en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

黄帅,E-mail:huangshuai9228@126.com

中图分类号:TB559

文献标识码:A

文章编号:1672-6553-2023-21(7)-051-008

DOI:10.6052/1672-6553-2022-048

参考文献 1
GOR'KOV L P.On the forces acting on a small particle in an acoustical field in an ideal fluid [J].Soviet Physics Doklady,1962,6(1):773.
参考文献 2
LAM K H,HSU H,LI Y,et al.Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application [J].Biotechnology and Bioengineering,2013,110(3):881-886.
参考文献 3
FORESTI D,POULIKAKOS D.Acoustophoretic contactless elevation,orbital transport and spinning of matter in air [J].Physical Review Letters,2014,112(2):24301.
参考文献 4
XIE W J,CAO C D,L U Y J,et al.Acoustic method for levitation of small living animals [J].Applied Physics Letters,2006,89(21):214102.
参考文献 5
CHEN Y,DING X,STEVEN LIN S,et al.Tunable nanowire patterning using standing surface acoustic waves [J].ACS Nano,2013,7(4):3306-3314.
参考文献 6
LI Y,LEE C,CHEN R,et al.A feasibility study of in vivo applications of single beam acoustic tweezers [J].Applied Physics Letters,2014,105(17):173701.
参考文献 7
沈昌乐,解文军,洪振宇,等.声悬浮技术的发展及应用 [J].现代物理知识.2010,22(3):10-13.SHEN C L,XIE W J,HONG ZH Y,et al.Development and application of acoustic levitation technology [J].Knowledge of Modern Physics,2010,22(3):10-13.(in Chinese)
参考文献 8
WIJAYA H,LATIFI K,ZHOU Q.Two-dimensional manipulation in mid-air using a single transducer acoustic levitator [J].Micromachines,2019,10(4):257.
参考文献 9
焦敬品,杨素方,何存富,吴斌.相位加权的矢量全聚焦超声阵列成像方法研究 [J].声学学报,2017,42(4):485-494.JIAO J P,YANG S F,HE C F,et al.Investigation of an ultrasonic array imaging method of phase weighting vector total focusing [J].ACTA Acustica,2017,42(4):485-494.(in Chinese).
参考文献 10
KUNDT A.Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen [J].Annalen der Physik,1866,203(4):497-523.
参考文献 11
FORESTI D,NABAVI M,KLINGAUF M,et al.Acoustophoretic contactless transport and handling of matter in air [J].Proceedings of the National Academy of Sciences,2013,110(31):12549-12554.
参考文献 12
KOZUKA T,TUZIUTI T,MITOME H,et al.Control of a Standing Wave Field Using a Line-Focused Transducer for Two-Dimensional Manipulation of Particles [J].Japanese Journal of Applied Physics,2014,37(5B):2974-2978.
参考文献 13
TRINH E,ROBEY J,JACOBI N,et al.Dual-temperature acoustic levitation and sample transport apparatus [J].The Journal of the Acoustical Society of America,1986,79(3):604-612.
参考文献 14
FLETCHER J C A,WANG T G,SAFFREN M M,et al.Material suspension within an acoustically excited resonant chamber [P].VS,VS3882732A,1975.
参考文献 15
KOYAMA D,NAKAMURA K.Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector [J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(5):1152-1159.
参考文献 16
OMIROU T,MARZO A,SEAH S A,et al.LeviPath:Modular acoustic levitation for 3D path visualisations [C].In:Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems ACM 2015:309-312.
参考文献 17
HUANG S,ZHANG Y,ZEMING W,et al.A one-step method to fabricate bio-friendly patterned superhydrophobic surface by atmospheric pressure cold plasma [J].Journal of Advanced Manufacturing Science and Technology,2021,1(1):2020005.
参考文献 18
BRUUS H.Acoustofluidics 7:The acoustic radi-ation force on small particles [J].Lab on a Chip,2012,12(6):1014-1021.
参考文献 19
MARZO A,SEAH S A,DRINKWATER B W,et al.Holographic acoustic elements for manipulation of levitated objects [J].Nature Communications,2015,6(1):1-7.
参考文献 20
杜功焕,朱哲民,龚秀芬.声学基础 [M].第3版.南京:南京大学出版社,2012:223-225.DU G H,ZHU ZH M,GONG X F.Fundamentals of acoustics.3rd Edition [M].Nanjing:Nanjing University Press,2012:223-225.(in Chinese)
参考文献 21
朱纪霖,高东宝,曾新吾.基于相位变换声镊的单个微粒平面移动操控 [J].物理学报,2021,70(21):166-174.ZHU J L,GAO D B,ZENG X W.Single particle plane movement control based on phase transformation acoustic tweezers [J].Chinese Journal of Physics,2021,70(21):166-174.(in Chinese)
参考文献 22
ANDRADE M A B,PÉREZ N,ADAMOWSKI J C.Review of progress in acoustic levitation [J].Brazilian Journal of Physics,2018,48(2):190-213.
参考文献 23
王宁.超声驻波悬浮/传输稳定性仿真与实验研究[D].哈尔滨:哈尔滨工业大学,2016.WANG N.Simulation and experimental study on suspension/transmission stability of ultrasonic standing wave[D].Harbin:Harbin Institute of Technology,2016.(in Chinese)
参考文献 24
SUA Q,LIA X,LUB Y,et al.Designing an ultrasonic array device to transport space particle suspension [J].Journal of Advanced Manufacturing Science and Technology,2022,2(1):2022004.
目录contents

