADATI S M,SANI A A.Deformation of euler-bernoulli beams by means of modified Green’s function:application of fredholm alternative theorem [J].Mechanics Based Design of Structures and Machines,2015,43(3):277-293.

    • [10] HAN H S,CAO D Q,LIU L.Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J].Applied Mathematical Modelling,2017,45:621-635.

    • [11] CHEN T,SU G Y,SHEN Y S,et al.Unified Green’s functions of forced vibration of axially loaded Timoshenko beam:Transition parameter [J].International Journal of Mechanical Sciences,2016,113:211-220.

    • [12] MAZILU T.Numerically stable form of Green’s function for a free-free uniform timoshenko beam[J].Mathematics,2023,11(1):86.

    • [13] KURTARAN H.Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method [J].Composite Structures,2015,131:821-831.

    • [14] ZHAO X,CHEN B,LI Y H,et al.Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions [J].Journal of Sound and Vibration,2020,464:115001.

    • [15] KIDAWA-KUKLA J.Application of the Green functions to the problem of the thermally induced vibration of a beam [J].Journal of Sound and Vibration,2003,262(4):865-876.

    • [16] ZHAO X,WANG C F,ZHU W D,et al.Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam [J].International Journal of Mechanical Sciences,2021,206:106600.

    • [17] ZHAO X,ZHAO Y R,GAO X Z,et al.Green’s functions for the forced vibrations of cracked Euler-Bernoulli beams [J].Mechanical Systems and Signal Processing,2016,68-69:155-175.

    • [18] CHEN Y B,YAN Z.Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity [J].International Journal of Mechanical Sciences,2020,173:105473.

    • [19] ERTURK A.Assumed-modes modeling of piezoelectric energy harvesters:Euler-Bernoulli,Rayleigh,and Timoshenko models with axial deformations [J].Computers & Structures,2012,106-107:214-227.

    • [20] RONCEVIC G S,RONCEVIC B,SKOBLAR A,et al.Closed form solutions for frequency equation and mode shapes of elastically supported Euler-Bernoulli beams [J].Journal of Sound and Vibration,2019,457:118-138.

    • [21] REZAIEE-PAJAND M,AFTABI SANI A,HOZ-HABROSSADATI S M.Analyzing free-free beams by Green’s functions and Fredholm Alternative Theorem [J].Journal of Mechanics,2019,35(1):27-39.

    • [22] LIU Y,SHU D W.Free vibration analysis of rotating Timoshenko beams with multiple delaminations [J].Composites Part B:Engineering,2013,44(1):733-739.

    • [23] JAFARI-TALOOKOLAEI R A,ABEDI M.Analytical solution for the free vibration analysis of delaminated Timoshenko beams[J].Scientific World Journal,2014,2014:280256.

    • [24] ABU-HILAL M.Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].Journal of Sound and Vibration,2003,267(2):191-207.

    • [25] LI X Y,ZHAO X,LI Y H.Green’s functions of the forced vibration of Timoshenko beams with damping effect [J].Journal of Sound and Vibration,2014,333(6):1781-1795.

    • [26] MAZILU T.Prediction of the interaction between a simple moving vehicle and an infinite periodically supported rail-Green’s functions approach [J].Vehicle System Dynamics,2010,48(9):1021-1042.

    • [27] LI Z W,CHEN B,LIN B C,et al.Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler-Pasternak foundation [J].The European Physical Journal Plus,2022,137:153.

    • [28] KISS L P,SZEIDL G.Free vibrations of rotationally restrained nonhomogeneous circular beams by means of the Green function [J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40:342.

    • [29] KISS L P,SZEIDL G.On the eigenfrequencies of preloaded rotationally restrained extensible circular beams by Green’s functions [J].Acta Mechanica,2019,230(1):137-156.

    • [30] 赵翔,周扬,邵永波,等.基于Green函数法的Timoshenko曲梁强迫振动分析 [J].工程力学,2020,37(11):12-27.Zhao X,Zhou Y,Shao Y B,et al.Analytical solutions for forced vibrations of Timoshenko curved beam by means of Green’s functions[J].Engineering Mechanics,2020,37(11):12-27.(in Chinese)

    • [31] VO D,NANAKORN P,BUI T Q.A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures [J].Acta Mechanica,2020,231(9):3673-3701.

