en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

宋传静,E-mail:songchuanjingsun@mail.usts.edu.cn

中图分类号:O316

文献标识码:A

文章编号:1672-6553-2023-21(9)-001-010

DOI:10.6052/1672-6553-2022-019

参考文献 1
DIRAC P A M.Lecture on quantum mechanics [M].New York:Yeshiva University,1964.
参考文献 2
李子平.经典和量子约束系统及其对称性质 [M].北京:北京工业大学出版社,1993.LI Z P.Classical and quantal dynamics of constrained systems and their symmetrical properties [M].Beijing:Beijing Polytechnic University Press,1993.(in Chinese)
参考文献 3
李子平.约束哈密顿系统及其对称性质 [M].北京:北京工业大学出版社,1999.LI Z P.Constrained Hamiltonian systems and their symmetrical properties [M].Beijing:Beijing Polytechnic University Press,1999.(in Chinese)
参考文献 4
DIRAC P A M.Generalized Hamiltonian dynamics [J].Canadian Journal of Math,1950,2:129-148.
参考文献 5
LUTZKY M.Dynamical symmetries and conserved quantities [J].Journal of Physics A:Mathematical and General,1979,12(7):973-981.
参考文献 6
MENINI L,TORNAMBÈ A.A Lie symmetry approach for the solution of the inverse kinematics problem [J].Nonlinear Dynamics,2012,69(4):1965-1977.
参考文献 7
MEI F X.Lie symmetries and conserved quantities of constrained mechanical systems [J].Acta Mechanica,2000,141:135-148.
参考文献 8
梅凤翔.李群和李代数对约束力学系统的应用 [M].北京:科学出版社,1999.MEI F X.Applications of Lie groups and Lie algebras to constrained mechanical systems [M].Beijing:Science Press,1999.(in Chinese)
参考文献 9
徐瑞莉,方建会,张斌,等.Chetaev型非完整系统Nielsen方程Lie对称性导致的一种守恒量 [J].动力学与控制学报,2014,12(1):13-17.XU R L,FANG J H,ZHANG B,et al.A type of conserved quantity of Lie symmetry for nonholonomic system of Nielsen equation of Chetaev’s type [J].Journal of Dynamics and Control,2014,12(1):13-17.(in Chinese)
参考文献 10
MEI F X,ZHU H P.Lie symmetries and conserved quantities for the singular Lagrange system [J].Journal of Beijing Institute of Technology,2000,9(1):1901-1903.
参考文献 11
张毅,薛纭.仅含第二类约束的约束Hamilton系统的Lie对称性 [J].物理学报,2001,50(5):816-819.ZHANG Y,XUE Y.Lie symmetries of constrained Hamiltonian system with the second type of constraints [J].Acta Physica Sinica,2001,50(5):816-819.(in Chinese)
参考文献 12
徐超,李元成.奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量 [J].物理学报,2013,62(17):171101.XU C,LI Y C.Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints [J].Acta Physica Sinica,2013,62(17):171101.(in Chinese)
参考文献 13
徐超,李元成.奇异Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量 [J].物理学报,2013,62(12):120201.XU C,LI Y C.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev’type [J].Acta Physica Sinica,2013,62(12):120201.(in Chinese)
参考文献 14
罗绍凯.奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性 [J].物理学报,2004,53(1):5-10.LUO S K.Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system [J].Acta Physica Sinica,2004,53(1):5-10.(in Chinese)
参考文献 15
周景润,傅景礼.约束Hamilton系统的Lie对称性及其在场论中的应用 [J].应用数学和力学,2019,40(7):810-822.Zhou J R,Fu J L.Lie symmetry of constrained Hamiltonian systems and its application in field theory [J].Applied Mathematics and Mechanics,2019,40(7):810-822.(in Chinese)
参考文献 16
张毅,田雪,翟相华,等.时间尺度上Lagrange系统的Hojman守恒量 [J].力学学报,2021,53(10):2814-2822.ZHANG Y,TIAN X,ZHAI X H,et al.Hojman conserved quantity for time scales Lagrange systems [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(10):2814-2822.(in Chinese)
参考文献 17
OLDHAM K B,SPANIER J.The fractional calculus [M].New York:Academic Press,1974.
参考文献 18
罗绍凯.分数阶动力学的分析力学方法及其应用 [J].动力学与控制学报,2019,17(5):432-438.LUO S K.Analytical mechanics method of fractional dynamics and its applications [J].Journal of Dynamics and Control,2019,17(5):432-438.(in Chinse)
参考文献 19
尹耀得,赵德敏,刘建林,等.丙烯酸弹性体的率相关分数阶黏弹性模型研究 [J].力学学报,2022,54(1):155-163.YIN Y D,ZHAO D M,LIU J L,et al.Study on the rate dependency of acrylic elastomer based fractional viscoelastic model [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(1):155-163.(in Chinese)
参考文献 20
司辉,郑永爱.分数阶混沌系统的自适应预测同步 [J].动力学与控制学报,2021,19(5):8-12.SI H,ZHENG Y A.Adaptive predictive synchronization of fractional order chaotic systems [J].Journal of Dynamics and Control,2021,19(5):8-12.(in Chinese)
参考文献 21
宋传静.广义分数阶受迫Birkhoff方程 [J].动力学与控制学报,2019,17(5):446-452.SONG C J.Generalized fractional forced Birkhoff equations [J].Journal of Dynamics and Control,2019,17(5):446-452.(in Chinese)
参考文献 22
RIEWE F.Nonconservative Lagrangian and Hamiltonian mechanics [J].Physical Review E,1996,53(2):1890-1899.
参考文献 23
RIEWE F.Mechanics with fractional derivatives [J].Physical Review E,1997,55(3):3581-3592.
参考文献 24
FREDERICO G S F,LAZO M J.Fractional Noether's theorem with classical and caputo derivatives:constants of motion for non-conservative systems [J].Nonlinear Dynamics,2016,85(2):839-851.
参考文献 25
AGRAWAL O P.Fractional variational calculus and the transversality conditions [J].Journal of Physics A General Physics.2006,39(33):10375-10384.
参考文献 26
张孝彩,张毅.基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量 [J].中山大学学报(自然科学版),2016,55(3):97-101.ZHANG X C,ZHANG Y.Lie symmetry and conserved quantity of fractional Lagrange system based on El-Nabulsi models [J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(3):97-101.(in Chinese)
参考文献 27
JIA Y D,ZHANG Y.Fractional Birkhoffian dynamics based on quasi-fractional dynamics models and its Lie symmetry [J].Transactions of Nanjing University of Aeronautics and Astronautics,2021,38(1):84-95.
参考文献 28
ZHOU S,FU H,FU J L.Symmetry theories of Hamiltonian systems with fractional derivatives [J].Science China Physics,Mechanics & Astronomy,2011,54(10):1847-1853.
参考文献 29
SUN Y,CHEN B Y,FU J L.Lie symmetry theorem of fractional nonholonomic systems [J].Chinese Physics B,2014,23(11):111-117.
参考文献 30
FU J L,FU L P,CHEN B Y.Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives [J].Physics Letters A,2016,380(1):15-21.
参考文献 31
SONG C J,ZHANG Y.Conserved quantities and adiabatic invariants for El-Nabulsi’s fractional Birkhoff system [J].International Journal of Theoretical Physics,2015,54(8):2481-2493.
参考文献 32
SONG C J,AGRAWAL O P.Hamiltonian formulation of systems described using fractional singular Lagrangian [J].Acta Applicandae Mathematicae,2021,172:9.
参考文献 33
梅凤翔.约束力学系统的对称性与守恒量 [M].北京:北京理工大学出版社,2004.MEI F X.Symmetries and conserved quantities of constrained mechanical systems [M].Beijing:Beijing Institute of Technology Press,2004.(in Chinese)
目录contents