    摘要

    高频驻波声场中声波入射波与反射波非线性叠加作用下会产生声辐射力,从而实现微小物体的悬浮.使用幅值调制或频率调制改变悬浮位置存在空间上限制,且运输平稳性较差.在换能器阵列形成声场中,使用相位调制可以实现定点聚焦与物体平稳运输.基于超声驻波悬浮原理,详细分析了单驻波、平面驻波、空间驻波声场声压、相位分布情况,并基于聚焦原理使用相位调制的方法实现对声场的定点聚焦、聚苯乙烯小球悬浮与运输.结果表明:单驻波声场可通过双向相位调制方法实现小球稳定运输;在横向相位差为π的情况下使用PLL多时钟信号可实现多方向、不同速度的同时运输;空间阵列驻波声场通过定点聚焦声压提高了83%,且通过连续改变焦点位置实现了小球直线运输.

    Abstract

    In the high frequency standing wave field, the nonlinear superposition of the incident wave and the reflected wave will produce the acoustic radiation force, which can realize the suspension of small objects. Using amplitude modulation or frequency modulation to change the suspension position has space limitation, and the transport stability is poor. In the sound field formed by transducer array, the proposed phase modulation can realize fixed-point focusing and smooth object transportation. Based on the principle of ultrasonic standing wave suspension, the sound pressure and phase distribution of single standing wave, plane standing wave and space standing wave sound field has been analysed in detail. Based on the principle of focusing, phase modulation was used to realize the fixed point focusing of sound field, polystyrene ball suspension and transportation. The results show that the polystyrene foam ball can be transported stably by bidirectional phase modulation in the single standing wave acoustic field. PLL multi-clock signal can be used to realize multi-direction and different speed simultaneous transportation when the lateral phase difference is π. The sound pressure of the standing wave field in the space array was increased by 83% by fixed-point focusing, and the linear transport of the ball was realized by changing the focal position continuously.

  • 引言

  • 超声悬浮通过媒介中声压场势能[1]提供声辐射力,是一种易于操控、媒介种类丰富、适合于无容器处理的非接触控制技术.相比其它非接触控制技术,超声悬浮还具有以下优势:悬浮与控制范围较大[2-3];对物体材料特性与尺寸几乎没有要求[4-5];可以穿过非透明物质[6].单一换能器形成的声场随着轴向距离增大声衰减严重,声压降低比较明显;当两列传播方向相反的声波叠加时会产生声压节点,声压节点处声辐射力最大,驻波节点处可以实现物体悬浮.距离为波长整数倍时,驻波空间内节点明显、声压幅值保持中心对称[7-8].通过换能器阵列化,可以增加声场空间内的驻波节点数量,拓展悬浮位置.声波在空气传播过程中振动相位值随距离发生改变,同一位置不同相位声波的干涉会增强或削弱声压幅值,因此合适的阵列信号相位对实现声场定点聚焦、物体悬浮与运输具有重要意义[9].