    • [32] LUU A T,KIM N I,LEE J.2D vibration analysis of circular arches with constant double symmetric cross-sections using isogeometric approach [J].KSCE Journal of Civil Engineering,2017,21(7):2751-2763.

    • [33] ZHAO X,MENG S,ZHU W,et al.A closed-form solution of forced vibration of a double-curved-beam system by means of the Green’s function method [J].Journal of Sound and Vibration,2023,561:117812.

    • [34] REZAIEE-PAJAND M,RAJABZADEH-SAFAEI N,HOZHABROSSADATI S M.Three-dimensional deformations of a curved circular beam subjected to thermo-mechanical loading using Green’s function method [J].International Journal of Mechanical Sciences,2018,142-143:163-175.

    • [35] 赵翔,李思谊,李映辉.含阻尼多裂纹Euler-Bernoulli曲梁强迫振动的Green函数解 [J].力学与实践,2021,43(6):896-904.ZHAO X,LI S Y,LI Y H.Green’s function for forced vibration of multi-cracked Euler-Bernoulli curved beam with damping [J].Mechanics in Engineering,2021,43(6):896-904.

    • [36] 赵翔,李思谊,李映辉.基于压电振动能量俘获的弯曲结构损伤监测研究 [J].力学学报,2021,53(11):3035-3044.ZHAO X,LI S Y,LI Y H.The research on damage detection of curved beam based on piezoelectric vibration energy harvester [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):3035-3044.(in Chinese)

    • [37] SAHU S K,DAS P.Experimental and numerical studies on vibration of laminated composite beam with transverse multiple cracks [J].Mechanical Systems and Signal Processing,2020,135:106398.

    • [38] WU X W,ZHU L F,WU Z M,et al.Vibrational power flow analysis of Timoshenko microbeams with a crack [J].Composite Structures,2022,289:115483.

    • [39] CHEN J W,ZHOU X P.An investigation on the effect of crack lengths and wavelengths on the dynamic cracking behaviours of brittle materials using the improved XFEM [J].Engineering Fracture Mechanics,2023,277:109008.

    • [40] KHARAZAN M,IRANI S,ALI NOORIAN M,et al.Nonlinear vibration analysis of a cantilever beam with multiple breathing edge cracks [J].International Journal of Non-Linear Mechanics,2021,136:103774.

    • [41] WEI D,LIU Y H,XIANG Z H.An analytical method for free vibration analysis of functionally graded beams with edge cracks [J].Journal of Sound and Vibration,2012,331(7):1686-1700.

    • [42] CHEN B,LIN B C,ZHAO X,et al.Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler-Pasternak elastic foundation [J].Thin-Walled Structures,2021,163(15):107688.

    • [43] HAN H,LIU L,CAO D.Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam [J].International Journal of Mechanical Sciences,2020,166:105235.

    • [44] GHANNADIASL A,KHODAPANAH AJIRLOU S.Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J].Applied Acoustics,2019,148:484-494.

    • [45] GHANNADIASL A,KHODAPANAH AJIRLOU S.Dynamic analysis of multiple cracked Timoshenko beam under moving load-analytical method [J].Journal of Vibration and Control,2022,28(3-4):379-395.

    • [46] CHEN B,ZHAO X,LI Y H,et al.Forced vibration analysis of multi-cracked Timoshenko beam with the inclusion of damping by virtue of Green’s functions[J].Applied Acoustics,2019,155:477-491.

    • [47] SARIGUL M.Parametric vibrations of axially moving beams with multiple edge cracks [J].International Journal of Acoustics and Vibration,2019,24(2):241-252.

    • [48] MURPHY K D,ZHANG Y I N.Vibration and stability of a cracked translating beam [J].Journal of Sound and Vibration,2000,237(2):319-335.

    • [49] GAYEN D,CHAKRABORTY D,TIWARI R.Transverse vibration and stability of a cracked functionally graded rotating shaft system [C].Proceedings of the International Conference on Advances in Materials and Manufacturing Engineering(ICAMME),Bhubaneswar,INDIA,Singapore:Springer Singapore,2020:625-631.