    摘要

    对称性与守恒量可以简化动力学问题从而进一步求出力学系统的精确解,这样更加有利于研究动力学行为.分数阶模型相比于整数阶模型,能够描述复杂系统的动力学过程,因此在分数阶模型下研究对称性与守恒量是不可或缺的.首先介绍两个分数阶奇异系统,一个系统包含混合整数和Caputo分数阶导数,另一个系统仅含Caputo分数阶导数.由两个分数阶奇异系统分别给出两个分数阶固有约束,并给出对应的分数阶约束Hamilton方程.然后,基于微分方程在无限小变换下的不变性,给出了分数阶约束Hamilton方程Lie对称性的定义,导出了相应的确定方程,限制方程和附加限制方程.第三,建立并证明了两个分数阶约束Hamilton系统的Lie对称性定理,得到了相应的分数阶约束Hamilton系统的Lie守恒量.在特定条件下,本文所得结果可以退化为整数阶约束Hamilton系统的Lie守恒量.最后通过两个算例来说明此结果的应用.

    Abstract

    Symmetry and conserved quantity can simplify the dynamic problem and further obtain the exact solution of the mechanical system, which is more conducive to the study of dynamic behavior. Compared with the integer order model, the fractional model can describe the dynamic process of complex systems. Therefore, it is indispensable to study the symmetry and conserved quantities under the fractional model. Firstly, two fractional singular systems are introduced. One system contains mixed integers and Caputo fractional derivatives, and the other system contains only Caputo fractional derivatives. Two fractional inherent constraints are given by two fractional singular systems, and the corresponding fractional constrained Hamilton equation is given. Then, based on the invariance of differential equation under infinitesimal transformation, the definition of Lie symmetry of fractional constrained Hamilton equation is given, and the corresponding determined equation, restriction equation and additional constraint equation are derived. Thirdly, the Lie symmetry theorems of two fractional constrained Hamiltonian systems are established and proved, and the Lie conserved quantities of the corresponding fractional constrained Hamiltonian systems are obtained. Under certain conditions, the results obtained in this paper can be reduced to Lie conserved quantities of integer order constrained Hamiltonian systems. Finally, two examples are given to illustrate the application of this result.

  • 引言

  • 用奇异Lagrange函数描述的系统称为奇异系统,奇异Lagrange系统在过渡到相空间用Hamilton正则变量描述时,其正则变量之间存在固有约束,称为约束Hamilton系统[1].自然界基本相互作用中的量子动力学(QED)、量子味动力学(QFD)、量子色动力学(QCD)和引力理论(GR)都是由位形空间中的奇异Lagrange量来描述的,当过渡到相空间描述时即可归为约束Hamilton系统.奇异系统与凝聚态理论、规范场理论、相对论运动粒子、超重力与超弦理论等都有紧密的联系,因此奇异系统的基本理论在物理学中,特别是在现代量子场论中有着举足轻重的地位[1-3].Dirac[4]首先研究奇异Lagrange系统的正则方程,Bergmann等人也为该系统的动力学与量子化奠定了基础.

  • 对称性与守恒量有助于揭示动力学系统内在的物理性质,1979年Lutzky[5]首次将Lie方法引入动力学系统,研究了二阶动力系统在无限小变换下时间,坐标以及速度的不变性.之后Lie对称性也应用到其他领域,如Menini[6]利用Lie对称性的方法研究机器人逆运动学问题.近年来Lie对称性与守恒量的研究也取得了丰硕成果[7-16],特别地,Mei和Zhu[10]首先研究了奇异Lagrange系统的Lie对称性与守恒量,2001年张毅和薛纭进一步研究了仅含第二类约束的约束Hamilton系统的Lie对称性与守恒量[11].

  • 分数阶微积分在当今各个领域有着广泛的应用,例如流体力学、核磁共振成像、复杂粘弹性材料力学等都与其有着密切的联系[17-21].相比于整数阶模型,分数阶模型可以更加准确地描述复杂系统的动力学过程,比如过程具有历史记忆和空间相关性,其中应用较为广泛的主要有Riemann-Liouville分数阶算子、Caputo分数阶算子、Riesz分数阶算子.1996年Riewe[2223]首次将分数阶微积分应用于非保守力学系统动力学的研究,提出并初步研究了分数阶变分问题,建立了分数阶Hamilton方程和分数阶Lagrange方程.随后,Frederico和Lazo[24]研究混合整数和Caputo分数阶导数的分数阶变分问题,建立了对应的分数阶Euler-Lagrange方程,Agrawal[25]建立了Caputo分数阶导数对应的分数阶Euler-Lagrange方程.近年来,分数阶Lie对称性也取得一系列的重要成果[2627],Zhou等人研究了分数阶Hamilton系统的Lie对称性和守恒量[28],Fu和Sun等人也研究了非完整分数阶Hamilton系统的Lie对称性及其逆问题[2930].Song和Zhang[31]基于El-Nabulsi模型研究了分数阶Birkhoff系统的Lie对称性与Hojman守恒量和Noether守恒量.最近,Song[32]率先研究了包含混合整数和Caputo分数阶导数以及仅含Caputo分数阶导数的两个分数阶奇异系统,并建立了分数阶初等约束以及分数阶约束Hamilton方程.然而上述两个系统的Lie对称性与守恒量的研究目前尚未涉及,本工作将基于上述两种分数阶奇异系统,利用两个分数阶约束Hamilton方程在无限小变换下微分方程的解的不变性建立并证明了分数阶约束Hamilton系统的Lie对称性定理,研究并给出相应的分数阶守恒量.