  • 1866年,AugustKundt[10]首次发现超声驻波捕获微小颗粒现象,此后研究学者对超声悬浮与运输进行了详尽研究.目前在超声声场中可以通过幅值控制[11]、频率控制[12-13]、谐振距离控制[14]、相位控制[15-16]等方法实现对物体的悬浮运输.幅值控制通过改变节点声辐射力大小来实现物体移动,理论上移动轨迹限制在固定节点上,且微粒从一个节点被捕获到另外一个节点的运输过程不稳定;频率控制移动距离范围较小,且容易超出换能器谐振频率;谐振距离控制需要实时调节换能器位置,对声场稳定性有较大影响;相位控制可以精确控制悬浮节点位置,运输过程比较平稳,是小尺寸换能器阵列超声悬浮运输最佳调控手段.

  • 本文结合数值模拟与试验,首先研究单驻波、平面驻波、空间驻波的声场特性规律,然后基于聚焦原理通过相位调制研究声场变化规律,通过节点位置移动实现聚苯乙烯小球单驻波纵向、多方向纵向、空间纵向运输,并分析相位调制方法对运输过程平稳性的影响.研究结果对于无接触操控实现药液运输、融合和辅助加工具有潜在应用价值[17].

  • 1 相位聚焦的驻波声场悬浮与运输理论分析

  • 物体在声场中受到的声辐射力F与Gor’kov势能U负梯度有关[18-19],具体表达式为:

  • F=-U
    (1)
  • U=K1|P|2-K2Px2+Py2+Pz2
    (2)
  • K1=14V1c02ρ0-1cp2ρp
    (3)
  • K2=34Vρ0-ρpρ0c022ρp+ρ0
    (4)
  • 式中:PPxPyPz为声压和声压在xyz轴上分量;c0cp分别为声波在空气、物体材料中传播速度;ρ0ρp分别为空气、物体材料密度;V为物体的体积.

  • 在压电效应驱动下换能器中的陶瓷薄片与谐振片以一定频率一起振动,从而向空气域发出高频声波,这种条件下换能器为活塞声源,单个换能器辐射声压场为[20]

  • P(θ,r)ur=J0(kasinθ)ej(φ-kr)
    (5)
  • 式中:u为反映换能器性能参数,r为目标点到换能器中心距离,θ为目标点与换能器中心连线和换能器轴线夹角,J0为零阶贝塞尔函数,φ为换能器函数,k为波数.在超声阵列形成声场中,某一点的声压是所有换能器在该点处的声场线性叠加结果.

  • 多束声波在空气中传播时存在干涉,在相同位置声波相位相同,声压振幅会加强,而相位不同,声压振幅则被削弱.驻波声场距离为半波长整数倍时,每个节点位置发生干涉,声压振幅得到增强,声场势能梯度增大,从而形成节点悬浮效果.因此,为了实现声场某点聚焦,应该调整换能器信号初始相位使声波在聚焦点相位相同达到干涉声压振幅加强效果[21].声波初始相位与聚焦点相位变化差值与换能器表面中心点与聚焦点直线距离有关.如图1所示,以其中一个换能器为基准,其余换能器相位差与距离差之间关系可以表示为:

  • di-d0%λ=φi-φ0/2π
    (6)
  • 换能器信号相位可以通过延时来实现,通过控制不同信号发射时间在信号之间形成发射延时,发射时间与相位之间关系可以表示为[22]

  • ti-t0%λ/c0=φi-φ0/2π
    (7)
  • 式(6)与式(7)中下标为代表第i个换能器,下标为0代表作为基准的换能器,λ为超声波波长.

  • 图1 声波聚焦

  • Fig.1 Acoustic focus

  • 驻波声场由两列传播相反的声波叠加形成,因此需要将两组换能器对置放置.换能器之间的距离为半波长的整数倍时,两列传播方向相反的正弦波叠加之后零点位置重合,该位置声辐射势能梯度最大,即驻波悬浮的节点.

  • 使用FPGA产生多路幅值为3.3V、频率为40kHz的方波信号,经过MX1919放大后幅值达到20V,驱动换能器MA40S4S发出高频声波形成驻波声场.使用程序定义信号相位值和动态改变信号相位值,以此实现声场聚焦与悬浮运输.