    • [50] 张腾,任俊生,张秀凤.基于三维时域Green函数法的船舶在规则波浪中的运动数学模型 [J].交通运输工程学报,2019,19(2):110-121.ZHANG T,REN J S,ZHANG X F.Mathematical model of ship motion in regular wave based on three-dimensional time-domain Green function method [J].Journal of Traffic and Transportation Engineering,2019,19(2):110-121.(in Chinese)

    • [51] 崔元庆,杨卫,仲政.半无限平面裂纹构型横向应力的Green函数 [J].应用数学和力学,2011,32(8):912-919.CUI Y Q,YANG W,ZHONG Z.Green’s function for T-stress of a semi-infinite plane crack [J].Applied Mathematics and Mechanics,2011,32(8):912-919.(in Chinese)

    • [52] 赵翔.多场耦合环境下梁横向振动的(半)解析解 [D].成都:西南交通大学,2015.ZHAO X.Research on multi-physics fields coupled vibrations of beam structures [D].Chengdu:Southwest Jiaotong University,2015.(in Chinese)

    • [53] ZHAO X,YANG E C,LI Y H.Analytical solutions for the coupled thermoelastic vibrations of Timoshenko beams by means of Green’s functions [J].International Journal of Mechanical Sciences,2015,100:50-67.

    • [54] CAO Y L,YU K,FENG K,et al.Analytical solution of squeeze film and thermoelastic damping in bulk resonators [J].Sensors and Actuators A:Physical,2019,297:111530.

    • [55] YANG L F,LI P,FANG Y M,et al.Thermoelastic damping in partially covered bilayer microbeam resonators with two-dimensional heat conduction [J].Journal of Sound and Vibration,2021,494:115863.

    • [56] ZHAO X,ZHU W D,LI Y H.Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green’s functions [J].Journal of Sound and Vibration,2020,481:115407.

    • [57] HAYATI Y,RAHAI A,ESLAMI A.Mixed boundary-value problems and dynamic impedance functions due to vibrations of a rigid disc on a thermoelastic transversely isotropic half-space [J].Engineering Analysis with Boundary Elements,2023,146:636-655.

    • [58] LUO Z J,LI P,YANG L F,et al.Thermoelastic damping in bilayered microbeam resonators with annular-cross section [C].2019 IEEE 4th International Conference on Integrated Circuits and Microsystems(ICICM),Beijing,China.IEEE,2019:75-79.

    • [59] IBOUROI L A,VIDAL P,GALLIMARD L,et al.Thermal analysis of composite beam structure based on a variable separation method for any volume heat source locations and temporal variations [J].Composite Structures,2022,300:116154.

    • [60] CHEN W H,LIANG X,SHEN S P.Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green’s functions [J].Acta Mechanica,2021,232(2):449-460.

    • [61] ZHAO X,YANG E C,LI Y H,et al.Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions [J].Journal of Intelligent Material Systems and Structures,2017,28(17):2372-2387.

    • [62] DANESH-YAZDI A H,ELVIN N,ANDREOPOULOS Y.Green’s function method for piezoelectric energy harvesting beams [J].Journal of Sound and Vibration,2014,333(14):3092-3108.

    • [63] CLAEYSSEN J C R,TONETTO L,CARVALHO J B,et al.Parametric effects in nanobeams and AFM [C].10th International Conference on Mathematical Problems in Engineering,Aerosphce and Science,Narvik,Norway:AZP Conference Proceedings,2014,1637:210-225.

    • [64] TAN X,HE J C,XI C,et al.Dynamic modeling for rotor-bearing system with electromechanically coupled boundary conditions [J].Applied Mathematical Modelling,2021,91:280-296.

    • [65] FODA M A,ALSAIF K A.Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches [J].Smart Structures and Systems,2012,10(2):111-130.

    • [66] BAO Y,TZOU H S,VENKAYYA V B.Analysis of non-linear piezothermoelastic laminated beams with electric and temperature effects [J].Journal of Sound and Vibration,1998,209(3):505-518.

    • [67] KAPURIA S,AHMED A,DUMIR P C.Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory [J].Composites Science and Technology,2004,64(16):2463-2475.