  • 1 预备知识

  • 1.1 Riemann-Liouville和Caputo分数阶导数的定义

  • 给定函数ft)以及任意两个常数αβ满足n-1≤αβnn是整数,则Riemann-Liouville和Caputo分数阶导数有如下形式:

  • t1RLDtαf(t)=1Γ(n-α)ddtnt1t (t-ξ)n-a-1f(ξ)dξ
    (1)
  • tRLDt2β f(t)=1Γ(n-β)-ddtntt2 (ξ-t)n-β-1f(ξ)dξ
    (2)
  • t1CDtαf(t)=1Γ(n-α)t1t (t-ξ)n-α-1ddξnf(ξ)dξ
    (3)
  • tCDt2βf(t)=1Γ(n-β)tt2 (ξ-t)n-β-1-ddξnf(ξ)dξ
    (4)
  • 1.2 混合整数和Caputo分数阶导数下的约束Ham-ilton系统

  • 文献[24]给出了分数阶拉格朗日函数LWtqWq˙Wt1CDtαqW),及相应的方程

  • LWqWi-ddtLWq˙Wi+tRLDt2αLWt1CDtαqWi=0,i=1,2,n
    (5)
  • 其中,qW=qW1qW2qWnq˙W=q˙W1q˙W2q˙Wn t1CDtaqW=t1CDtaqW1t1CDtaqW2t1CDtaqWn.这里qWj为广义坐标,q˙Wj为广义速度,t1CDtaqWjqWj的Caputo分数阶导数,j=1,2,···n,0<α<1.由文献[32]我们定义以下的广义动量和Hamilton量:

  • pWi=LWt,qW,q˙W,t1CDtαqWq˙WipWiα=LWt,qW,q˙W,t1CDtαqWt1CDtαqWi
    (6)
  • HW=pWiq˙Wi+pWiαt1CDtαqWi-LWt,qW,q˙W,t1CDtαqW,i=1,2,,n
    (7)
  • 由方程(5)可得对应的Hess矩阵

  • HWij=2LWt,qW,q˙W,t1CDtαqWq˙Wiq˙Wj
    (8)
  • 当det[HWij]=0,Hess矩阵[HWij]是退化的,设[HWij]的秩为R,0≤Rn,然后由文献[32]可得,混合整数和Caputo分数阶导数的初级约束为

  • ϕWat,qW,pW,pWα=0
    (9)
  • ϕWaqWiδqWi+ϕWapWiδpWi+ϕWapWiaδpWiα=0
    (10)
  • 这里

  • qW=qW1, qW2, , qWn, pW=pW1, pW2, , pWn,

  • pWα=pW1α, pW2α, pWnα, a=1, 2, , n-R, 0R<n,

  • i=1, 2, , n.

  • 同时文献[32]给出混合整数和Caputo分数阶导数下的约束Hamilton方程:

  • q˙Wi=HWpWi+λWaϕWapWi,

  • p˙Wi=-HWqWi+tRLDt2αpWiα-λWaϕWaqWi,

  • t1CDtαqWi=HWpWiα+λWaϕWapWiα
    (11)
  • 这里

  • HW=tqWpWpWαqW=qW1qW2qWnpW=pW1pW2pWnpWα=pW1αpW2αpWnα λWa 是 Lagrange 乘子 a=1,2n-R0R<ni=1,2n.

  • 需要注意的是当Lagrange乘子λWa不能解出来时,方程(11)就不能确定,因此本文考虑分数阶约束Hamilton系统[32]仅含第二类约束,即假设约束(9)式为第二类约束[2],于是方程(11)中所有的Lagrange乘子λWa都完全确定.

  • 1.3 Caputo分数阶导数下的约束Hamilton系统

  • 文献[25]给出函数LUtqUt1CDtaqU,并且得到相应的方程

  • LUt, qUt1CDtaqUqUi+tRLDt2αLUt1CDtαqUi=0,

  • i=1,2,n
    (12)
  • 这里qU=qU1qU2qUnt1CDtαq=t1CDtαqU1t1CDtαqU2t1CDtαqUnqUj是广义坐标,t1CDtαqUjqUj的Caputo分数阶导数,j=1,2,n,0<α<1,由文献[32]我们定义以下的广义动量和Hamilton量:

  • pUi=LUt,qUt1CDtaqUt1CDtαqUi
    (13)
  • HU=pUit1CDtαqUi-LUt, qUt1CDtaqU

  • i=1,2,n
    (14)
  • 这里考虑LUtqUt1CDtaqU)是奇异的,即t1CDtαqUi只有一部分能解出来,假设可以解出个Rt1CDtαqUi,0≤Rn. 在上述条件下,由文献[32]可得Caputo分数阶约束Hamilton系统的初级约束为

  • ϕUat, qUj, pUj=0,

  • a=1,2,,n-R;0R<n;j=1,2,,n
    (15)
  • δϕUat,qU,pU=ϕUaqUiδqUi+ϕUapUiδpUi=0
    (16)
  • 同时由文献[32]可得Caputo分数阶约束Hamilton方程:

  • t1CDtαqUi=HUpUi+λUaϕUapUi,

  • tRLDt2αpUi=HUqUi+λUaϕUaqUi
    (17)
  • 这里

  • HU=tqUpUqU=qU1qU2qUnpU=pU1pU2pUn λUa 是 Lagrange 乘子,a=1,2n-R0R<ni=1,2n.

  • 同理,当Lagrange乘子λWa不能解出来时,方程(17)就不能确定,因此本文考虑分数阶约束Hamilton系统[32]仅含第二类约束,即假设约束(15)式为第二类约束[2],于是方程(17)中所有的Lagrange乘子λWa都完全确定.

  • 2 混合整数和Caputo分数阶导数下的Lie对称性和守恒量

  • 2.1 混合整数和Caputo分数阶导数的Lie对称性

  • 引入无限小变换群

  • t*=t+Δt, qWi*t*=qWi (t) +ΔqWi,

  • pWiα*t*=pWia (t) +ΔpWia,

  • pWi*t*=pWi(t)+ΔpWi
    (18)
  • 其展开式为

  • t*=t+θWξW0t, qW, pW, pWα+oθW

  • qWi*t*=qWi (t) +θWξWit, qW, pW, pWα+oθW

  • pWi*t*=pWi (t) +θWηWit, qW, pW, pWα+oθW

  • pWiα*t*=pWiα(t)+θWηWiαt,qW,pW,pWα+oθW
    (19)
  • 其中,θW是无限小参数,i=1,2,nξW0ξWiηWiηWiα称为混合整数和Caputo分数阶导数的无限小生成元.

  • 引入无限小生成元向量

  • XW(0)=ξW0t+ξWiqWi+ηWipWi+ηWiapWia
    (20)
  • 展开方程(11),令

  • q˙Wi=kWit,qW,pW,pWα
    (21a)
  • t1CDtαqWi=sWit,qW,pW,pWα
    (21b)
  • p˙Wi=tRLDt2αpWiα+fWit,qW,pW,pWα
    (21c)
  • 由方程式(21)在无限小变换式(19)下的不变性可得

  • XW(0)kWi=ξ˙Wi-q˙Wiξ˙W0
    (22)
  • XW (0) sWi=t1CDtαξWi-q˙WiξW0+

  • ξW0ddtt1CDtαqWi-t-t1-αΓ(1-α)q˙Wit1ξW0t1
    (23)
  • XW (0) fWi=-p˙Wiξ˙W0+η˙Wi-tRLDt2αηWia-

  • p˙WiaξW0-ξW0ddttRLDt2αpWia+

  • pWiαt2ξW0t2Γ(1-α)ddtt2-t-α
    (24)
  • 约束式(9)在无限小变换式(19)下的不变性归结为

  • XW(0)ϕWat,qW,pW,pWαϕWa=0=0=0
    (25)
  • 称式(22)~式(24)为确定方程,式(25)为限制方程.