  • 2 结果与讨论

  • 2.1 单换能器与驻波声场数值模拟

  • 基于式(5)的声场分布模型,编写仿真程序对单换能器声场与驻波声场特性进行理论分析.如图2所示,单换能器形成的声场呈半球状辐射,且随着距离的增加声压幅值降低,声压极值(红色与蓝色区域)出现在换能器表面与中心轴线交汇处.将两个换能器对置放置,信号相位均为0 rad,可形成单驻波声场.在两列传播方向相反的声波叠加下,离换能器35mm处声压为-505.5Pa,z轴方向5mm~35mm范围内声压并未出现减小的趋势.声压为零的位置势能梯度更加明显,为驻波悬浮的实现提供可能.从相位分布来看,驻波声场在x轴方向0~π相位变化区域更加集中,结合xoz平面声压分布可以发现驻波声场在两个声场叠加下分布更加均匀,不存在大范围的扩散性.

  • 图2 单换能器与驻波声场对比

  • Fig.2 Comparison between single transducer and standing wave sound field

  • 2.2 驻波声场纵向运输

  • 驻波节点可以稳定捕获直径为0.5mm左右的聚苯乙烯小球,改变节点在z方向的位置便可以实现小球的运输.设置驻波距离为34.6mm(4λ),换能器初始相位均为0 rad时,聚焦点位于两换能器轴向法线中心处.如图3所示,通过聚焦的方法改变换能器相位,便可以改变节点位置(红色、蓝色中间区域),聚焦位置随之移动.移动节点位置有两种方法:单向相位调制法[图3(a)],仅改变一个换能器相位;双向相位调制法[图3(b)],一个换能器相位增加,另一个换能器相位减少.数值模拟结果表明,以为调制步长时,单向相位调制可以使节点移动0.7208mm;双向调制使节点移动1.4416mm.

  • 图3 驻波声场相位调制数值模拟

  • Fig.3 Numerical simulation of phase modulation of standing wave sound field

  • 图4 双向相位调制纵向运输

  • Fig.4 Bi-directional phase modulated longitudinal transport

  • 单向相位调制容易出现相位差为π的情况,模拟结果表明此时驻波声场分布与其他相位差有所不同,节点不在轴向法线位置出现,且梯度值较小.以0.16π/s的单向相位调制速度对小球进行运输,试验发现小球在运输第6秒左右出现跳跃现象,跳跃距离可达2.3mm.原因在于此时换能器相位差为π,节点偏移轴线导致小球被中间梯度更大的节点捕获.双向相位调制可以保证节点在轴线上移动.设置两换能器端面距离为16mm,此时谐振片距离约为21.6mm,相位调制频率取fm=20Hz,调制步长分别取π/125、2π/125、3π/125、4π/125、π/25、6π/125,向上、向下移动聚焦节点,使小球随节点向上、向下运输,小球运输轨迹、速度、稳定性如图4所示.试验发现小球并不完全是线性移动,且运输过程z方向位置与时间的非线性关系随步长的增大变得更加明显;运输过程中受换能器对中性精准度、支撑系统的平整性的影响,小球在垂直轴线的x方向存在位置波动.经过测量x方向位置方差受步长、运动方向影响较小,在0.6mm~0.7mm2之间波动.向下运输速度最大可达4.9mm/s,向上运输速度最大可达4.6mm/s.理论上,向上向下运动速度应该相同,试验值与理论值最大偏差为17.5,且向下运动速度比向上运动速度大,两者之间差值随步长增大而增大.试验值与理论值偏差较大,向上、向下运输速度不同主要有以下三方面原因:在节点动态移动过程中,由于弹簧效应节点对小球的捕获具有滞后性[23-24],节点移动先于小球移动,重力会产生一个微小加速度,这个加速度导致向上捕获速度变慢,向下捕获速度加快,同时使整个运输过程变得不完全线性;小球密度为1.29 kg/m3,单个小球重力较小,运输过程易受空气扰动、静电作用等影响;由于拍摄角度的关系实际位置并不能完全准确反映到图片像素点位置,测量坐标存在微小偏差.

  • 2.3 平面阵列驻波声场

  • 单驻波声场由于声场空间范围限制只能进行单方向、单个小球纵向运输,通过平面内增加换能器数量,构建4×1阵列拓展驻波空间,独立控制每个换能器信号实现聚苯乙烯小球(直径0.5mm)多方向、不同速度的纵向运输.