    • [68] ZHAO X,IEGAINK F J N,ZHU W D,et al.Coupled thermo-electro-elastic forced vibrations of piezoelectric laminated beams by means of Green’s functions [J].International Journal of Mechanical Sciences,2019,156:355-369.

    • [69] KUMAR A,KAPURIA S.Wave packet enriched finite elements for thermo-electro-elastic wave propagation problems with discontinuous wavefronts [J].Journal of Thermal Stresses,2023,46(6):503-533.

    • [70] ZHANG A B,WANG B L.Crack branching in thermopiezoelectric materials [J].International Journal of Solids and Structures,2013,50(19):2962-2969.

    • [71] GUO X Y,JIANG P,CAO D X,et al.Nonlinear vibrations of graphene piezoelectric microsheet under coupled excitations [J].International Journal of Non-Linear Mechanics,2020,124:103498.

    • [72] ISAIEV M,ANDRUSENKO D,TYTARENKO A,et al.Photoacoustic signal formation in heterogeneous multilayer systems with piezoelectric detection [J].International Journal of Thermophysics,2014,35(12):2341-2351.

  • 参考文献

    • [1] WATANABE K.2D static Green’s function for an inhomogeneous elastic solid [J].Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik,2010,90(2):151-160.

    • [2] 赵翔,李映辉.旋转圆盘上可变摆长的单摆的分岔问题分析 [J].动力学与控制学报,2014,12(4):321-326.ZHAO X,LI Y H.The bifurcation problem of a kind of pendulum physical model [J].Journal of Dynamics and Control,2014,12(4):321-326.(in Chinese)

    • [3] 罗宸晟,牟瑞勇,黄行蓉,等.涡激旋转下方柱小幅振荡模态的自由流线-边界层理论模型 [J].动力学与控制学报.2023,21(6):55-65.LUO C S,MOU R Y,HUANG X R,et al.Free streamline-boundary layer model for small-amplitude oscillation regime of square cylinder under vortex-induced rotation [J].Journal of Dynamics and Control,2023,21(6):55-65.(in Chinese)

    • [4] MOCHIDA Y,ILANKO S.Transient vibration analysis of a completely free plate using modes obtained by Gorman’s superposition method [J].Journal of Sound and Vibration.2010,329(10):1890-1900.

    • [5] SUN P X,YANG H,DENG Y J.Complex mode superposition method of nonproportionally damped linear systems with hysteretic damping [J].Journal of Vibration and Control.2021,27(13-14):1453-1465.

    • [6] CABADA A,HAMDI Z.Nonlinear fractional differential equations with integral boundary value conditions [J].Applied Mathematics and Computation,2014,228:251-257.

    • [7] ROMAN S,STIKONAS A.Green’s functions for stationary problems with nonlocal boundary conditions [J].Lithuanian Mathematical Journal,2009,49(2):190-202.

    • [8] KHORRAMI M.Green’s functions of the wave equation in different dimensions [J].Miskolc Mathematical Notes,2021,22(2):721-730.

    • [9] HOZHABROSSADATI S M,SANI A A.Deformation of euler-bernoulli beams by means of modified Green’s function:application of fredholm alternative theorem [J].Mechanics Based Design of Structures and Machines,2015,43(3):277-293.

    • [10] HAN H S,CAO D Q,LIU L.Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam [J].Applied Mathematical Modelling,2017,45:621-635.

    • [11] CHEN T,SU G Y,SHEN Y S,et al.Unified Green’s functions of forced vibration of axially loaded Timoshenko beam:Transition parameter [J].International Journal of Mechanical Sciences,2016,113:211-220.

    • [12] MAZILU T.Numerically stable form of Green’s function for a free-free uniform timoshenko beam[J].Mathematics,2023,11(1):86.

    • [13] KURTARAN H.Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method [J].Composite Structures,2015,131:821-831.

    • [14] ZHAO X,CHEN B,LI Y H,et al.Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions [J].Journal of Sound and Vibration,2020,464:115001.

    • [15] KIDAWA-KUKLA J.Application of the Green functions to the problem of the thermally induced vibration of a beam [J].Journal of Sound and Vibration,2003,262(4):865-876.