  • 定义1  若无限小生成元ξW0ξWiηWiηWia满足确定方程(22)~(24),则称相应的对称性为混合整数和Caputo分数阶导数的分数阶约束Hamilton系统相应的自由Hamilton系统(11)式的Lie对称性.

  • 定义2  若无限小生成元ξW0ξWiηWiηWia满足确定方程(22)~(24)和限制方程(25),则称相应的对称性为混合整数和Caputo分数阶导数的分数阶约束Hamilton系统的弱Lie对称性.

  • 单从微分方程在无限小变换下的不变性考虑,上述定义的弱Lie对称性就是通常理解的Lie对称性.但若考虑到微分方程的导出过程,需对无限小生成元施加另外的限制即式(10),所以必须定义另外的Lie对称性.

  • 将由变换(19)确定的等时变分代入式(10),有

  • ϕWaqWiξWi-q˙WiξW0+ϕWapWiηWi-p˙WiξW0+

  • ϕWapWiαηWiα-p˙WiaξW0=0
    (26)
  • 称方程(26)为附加限制方程.

  • 定义3  若无限小生成元ξW0ξWiηWiηWia满足确定方程(22)~(24),限制方程(25)和附加限制方程(26),则称相应的对称性为混合整数和Caputo分数阶导数的分数阶约束Hamilton系统的强Lie对称性.

  • 2.2 混合整数和Caputo分数阶导数的守恒量

  • 对于分数阶约束Hamilton系统,Lie对称性不一定导致守恒量,然而在一些条件下,可以由Lie对称性推出守恒量,并且不同的条件导致的守恒量也不同.下面将给出弱Lie对称性守恒量和强Lie对称性守恒量.

  • 定理1 对于满足确定方程(22)~(24)的无限小生成元ξW0ξWiηWiηWia,如果存在规范函数GW=GWtqWpWpWa)满足结构方程

  • pWiξ˙Wi+pWiat1CDtαξWi-q˙WiξW0+

  • pWiαddtt1CDtαqWi-HWtξW0-HWqWiξWi+

  • pWiαt1CDtαqWi-HWξ˙W0-

  • pWiαt-t1-αΓ (1-α) q˙Wit1ξW0t1+

  • λWaϕWapWiαηWiα+λWaϕWapWiηWi=-G˙W
    (27)
  • 则与混合整数和Caputo分数阶导数的分数阶约束Hamilton系统相应的自由Hamilton系统(11)式存在如下形式的守恒量:

  • IW=pWiξWi+pWiat1CDtαqWi-HWξW0+

  • t1t pWiat1CDταξWi-q˙WiξW0-ξWi-

  • q˙Wiξ0τRLDt2αpWiαdτ-t1t pWiαΓ (1-α) (τ-

  • t1-aq˙Wit1ξW0t1dτ+GW= const
    (28)
  • 证明:由式(9)~式(11)和式(27)得ddtIW=0.

  • 定理2 对于满足确定方程(22)~(24)和限制方程(25)的无限小生成元ξW0ξWiηWiηWia,如果存在规范函数GW=GWtqWpWpWα)满足结构方程(27),则混合整数和Caputo分数阶导数的分数阶约束Hamilton系统存在形如式(28)的弱Lie对称性守恒量.

  • 定理3 对于满足确定方程(22)~(24),限制方程(25)和附加限制方程(26)的无限小生成元ξW0ξWiηWiηWia,如果存在规范函数GW=GWtqWpWpWα)满足结构方程,则混合整数和Caputo分数阶导数的分数阶约束Hamilton系统存在形如式(28)的强Lie对称性守恒量.

  • 3 Caputo分数阶导数的Lie对称性和守恒量

  • 3.1 Caputo分数阶导数的Lie对称性

  • 引入无限小变换群

  • t*=t+Δt,

  • qUi*t*=qUi (t) +ΔqUi,

  • pUi*t*=pUi(t)+ΔpUi
    (29)
  • 其展开式为

  • t*=t+θUξU0t, qU, pU+oθU

  • qUi*t*=qUi (t) +θUξUit, qU, pU+oθU

  • pUi*t*=pUi(t)+θUηUit,qU,pU+oθU
    (30)
  • 其中,θU是无限小参数,ξU0ξUiηUi是无限小生成元.

  • 引入无限小生成元向量

  • XU(0)=ξU0t+ξUiqUi+ηUipUi
    (31)
  • 展开方程(17),令

  • t1CDtαqUi=sUit,qU,pU
    (32a)
  • tRLDt2αpUi=hUit,qU,pU
    (32b)
  • 由方程(32)在无限小变换(30)下的不变性可得

  • t1CDtαξUi-q˙UiξU0+ξU0ddtt1CDtαqUi-

  • t-t1-αΓ(1-α)q˙Uit1ξU0t1=XU(0)sUi
    (33)
  • tRLDt2αηUi-p˙UiξU0+ξU0ddttRLDt2αpUi-

  • ξU0t2pUit2Γ(1-α)ddtt2-t-α=XU(0)hUi
    (34)
  • 约束(15)式在无限小变换(30)下的不变性归结为

  • XU(0)ϕUat,qU,pUϕUa=0=0
    (35)
  • 称式(33)和式(34)为确定方程,式(35)为限制方程.

  • 定义4  若无限小生成元ξU0ξUiηUi满足确定方程(33)和(34),则称相应的对称性为Caputo分数阶导数的约束Hamilton系统相应的自由Hamilton系统(17)式的Lie对称性.

  • 定义5  若无限小生成元ξU0ξUiηUi满足确定方程(33)、方程(34)和限制方程(35),则称相应的对称性为Caputo分数阶导数的约束Hamilton系统的弱Lie对称性.

  • 单从微分方程在无限小变换下的不变性考虑,上述定义的弱Lie对称性就是通常理解的Lie对称性.但若考虑到微分方程的导出过程,需对无限小生成元施加另外的限制即式(16),所以必须定义另外的Lie对称性.

  • 将由变换(30)确定的等时变分代入式(16),有

  • ϕUaqUiξUi-q˙UiξU0+ϕUapUiηUi-p˙UiξU0=0
    (36)
  • 称方程(36)为附加限制方程.

  • 定义6  若无限小生成元ξU0ξUiηUi满足确定方程(33)、方程(34)、限制方程(35)和附加限制方程(36),则称相应的对称性为Caputo分数阶导数的约束Hamilton系统的强Lie对称性.

  • 3.2 Caputo分数阶导数的守恒量

  • 对于Caputo分数阶导数的约束Hamilton系统,Lie对称性不一定导致守恒量,然而在一些条件下,可以由Lie对称性推出守恒量,并且不同的条件导致的守恒量也不同.下面将给出弱Lie对称性守恒量和强Lie对称性守恒量.