  • 声波干涉下横相相位差对驻波节点位置分布存在影响,对声场分布进行定性分析[图5(a)],横向相位偏差为0时,驻波节点分布在左右换能器中心轴线上,此时物理聚焦中心在轴线终点处;随着横向相位偏差加大,节点(聚焦点)分布轴线逐渐向两侧移动.绘制不同横向相位偏差下xoz平面x=-10mm~30mm范围内z=17.3mm截线声压图,结果表明:横向相位偏差为π时x=5mm与x=15mm之间声压梯度最大,左右单驻波干涉带来的影响较小.

  • 图5 不同横向相位差2×1阵列驻波声场分布

  • Fig.5 Distribution of standing wave sound field of 2×1 array with different lateral phase

  • 经过试验发现,横向相位差为0时小球在中间轴线进行纵向移动时无法实现一个完整运输周期,为了获得平面阵列驻波声场完整的纵向运输过程,搭建间距为14mm(声源距离约为波长的两倍)的4×1换能器阵列形成驻波声场,在FPGA编程中使用PLL模块生成50MHz~100MHz、50MHz~150MHz、50MHz~200MHz组合信号,如图6所示;保持相同上下换能器相位调制频率20Hz与调制步长π/125,使小球在换能器法向轴线上向上或向下运输.同时为了减少换能器之间横向方向上声波干涉对运输的影响,保证左右两组换能器横向相位差为π,且运输时横向水平方向上隔一组换能器.

  • 图6 多时钟信号4×1阵列纵向运输试验原理

  • Fig.6 Principle of the multi-clock signal 4×1 array longitudinal transport test

  • 图7 多时钟信号驻波纵向运输稳定性、速度分析

  • Fig.7 Multi-clock signal standing wave longitudinal transport stability, speed analysis

  • 两个聚苯乙烯小球在组合时钟信号下可以分别向上和向下运动或者同时向上运动.对小球运动横向x方向位置进行统计,发现在50 MHz时钟信号驱动下波动方差最小,在更高频率下虽然波动增大但均保持在0.65mm2左右(图7),与单驻波声场纵向运输相差不大.最大纵向运输速度为2.9mm/s,与理论值相差6.8%.

  • 2.4 空间阵列驻波声场

  • 在平面驻波阵列y方向进行换能器拓展,便可形成空间驻波阵列,随着换能器数量的增多,声波干涉形象更加明显,以2×2阵列为例,8个换能器相位均为0时,z=17.3mm的xoy平面声压分布极值出现该平面中心点位置[图8(a)],为502.9 Pa,这是因为各换能器到该点距离相等从而形成了物理聚焦的效果.换能器阵列中心轴线x=10mm上形成了6个驻波节点,可实现对聚苯乙烯小球的悬浮.利用聚焦的方法改变换能器相位,将聚焦点转移到,数值模拟结果表明z=17.3mm的xoy平面声压极值变为-232.5 Pa,xoz平面声压极值出现在z=15mm附近[图8(b)],与聚焦点接近,说明相位调制可以实现声场定点聚焦.对中心轴线x=10mm声压进行记录[图8(c)],聚焦后在聚焦点出现声压极值922.9 Pa,比聚焦前提高了83.5%.

  • 图8 2×2空间阵列驻波聚焦前后声场数值模拟

  • Fig.8 Numerical simulation of the sound field before and after focusing the 2×2 spatial array of standing waves

  • 对空间阵列改变聚集相位,可以改变节点位置,继而改变悬浮位置.对聚焦相位进行微小调整,便可以改变小球xz方向位置,试验发现对于2×2空间阵列,同时改变上方或下方4个换能器相位,小球悬浮位置z方向变化是x方向3.1倍,原因在于驻波z方向声压分布、节点位置受相位影响较大,而x方向横向相位差会改变节点对小球的捕获能力.

  • 以0.2 Hz调制频率、π/125调制步长改变聚焦点使小球沿直线运动(图9),移动前小球悬浮位置比较稳定,运输过程中z方向平均速度为1.2mm/s,运输距离达到6.4mm.