    • [16] ZHAO X,WANG C F,ZHU W D,et al.Coupled thermoelastic nonlocal forced vibration of an axially moving micro/nano-beam [J].International Journal of Mechanical Sciences,2021,206:106600.

    • [17] ZHAO X,ZHAO Y R,GAO X Z,et al.Green’s functions for the forced vibrations of cracked Euler-Bernoulli beams [J].Mechanical Systems and Signal Processing,2016,68-69:155-175.

    • [18] CHEN Y B,YAN Z.Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity [J].International Journal of Mechanical Sciences,2020,173:105473.

    • [19] ERTURK A.Assumed-modes modeling of piezoelectric energy harvesters:Euler-Bernoulli,Rayleigh,and Timoshenko models with axial deformations [J].Computers & Structures,2012,106-107:214-227.

    • [20] RONCEVIC G S,RONCEVIC B,SKOBLAR A,et al.Closed form solutions for frequency equation and mode shapes of elastically supported Euler-Bernoulli beams [J].Journal of Sound and Vibration,2019,457:118-138.

    • [21] REZAIEE-PAJAND M,AFTABI SANI A,HOZ-HABROSSADATI S M.Analyzing free-free beams by Green’s functions and Fredholm Alternative Theorem [J].Journal of Mechanics,2019,35(1):27-39.

    • [22] LIU Y,SHU D W.Free vibration analysis of rotating Timoshenko beams with multiple delaminations [J].Composites Part B:Engineering,2013,44(1):733-739.

    • [23] JAFARI-TALOOKOLAEI R A,ABEDI M.Analytical solution for the free vibration analysis of delaminated Timoshenko beams[J].Scientific World Journal,2014,2014:280256.

    • [24] ABU-HILAL M.Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions [J].Journal of Sound and Vibration,2003,267(2):191-207.

    • [25] LI X Y,ZHAO X,LI Y H.Green’s functions of the forced vibration of Timoshenko beams with damping effect [J].Journal of Sound and Vibration,2014,333(6):1781-1795.

    • [26] MAZILU T.Prediction of the interaction between a simple moving vehicle and an infinite periodically supported rail-Green’s functions approach [J].Vehicle System Dynamics,2010,48(9):1021-1042.

    • [27] LI Z W,CHEN B,LIN B C,et al.Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler-Pasternak foundation [J].The European Physical Journal Plus,2022,137:153.

    • [28] KISS L P,SZEIDL G.Free vibrations of rotationally restrained nonhomogeneous circular beams by means of the Green function [J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40:342.

    • [29] KISS L P,SZEIDL G.On the eigenfrequencies of preloaded rotationally restrained extensible circular beams by Green’s functions [J].Acta Mechanica,2019,230(1):137-156.

    • [30] 赵翔,周扬,邵永波,等.基于Green函数法的Timoshenko曲梁强迫振动分析 [J].工程力学,2020,37(11):12-27.Zhao X,Zhou Y,Shao Y B,et al.Analytical solutions for forced vibrations of Timoshenko curved beam by means of Green’s functions[J].Engineering Mechanics,2020,37(11):12-27.(in Chinese)

    • [31] VO D,NANAKORN P,BUI T Q.A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures [J].Acta Mechanica,2020,231(9):3673-3701.

    • [32] LUU A T,KIM N I,LEE J.2D vibration analysis of circular arches with constant double symmetric cross-sections using isogeometric approach [J].KSCE Journal of Civil Engineering,2017,21(7):2751-2763.

    • [33] ZHAO X,MENG S,ZHU W,et al.A closed-form solution of forced vibration of a double-curved-beam system by means of the Green’s function method [J].Journal of Sound and Vibration,2023,561:117812.

    • [34] REZAIEE-PAJAND M,RAJABZADEH-SAFAEI N,HOZHABROSSADATI S M.Three-dimensional deformations of a curved circular beam subjected to thermo-mechanical loading using Green’s function method [J].International Journal of Mechanical Sciences,2018,142-143:163-175.

    • [35] 赵翔,李思谊,李映辉.含阻尼多裂纹Euler-Bernoulli曲梁强迫振动的Green函数解 [J].力学与实践,2021,43(6):896-904.ZHAO X,LI S Y,LI Y H.Green’s function for forced vibration of multi-cracked Euler-Bernoulli curved beam with damping [J].Mechanics in Engineering,2021,43(6):896-904.