  • 定理4  对于满足确定方程(33)和(34)的无限小生成元ξU0,ξUi,ηUi,如果存在规范函数GU=GUt,qUpU)满足结构方程

  • pUit1CDtαξUi-q˙UiξU0+pUit1CDtαqUi-HUξ˙U0+

  • λUaϕUapUiηUi-pUiΓ (1-α) t-t1-αq˙Uit1ξU0t1+

  • pUiddtt1CDtαqUi-HUtξU0-HUqUiξUi=-G˙U
    (37)
  • 则与Caputo分数阶导数的约束Hamilton系统相应的自由Hamilton系统(17)式存在如下形式的守恒量:

  • IU=pUit1CDtαqUi-HUξU0+t1t pUit1CDtαξUi-

  • q˙UiξU0-ξUi-q˙UiξU0τRLDt2αpUidτ-

  • t1t pUiΓ (1-α) τ-t1-αq˙Uit1ξU0t1dτ+

  • GU= const
    (38)
  • 证明:由式(15)~(17)和式(37)得ddtIu=0.

  • 定理5  对于满足确定方程(33)、方程(34)和限制方程(35)的无限小生成元ξU0,ξUi,ηUi,如果存在规范函数GU=GUt,qUpU)满足结构方程(37),则Caputo分数阶导数的约束Hamilton系统存在形如式(38)的弱Lie对称性守恒量.

  • 定理6  对于满足确定方程(33)、方程(34)、限制方程(35)和附加限制方程(36)的无限小生成元ξU0,ξUi,ηUi,如果存在规范函数GU=GUt,qUpU)满足结构方程,则Caputo分数阶导数的约束Hamilton系统存在形如式(38)的强Lie对称性守恒量.

  • 4 算例

  • 例1 系统的Lagrange函数为

  • LW=q˙W1qW2-qW1q˙W2+qW12+qW22+

  • 12t1CDtαqW12+t1CDtαqW22
    (39)
  • 试研究该系统的Lie对称性与守恒量.

  • 由式(6)和式(7)得系统的广义动量和Hamilton量

  • pW1=LWq˙W1=qW2, pW2=LWq˙W2=-qW1

  • pW1α=LWt1CDtαqW1=t1CDtαqW1

  • pW2α=LWt1cDtαqW2=t1CDtαqW2

  • HW=pW1q˙W1+pW2q˙W2+pW1αt1CDtαqW1
    (40)
  • HW=pW1q˙W1+pW2q˙W2+pW1αt1CDtαqW1+

  • pW2αt1CDtαqW2-LW=12pW1α2+pW2α2-

  • qW12-qW22
    (41)
  • 由det[HWij]=0,可得Lagrange函数是奇异的,故由式(9)得到两个约束[32]

  • ϕW1=pW1-qW2,ϕW2=pW2+qW1
    (42)
  • 并且由约束的相容性条件可得Lagrange乘子[32]

  • λW1=-qW2-12tRLDt2αpW2α

  • λW2=qW1+12tRLDt2αpW1α
    (43)
  • 由式(11)可得混合整数和Caputo分数阶导数的分数阶约束Hamilton方程[32]

  • q˙W1=-qW2-12tRLDt2αpW2α, q˙W2=qW1+12tRLDt2αpW1α

  • p˙W1=qW1+12tRLDt2αpW1α, p˙W2=qW2+12tRLDt2αpW2a

  • t1CDtαqW1=pW1α,t1CDtαqW2=pW2α
    (44)
  • 由确定方程(22)~(24)得

  • ξ˙W1-q˙W1ξ˙W0=-ξW2, ξ˙W2-q˙W2ξ˙W0=ξW1

  • t1CDtαξW1-q˙W1ξW0+ξW0ddtt1CDtαqW1-1Γ (1-α) ×

  • t-t1-αq˙W1t1ξW0t1=ηW1α

  • t1CDtαξW2-q˙W2ξW0+ξW0ddtt1CDtαqW2-

  • 1Γ (1-α) t-t1-αq˙W2t1ξW0t1=ηW2α

  • -p˙W1ξ˙W0+η˙W1-tRLDt2αηW1a-p˙W1aξW0-ξW0×

  • ddttRLDt2αpW1α+pW1αt2ξW0t2Γ (1-α) ddtt2-t-α=

  • =ξW1

  • -p˙W2ξ˙W0+η˙W2-tRLDt2αηW2α-p˙W2αξW0-

  • ξW0ddttRLDt2αpW2α+pW2αt2ξW0t2Γ (1-α) ×

  • ddtt2-t-α=ξW2
    (45)
  • 式(45)有如下解

  • ξW0=-1, ξW1=ξW2=0

  • ηW1=ηW2=0,ηW1α=ηW2α=0
    (46)
  • 由限制方程(25)式可知

  • XW (0) ϕW1=ηW1-ξW2=0

  • XW(0)ϕW2=ηW2+ξW1=0
    (47)
  • 由附加限制方程(26)式可知

  • ηW1-ξW2+q˙W2-p˙W1ξW0=0

  • ηW2+ξW1-q˙W1+p˙W2ξW0=0
    (48)
  • 生成元(46)式对应的规范函数为

  • GW=0
    (49)
  • 最后,由式(28)、式(46)和式(49)得

  • IW=t1t pW1αddτt1CDταqW1+pW2αddτt1CDταqW2-

  • q˙W1τRLDt2αpW1α-q˙W2τRLDt2αpW2αdτ-

  • 12pW1α2+12pW2α2+qW12+qW22
    (50)
  • 易验证,无限小生成元(46)式满足条件(47)式和(48)式,对应分数阶Hamilton系统的强Lie对称性,守恒量(50)式为分数阶Hamilton系统的强Lie对称性守恒量.

  • 例2 系统的Lagrange函数为

  • LU=qU2t1CDtαqU1-qU1t1CDtαqU2+

  • qU12+qU22
    (51)
  • 试研究该系统的Lie对称性与守恒量.

  • 由式(12)得

  • tRLDt2αqU2=-2qU1+t1CDtαqU2

  • tRLDt2αqU1=2qU2+t1CDtαqU1
    (52)
  • 由式(13)和式(14)得系统的广义动量和Hamilton量

  • pU1=LUt1CDtαqU1=qU2,pU2=LUt1CDtαqU2=-qU1
    (53)
  • HU=-qU12-qU22
    (54)
  • 由det[HUij]=0,可得Lagrange函数是奇异的,故由式(15)得到两个约束[32]

  • ϕU1=pU1-qU2=0,ϕU2=pU2+qU1=0
    (55)
  • 并且由约束的相容性条件式可得Lagrange乘子[32]

  • -2qU1q˙U2+2λU2q˙U2-p˙U1t1CDtαqU2-

  • q˙U2tRLDt2αpU1=0

  • 2q˙U1qU2+2λU1q˙U1+p˙U2ct1CDtαqU1+

  • q˙U1tRLDt2αpU2=0
    (56)
  • 所以由式(17)可给出Caputo分数阶导数的约束Hamilton方程[32]

  • 2q˙U1t1cDtαqU1=-2q˙U1qU2-p˙U2t1cDtαqU1-q˙U1tRLDt2αpU2

  • 2q˙U2t1CDtαqU2=2qU1q˙U2+p˙U1t1cDtαqU2+q˙U2tRLDt2αpU1

  • 2q˙U2tRLDt2αpU1=-2qU1q˙U2+p˙U1t1cDtαqU2+q˙U2tRLDt2αpU1

  • 2q˙U1tRLDt2αpU2=-2q˙U1qU2+p˙U2t1cDtαqU1+q˙U1tRLDt2αpU2
    (57)
  • 由确定方程(33)和(34)得

  • t1cDtαξU1-q˙U1ξU0+ξU0ddtt1cDtαqU1-

  • t-t1-αΓ (1-α) q˙U1t1ξU0t1=-2ξU2,

  • t1cDtαξU2-q˙U2ξU0+ξU0ddtt1cDtαqU2-

  • t-t1-αΓ (1-α) q˙U2t1ξU0t1=2ξU1,

  • tRLDt2αηU1-p˙U1ξU0+ξU0ddttRLDt2αpU1-

  • ξU0t2pU1t2Γ (1-α) ddtt2-t-α=-2ξU1,

  • tRLDt2αηU2-p˙U2ξU0+ξU0ddttRLDt2αpU2-

  • ξU0t2pU2t2Γ(1-α)ddtt2-t-α=-2ξU2
    (58)
  • 式(58)有如下解

  • ξU0=-1,ξU1=ξU2=0,ηU1=ηU2=0
    (59)
  • 由限制方程(35)式可知

  • XU (0) ϕU1=XU (0) pU1-qU2=ηU1-ξU2=0

  • XU(0)ϕU2=XU(0)pU2+qU1=ηU2+ξU1=0
    (60)
  • 由附加限制方程(36)式可知

  • ηU1-ξU2+q˙U2-p˙U1ξU0=0

  • ηU2+ξU1-q˙U1+p˙U2ξU0=0
    (61)
  • 生成元(59)式对应的规范函数为

  • GU=0
    (62)
  • 最后,由式(38)、式(59)和式(62)得

  • IU=t1t pU1ddτt1CDταqU1+pU2ddτt1CDταqU2dτ-

  • pU1t1CDταqU1+pU2t1CDταqU2+qU12+qU22
    (63)
  • 易验证,无限小生成元式(59)满足条件式(60)和式(61),对应Caputo分数阶约束Hamilton系统的强Lie对称性,守恒量(63)式为Caputo分数阶约束Hamilton系统的强Lie对称性守恒量.

  • 例3 分数阶奇异系统的Lagrange函数为

  • LU=12qU1t1CDtαqU2-qU2t1CDtαqU1-α2qU1+

  • α1qU2+β1expqU2-β2expqU1
    (64)
  • 其中α1α2β1β2为常数,研究该系统Lie对称性与守恒量.

  • 由式(12)得

  • 12t1CDtαqU2-tRLDt2αqU2=α2+β2expqU1

  • 12t1CDtαqU1-tRLDt2αqU1=α1+β1expqU2
    (65)
  • 此时式(65)为Caputo分数阶的Lotka生化振子模型.

  • 由式(13)和式(14)得系统的广义动量和Hamilton量

  • pU1=Lt1CDtαqU1=-12qU2

  • pU2=Lt1CDtαqU2=12qU1
    (66)
  • HU=α2qU1-α1qU2-β1expqU2+

  • β2expqU1
    (67)
  • 由式(15)得到两个约束

  • ϕU1=pU1+12qU2=0,ϕU2=pU2-12qU1=0
    (68)
  • 由约束的相容性条件可得所有的Lagrange乘子[32]

  • λU1=α1+β1expqU2+tRLDt2αpU2+12t1CDtαqU1

  • λU2=α2+β2expqU1-tRLDt2αpU1+12t1CDtαqU2
    (69)
  • 所以由式(17)得到Caputo分数阶约束Hamilton方程

  • t1CDtαqU1=2α1+β1expqU2+2tRLDt2αpU2,

  • t1CDtαqU2=2α2+β2expqU1-2tRLDt2αpU1
    (70)
  • 取生成元

  • ξU0=-1,ξU1=ξU2=0,ηU1=ηU2=0
    (71)
  • 满足确定方程(33)和(34).

  • 由限制方程(35)式得

  • XU (0) ϕU1=ηU1+12ξU2=0

  • XU(0)ϕU2=ηU2-12ξU1=0
    (72)
  • 由附加限制方程(36)式得

  • 12ξU2+ηU1-12q˙U2+p˙U1ξU0=0

  • -12ξU1+ηU2+12q˙U1-p˙U2ξU0=0
    (73)
  • 并且生成元(71)式对应的规范函数为

  • GU=0
    (74)
  • 由式(38)、式(71)和式(74)得

  • IU=t1t pU1ddτt1CDταqU1+pU2ddτt1CDταqU2dτ-

  • pU1t1CDtαqU1+pU2ct1CDtαqU2-α2qU1+α1qU2+

  • β1expqU2-β2expqU1=const
    (75)
  • 易验证,无限小生成元式(71)满足限制方程(72)和附加限制方程(73),对应Caputo分数阶约束Hamilton系统的强Lie对称性,守恒量(75)式为该系统的强Lie对称性守恒量.当α1时退化为整数阶Lotka生化振子模型,这与文献[33]的结果一致.

  • 5 结论

  • 分数阶微积分得到越来越广泛的应用,将分数阶模型应用到力学系统,能够更准确的描述系统的力学与物理行为.奇异系统也一直受人关注,如自然界基本相互作用中的电磁场,引力场,杨-Mills场,超对称,超引力,量子电动力学(QED)等理论都存在用奇异Lagrange量描述的系统.文章提出并研究了两个分数阶约束Hamilton系统的Lie定理.文章主要贡献在于:

  • 一是给出两个分数阶约束Hamilton系统的Lie对称性定义和确定方程,并给出相应的限制方程以及附加限制方程,从而提出相应的弱Lie对称性和强Lie对称性的概念.主要结果:六个定义,两个限制方程以及两个附加限制方程.

  • 二是提出并证明了两个分数阶约束Hamilton系统的Lei对称性定理.主要结果:六个定理,Lie对称性守恒量.

  • 三是当α1时,仅含Caputo分数阶导数的分数阶约束Hamilton方程(17)、限制方程(35)、附加限制方程(36)和Caputo分数阶约束Hamilton系统的Lie定理(定理4~定理6)就退化为经典整数阶情况,这与文献[11]的结果一致.

  • 此外,该系统的Lie对称性能否直接导致Hojman守恒量有待研究; 分数阶奇异系统的问题值得研究,如分数阶奇异系统的Mei对称性,时间尺度上分数阶奇异系统的对称性,广义算子下奇异系统的对称性等.

  • 参考文献

    • [1] DIRAC P A M.Lecture on quantum mechanics [M].New York:Yeshiva University,1964.

    • [2] 李子平.经典和量子约束系统及其对称性质 [M].北京:北京工业大学出版社,1993.LI Z P.Classical and quantal dynamics of constrained systems and their symmetrical properties [M].Beijing:Beijing Polytechnic University Press,1993.(in Chinese)

    • [3] 李子平.约束哈密顿系统及其对称性质 [M].北京:北京工业大学出版社,1999.LI Z P.Constrained Hamiltonian systems and their symmetrical properties [M].Beijing:Beijing Polytechnic University Press,1999.(in Chinese)

    • [4] DIRAC P A M.Generalized Hamiltonian dynamics [J].Canadian Journal of Math,1950,2:129-148.