    • [36] 赵翔,李思谊,李映辉.基于压电振动能量俘获的弯曲结构损伤监测研究 [J].力学学报,2021,53(11):3035-3044.ZHAO X,LI S Y,LI Y H.The research on damage detection of curved beam based on piezoelectric vibration energy harvester [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):3035-3044.(in Chinese)

    • [37] SAHU S K,DAS P.Experimental and numerical studies on vibration of laminated composite beam with transverse multiple cracks [J].Mechanical Systems and Signal Processing,2020,135:106398.

    • [38] WU X W,ZHU L F,WU Z M,et al.Vibrational power flow analysis of Timoshenko microbeams with a crack [J].Composite Structures,2022,289:115483.

    • [39] CHEN J W,ZHOU X P.An investigation on the effect of crack lengths and wavelengths on the dynamic cracking behaviours of brittle materials using the improved XFEM [J].Engineering Fracture Mechanics,2023,277:109008.

    • [40] KHARAZAN M,IRANI S,ALI NOORIAN M,et al.Nonlinear vibration analysis of a cantilever beam with multiple breathing edge cracks [J].International Journal of Non-Linear Mechanics,2021,136:103774.

    • [41] WEI D,LIU Y H,XIANG Z H.An analytical method for free vibration analysis of functionally graded beams with edge cracks [J].Journal of Sound and Vibration,2012,331(7):1686-1700.

    • [42] CHEN B,LIN B C,ZHAO X,et al.Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler-Pasternak elastic foundation [J].Thin-Walled Structures,2021,163(15):107688.

    • [43] HAN H,LIU L,CAO D.Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam [J].International Journal of Mechanical Sciences,2020,166:105235.

    • [44] GHANNADIASL A,KHODAPANAH AJIRLOU S.Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation [J].Applied Acoustics,2019,148:484-494.

    • [45] GHANNADIASL A,KHODAPANAH AJIRLOU S.Dynamic analysis of multiple cracked Timoshenko beam under moving load-analytical method [J].Journal of Vibration and Control,2022,28(3-4):379-395.

    • [46] CHEN B,ZHAO X,LI Y H,et al.Forced vibration analysis of multi-cracked Timoshenko beam with the inclusion of damping by virtue of Green’s functions[J].Applied Acoustics,2019,155:477-491.

    • [47] SARIGUL M.Parametric vibrations of axially moving beams with multiple edge cracks [J].International Journal of Acoustics and Vibration,2019,24(2):241-252.

    • [48] MURPHY K D,ZHANG Y I N.Vibration and stability of a cracked translating beam [J].Journal of Sound and Vibration,2000,237(2):319-335.

    • [49] GAYEN D,CHAKRABORTY D,TIWARI R.Transverse vibration and stability of a cracked functionally graded rotating shaft system [C].Proceedings of the International Conference on Advances in Materials and Manufacturing Engineering(ICAMME),Bhubaneswar,INDIA,Singapore:Springer Singapore,2020:625-631.

    • [50] 张腾,任俊生,张秀凤.基于三维时域Green函数法的船舶在规则波浪中的运动数学模型 [J].交通运输工程学报,2019,19(2):110-121.ZHANG T,REN J S,ZHANG X F.Mathematical model of ship motion in regular wave based on three-dimensional time-domain Green function method [J].Journal of Traffic and Transportation Engineering,2019,19(2):110-121.(in Chinese)

    • [51] 崔元庆,杨卫,仲政.半无限平面裂纹构型横向应力的Green函数 [J].应用数学和力学,2011,32(8):912-919.CUI Y Q,YANG W,ZHONG Z.Green’s function for T-stress of a semi-infinite plane crack [J].Applied Mathematics and Mechanics,2011,32(8):912-919.(in Chinese)

    • [52] 赵翔.多场耦合环境下梁横向振动的(半)解析解 [D].成都:西南交通大学,2015.ZHAO X.Research on multi-physics fields coupled vibrations of beam structures [D].Chengdu:Southwest Jiaotong University,2015.(in Chinese)

    • [53] ZHAO X,YANG E C,LI Y H.Analytical solutions for the coupled thermoelastic vibrations of Timoshenko beams by means of Green’s functions [J].International Journal of Mechanical Sciences,2015,100:50-67.