    • [5] LUTZKY M.Dynamical symmetries and conserved quantities [J].Journal of Physics A:Mathematical and General,1979,12(7):973-981.

    • [6] MENINI L,TORNAMBÈ A.A Lie symmetry approach for the solution of the inverse kinematics problem [J].Nonlinear Dynamics,2012,69(4):1965-1977.

    • [7] MEI F X.Lie symmetries and conserved quantities of constrained mechanical systems [J].Acta Mechanica,2000,141:135-148.

    • [8] 梅凤翔.李群和李代数对约束力学系统的应用 [M].北京:科学出版社,1999.MEI F X.Applications of Lie groups and Lie algebras to constrained mechanical systems [M].Beijing:Science Press,1999.(in Chinese)

    • [9] 徐瑞莉,方建会,张斌,等.Chetaev型非完整系统Nielsen方程Lie对称性导致的一种守恒量 [J].动力学与控制学报,2014,12(1):13-17.XU R L,FANG J H,ZHANG B,et al.A type of conserved quantity of Lie symmetry for nonholonomic system of Nielsen equation of Chetaev’s type [J].Journal of Dynamics and Control,2014,12(1):13-17.(in Chinese)

    • [10] MEI F X,ZHU H P.Lie symmetries and conserved quantities for the singular Lagrange system [J].Journal of Beijing Institute of Technology,2000,9(1):1901-1903.

    • [11] 张毅,薛纭.仅含第二类约束的约束Hamilton系统的Lie对称性 [J].物理学报,2001,50(5):816-819.ZHANG Y,XUE Y.Lie symmetries of constrained Hamiltonian system with the second type of constraints [J].Acta Physica Sinica,2001,50(5):816-819.(in Chinese)

    • [12] 徐超,李元成.奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量 [J].物理学报,2013,62(17):171101.XU C,LI Y C.Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints [J].Acta Physica Sinica,2013,62(17):171101.(in Chinese)

    • [13] 徐超,李元成.奇异Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量 [J].物理学报,2013,62(12):120201.XU C,LI Y C.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev’type [J].Acta Physica Sinica,2013,62(12):120201.(in Chinese)

    • [14] 罗绍凯.奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性 [J].物理学报,2004,53(1):5-10.LUO S K.Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system [J].Acta Physica Sinica,2004,53(1):5-10.(in Chinese)

    • [15] 周景润,傅景礼.约束Hamilton系统的Lie对称性及其在场论中的应用 [J].应用数学和力学,2019,40(7):810-822.Zhou J R,Fu J L.Lie symmetry of constrained Hamiltonian systems and its application in field theory [J].Applied Mathematics and Mechanics,2019,40(7):810-822.(in Chinese)

    • [16] 张毅,田雪,翟相华,等.时间尺度上Lagrange系统的Hojman守恒量 [J].力学学报,2021,53(10):2814-2822.ZHANG Y,TIAN X,ZHAI X H,et al.Hojman conserved quantity for time scales Lagrange systems [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(10):2814-2822.(in Chinese)

    • [17] OLDHAM K B,SPANIER J.The fractional calculus [M].New York:Academic Press,1974.

    • [18] 罗绍凯.分数阶动力学的分析力学方法及其应用 [J].动力学与控制学报,2019,17(5):432-438.LUO S K.Analytical mechanics method of fractional dynamics and its applications [J].Journal of Dynamics and Control,2019,17(5):432-438.(in Chinse)

    • [19] 尹耀得,赵德敏,刘建林,等.丙烯酸弹性体的率相关分数阶黏弹性模型研究 [J].力学学报,2022,54(1):155-163.YIN Y D,ZHAO D M,LIU J L,et al.Study on the rate dependency of acrylic elastomer based fractional viscoelastic model [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(1):155-163.(in Chinese)

    • [20] 司辉,郑永爱.分数阶混沌系统的自适应预测同步 [J].动力学与控制学报,2021,19(5):8-12.SI H,ZHENG Y A.Adaptive predictive synchronization of fractional order chaotic systems [J].Journal of Dynamics and Control,2021,19(5):8-12.(in Chinese)

    • [21] 宋传静.广义分数阶受迫Birkhoff方程 [J].动力学与控制学报,2019,17(5):446-452.SONG C J.Generalized fractional forced Birkhoff equations [J].Journal of Dynamics and Control,2019,17(5):446-452.(in Chinese)

    • [22] RIEWE F.Nonconservative Lagrangian and Hamiltonian mechanics [J].Physical Review E,1996,53(2):1890-1899.

    • [23] RIEWE F.Mechanics with fractional derivatives [J].Physical Review E,1997,55(3):3581-3592.

    • [24] FREDERICO G S F,LAZO M J.Fractional Noether's theorem with classical and caputo derivatives:constants of motion for non-conservative systems [J].Nonlinear Dynamics,2016,85(2):839-851.

    • [25] AGRAWAL O P.Fractional variational calculus and the transversality conditions [J].Journal of Physics A General Physics.2006,39(33):10375-10384.

    • [26] 张孝彩,张毅.基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量 [J].中山大学学报(自然科学版),2016,55(3):97-101.ZHANG X C,ZHANG Y.Lie symmetry and conserved quantity of fractional Lagrange system based on El-Nabulsi models [J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(3):97-101.(in Chinese)

    • [27] JIA Y D,ZHANG Y.Fractional Birkhoffian dynamics based on quasi-fractional dynamics models and its Lie symmetry [J].Transactions of Nanjing University of Aeronautics and Astronautics,2021,38(1):84-95.

    • [28] ZHOU S,FU H,FU J L.Symmetry theories of Hamiltonian systems with fractional derivatives [J].Science China Physics,Mechanics & Astronomy,2011,54(10):1847-1853.

    • [29] SUN Y,CHEN B Y,FU J L.Lie symmetry theorem of fractional nonholonomic systems [J].Chinese Physics B,2014,23(11):111-117.

    • [30] FU J L,FU L P,CHEN B Y.Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives [J].Physics Letters A,2016,380(1):15-21.

    • [31] SONG C J,ZHANG Y.Conserved quantities and adiabatic invariants for El-Nabulsi’s fractional Birkhoff system [J].International Journal of Theoretical Physics,2015,54(8):2481-2493.

    • [32] SONG C J,AGRAWAL O P.Hamiltonian formulation of systems described using fractional singular Lagrangian [J].Acta Applicandae Mathematicae,2021,172:9.

    • [33] 梅凤翔.约束力学系统的对称性与守恒量 [M].北京:北京理工大学出版社,2004.MEI F X.Symmetries and conserved quantities of constrained mechanical systems [M].Beijing:Beijing Institute of Technology Press,2004.(in Chinese)

  • 参考文献

    • [1] DIRAC P A M.Lecture on quantum mechanics [M].New York:Yeshiva University,1964.