    • [54] CAO Y L,YU K,FENG K,et al.Analytical solution of squeeze film and thermoelastic damping in bulk resonators [J].Sensors and Actuators A:Physical,2019,297:111530.

    • [55] YANG L F,LI P,FANG Y M,et al.Thermoelastic damping in partially covered bilayer microbeam resonators with two-dimensional heat conduction [J].Journal of Sound and Vibration,2021,494:115863.

    • [56] ZHAO X,ZHU W D,LI Y H.Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green’s functions [J].Journal of Sound and Vibration,2020,481:115407.

    • [57] HAYATI Y,RAHAI A,ESLAMI A.Mixed boundary-value problems and dynamic impedance functions due to vibrations of a rigid disc on a thermoelastic transversely isotropic half-space [J].Engineering Analysis with Boundary Elements,2023,146:636-655.

    • [58] LUO Z J,LI P,YANG L F,et al.Thermoelastic damping in bilayered microbeam resonators with annular-cross section [C].2019 IEEE 4th International Conference on Integrated Circuits and Microsystems(ICICM),Beijing,China.IEEE,2019:75-79.

    • [59] IBOUROI L A,VIDAL P,GALLIMARD L,et al.Thermal analysis of composite beam structure based on a variable separation method for any volume heat source locations and temporal variations [J].Composite Structures,2022,300:116154.

    • [60] CHEN W H,LIANG X,SHEN S P.Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green’s functions [J].Acta Mechanica,2021,232(2):449-460.

    • [61] ZHAO X,YANG E C,LI Y H,et al.Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions [J].Journal of Intelligent Material Systems and Structures,2017,28(17):2372-2387.

    • [62] DANESH-YAZDI A H,ELVIN N,ANDREOPOULOS Y.Green’s function method for piezoelectric energy harvesting beams [J].Journal of Sound and Vibration,2014,333(14):3092-3108.

    • [63] CLAEYSSEN J C R,TONETTO L,CARVALHO J B,et al.Parametric effects in nanobeams and AFM [C].10th International Conference on Mathematical Problems in Engineering,Aerosphce and Science,Narvik,Norway:AZP Conference Proceedings,2014,1637:210-225.

    • [64] TAN X,HE J C,XI C,et al.Dynamic modeling for rotor-bearing system with electromechanically coupled boundary conditions [J].Applied Mathematical Modelling,2021,91:280-296.

    • [65] FODA M A,ALSAIF K A.Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches [J].Smart Structures and Systems,2012,10(2):111-130.

    • [66] BAO Y,TZOU H S,VENKAYYA V B.Analysis of non-linear piezothermoelastic laminated beams with electric and temperature effects [J].Journal of Sound and Vibration,1998,209(3):505-518.

    • [67] KAPURIA S,AHMED A,DUMIR P C.Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory [J].Composites Science and Technology,2004,64(16):2463-2475.

    • [68] ZHAO X,IEGAINK F J N,ZHU W D,et al.Coupled thermo-electro-elastic forced vibrations of piezoelectric laminated beams by means of Green’s functions [J].International Journal of Mechanical Sciences,2019,156:355-369.

    • [69] KUMAR A,KAPURIA S.Wave packet enriched finite elements for thermo-electro-elastic wave propagation problems with discontinuous wavefronts [J].Journal of Thermal Stresses,2023,46(6):503-533.

    • [70] ZHANG A B,WANG B L.Crack branching in thermopiezoelectric materials [J].International Journal of Solids and Structures,2013,50(19):2962-2969.

    • [71] GUO X Y,JIANG P,CAO D X,et al.Nonlinear vibrations of graphene piezoelectric microsheet under coupled excitations [J].International Journal of Non-Linear Mechanics,2020,124:103498.

    • [72] ISAIEV M,ANDRUSENKO D,TYTARENKO A,et al.Photoacoustic signal formation in heterogeneous multilayer systems with piezoelectric detection [J].International Journal of Thermophysics,2014,35(12):2341-2351.

  • 微信公众号二维码

    手机版网站二维码