    • [2] 李子平.经典和量子约束系统及其对称性质 [M].北京:北京工业大学出版社,1993.LI Z P.Classical and quantal dynamics of constrained systems and their symmetrical properties [M].Beijing:Beijing Polytechnic University Press,1993.(in Chinese)

    • [3] 李子平.约束哈密顿系统及其对称性质 [M].北京:北京工业大学出版社,1999.LI Z P.Constrained Hamiltonian systems and their symmetrical properties [M].Beijing:Beijing Polytechnic University Press,1999.(in Chinese)

    • [4] DIRAC P A M.Generalized Hamiltonian dynamics [J].Canadian Journal of Math,1950,2:129-148.

    • [5] LUTZKY M.Dynamical symmetries and conserved quantities [J].Journal of Physics A:Mathematical and General,1979,12(7):973-981.

    • [6] MENINI L,TORNAMBÈ A.A Lie symmetry approach for the solution of the inverse kinematics problem [J].Nonlinear Dynamics,2012,69(4):1965-1977.

    • [7] MEI F X.Lie symmetries and conserved quantities of constrained mechanical systems [J].Acta Mechanica,2000,141:135-148.

    • [8] 梅凤翔.李群和李代数对约束力学系统的应用 [M].北京:科学出版社,1999.MEI F X.Applications of Lie groups and Lie algebras to constrained mechanical systems [M].Beijing:Science Press,1999.(in Chinese)

    • [9] 徐瑞莉,方建会,张斌,等.Chetaev型非完整系统Nielsen方程Lie对称性导致的一种守恒量 [J].动力学与控制学报,2014,12(1):13-17.XU R L,FANG J H,ZHANG B,et al.A type of conserved quantity of Lie symmetry for nonholonomic system of Nielsen equation of Chetaev’s type [J].Journal of Dynamics and Control,2014,12(1):13-17.(in Chinese)

    • [10] MEI F X,ZHU H P.Lie symmetries and conserved quantities for the singular Lagrange system [J].Journal of Beijing Institute of Technology,2000,9(1):1901-1903.

    • [11] 张毅,薛纭.仅含第二类约束的约束Hamilton系统的Lie对称性 [J].物理学报,2001,50(5):816-819.ZHANG Y,XUE Y.Lie symmetries of constrained Hamiltonian system with the second type of constraints [J].Acta Physica Sinica,2001,50(5):816-819.(in Chinese)

    • [12] 徐超,李元成.奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量 [J].物理学报,2013,62(17):171101.XU C,LI Y C.Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints [J].Acta Physica Sinica,2013,62(17):171101.(in Chinese)

    • [13] 徐超,李元成.奇异Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量 [J].物理学报,2013,62(12):120201.XU C,LI Y C.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev’type [J].Acta Physica Sinica,2013,62(12):120201.(in Chinese)

    • [14] 罗绍凯.奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性 [J].物理学报,2004,53(1):5-10.LUO S K.Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system [J].Acta Physica Sinica,2004,53(1):5-10.(in Chinese)

    • [15] 周景润,傅景礼.约束Hamilton系统的Lie对称性及其在场论中的应用 [J].应用数学和力学,2019,40(7):810-822.Zhou J R,Fu J L.Lie symmetry of constrained Hamiltonian systems and its application in field theory [J].Applied Mathematics and Mechanics,2019,40(7):810-822.(in Chinese)

    • [16] 张毅,田雪,翟相华,等.时间尺度上Lagrange系统的Hojman守恒量 [J].力学学报,2021,53(10):2814-2822.ZHANG Y,TIAN X,ZHAI X H,et al.Hojman conserved quantity for time scales Lagrange systems [J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(10):2814-2822.(in Chinese)

    • [17] OLDHAM K B,SPANIER J.The fractional calculus [M].New York:Academic Press,1974.

    • [18] 罗绍凯.分数阶动力学的分析力学方法及其应用 [J].动力学与控制学报,2019,17(5):432-438.LUO S K.Analytical mechanics method of fractional dynamics and its applications [J].Journal of Dynamics and Control,2019,17(5):432-438.(in Chinse)

    • [19] 尹耀得,赵德敏,刘建林,等.丙烯酸弹性体的率相关分数阶黏弹性模型研究 [J].力学学报,2022,54(1):155-163.YIN Y D,ZHAO D M,LIU J L,et al.Study on the rate dependency of acrylic elastomer based fractional viscoelastic model [J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(1):155-163.(in Chinese)

    • [20] 司辉,郑永爱.分数阶混沌系统的自适应预测同步 [J].动力学与控制学报,2021,19(5):8-12.SI H,ZHENG Y A.Adaptive predictive synchronization of fractional order chaotic systems [J].Journal of Dynamics and Control,2021,19(5):8-12.(in Chinese)

    • [21] 宋传静.广义分数阶受迫Birkhoff方程 [J].动力学与控制学报,2019,17(5):446-452.SONG C J.Generalized fractional forced Birkhoff equations [J].Journal of Dynamics and Control,2019,17(5):446-452.(in Chinese)

    • [22] RIEWE F.Nonconservative Lagrangian and Hamiltonian mechanics [J].Physical Review E,1996,53(2):1890-1899.

    • [23] RIEWE F.Mechanics with fractional derivatives [J].Physical Review E,1997,55(3):3581-3592.

    • [24] FREDERICO G S F,LAZO M J.Fractional Noether's theorem with classical and caputo derivatives:constants of motion for non-conservative systems [J].Nonlinear Dynamics,2016,85(2):839-851.

    • [25] AGRAWAL O P.Fractional variational calculus and the transversality conditions [J].Journal of Physics A General Physics.2006,39(33):10375-10384.

    • [26] 张孝彩,张毅.基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量 [J].中山大学学报(自然科学版),2016,55(3):97-101.ZHANG X C,ZHANG Y.Lie symmetry and conserved quantity of fractional Lagrange system based on El-Nabulsi models [J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(3):97-101.(in Chinese)

    • [27] JIA Y D,ZHANG Y.Fractional Birkhoffian dynamics based on quasi-fractional dynamics models and its Lie symmetry [J].Transactions of Nanjing University of Aeronautics and Astronautics,2021,38(1):84-95.

    • [28] ZHOU S,FU H,FU J L.Symmetry theories of Hamiltonian systems with fractional derivatives [J].Science China Physics,Mechanics & Astronomy,2011,54(10):1847-1853.

    • [29] SUN Y,CHEN B Y,FU J L.Lie symmetry theorem of fractional nonholonomic systems [J].Chinese Physics B,2014,23(11):111-117.

    • [30] FU J L,FU L P,CHEN B Y.Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives [J].Physics Letters A,2016,380(1):15-21.

    • [31] SONG C J,ZHANG Y.Conserved quantities and adiabatic invariants for El-Nabulsi’s fractional Birkhoff system [J].International Journal of Theoretical Physics,2015,54(8):2481-2493.

    • [32] SONG C J,AGRAWAL O P.Hamiltonian formulation of systems described using fractional singular Lagrangian [J].Acta Applicandae Mathematicae,2021,172:9.

    • [33] 梅凤翔.约束力学系统的对称性与守恒量 [M].北京:北京理工大学出版社,2004.MEI F X.Symmetries and conserved quantities of constrained mechanical systems [M].Beijing:Beijing Institute of Technology Press,2004.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码