  • 图9 2×2空间阵列运输试验轨迹

  • Fig.9 2×2 space array transport test trajectory

  • 3 结论

  • 为研究相位聚焦对驻波声场中悬浮与运输影响,本文从聚焦原理、换能器声场建模原理入手,通过在单驻波、平面阵列、空间阵列驻波使用声场聚焦的相位调制方法,并结合声场数值模拟,实现驻波声场内聚苯乙烯小球悬浮与运输.主要结论如下:

  • (1)单驻波声场中物体悬浮位置位于节点位置,相邻悬浮位置距离为半个波长;仿真结果表明单驻波声场分布比较集中,声压极值出现在波面与轴线交点处.使用双向相位调制节点位移距离是单向相位调制法的两倍.使用相位调制纵向运输小球时,单向相位调制法存在跳跃现象,而双向相位调制可以实现4.9mm/s的稳定运输速度.

  • (2)平面阵列声场中,横向相位差会影响声压极值区域大小,横向声压梯度随之改变.随着横向相位差增大声压极值区域逐渐一分为二,横向相位差为π时声波干涉对两侧单驻波影响最小,两侧分别存在悬浮能力较强的节点.使用相位调制改变聚焦驻波节点位置并结合多时钟信号实现了小球多方向、不同速度的同时运输,在200 MHz时钟驱动下运输速度可达2.9mm/s.

  • (3)空间阵列声场中,悬浮位置(声压节点)主要分布在声场的中心轴线区域,而初始聚焦位置位于声场的物理中心,调整换能器相位改变聚焦点位置后声压值提高了83.5%.通过连续改变聚焦点实现了聚苯乙烯小球空间z方向上的直线轨迹运输,运输平均速度为1.2mm/s.

  • 进一步增大换能器阵列,增加空间内悬浮节点的数量与空间分布范围,通过对相位进行连续调制从而连续改变聚焦位置可以实现更大范围内的不同材料悬浮与多种运输轨迹(如空间内斜线、复杂曲线等).随着换能器数量的增多,使用相位调制的方法形成特殊声场,实现直径大于半个声波波长的物体悬浮与运输.

  • 参考文献

    • [1] GOR'KOV L P.On the forces acting on a small particle in an acoustical field in an ideal fluid [J].Soviet Physics Doklady,1962,6(1):773.

    • [2] LAM K H,HSU H,LI Y,et al.Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application [J].Biotechnology and Bioengineering,2013,110(3):881-886.

    • [3] FORESTI D,POULIKAKOS D.Acoustophoretic contactless elevation,orbital transport and spinning of matter in air [J].Physical Review Letters,2014,112(2):24301.

    • [4] XIE W J,CAO C D,L U Y J,et al.Acoustic method for levitation of small living animals [J].Applied Physics Letters,2006,89(21):214102.

    • [5] CHEN Y,DING X,STEVEN LIN S,et al.Tunable nanowire patterning using standing surface acoustic waves [J].ACS Nano,2013,7(4):3306-3314.

    • [6] LI Y,LEE C,CHEN R,et al.A feasibility study of in vivo applications of single beam acoustic tweezers [J].Applied Physics Letters,2014,105(17):173701.

    • [7] 沈昌乐,解文军,洪振宇,等.声悬浮技术的发展及应用 [J].现代物理知识.2010,22(3):10-13.SHEN C L,XIE W J,HONG ZH Y,et al.Development and application of acoustic levitation technology [J].Knowledge of Modern Physics,2010,22(3):10-13.(in Chinese)

    • [8] WIJAYA H,LATIFI K,ZHOU Q.Two-dimensional manipulation in mid-air using a single transducer acoustic levitator [J].Micromachines,2019,10(4):257.

    • [9] 焦敬品,杨素方,何存富,吴斌.相位加权的矢量全聚焦超声阵列成像方法研究 [J].声学学报,2017,42(4):485-494.JIAO J P,YANG S F,HE C F,et al.Investigation of an ultrasonic array imaging method of phase weighting vector total focusing [J].ACTA Acustica,2017,42(4):485-494.(in Chinese).

    • [10] KUNDT A.Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen [J].Annalen der Physik,1866,203(4):497-523.

    • [11] FORESTI D,NABAVI M,KLINGAUF M,et al.Acoustophoretic contactless transport and handling of matter in air [J].Proceedings of the National Academy of Sciences,2013,110(31):12549-12554.

    • [12] KOZUKA T,TUZIUTI T,MITOME H,et al.Control of a Standing Wave Field Using a Line-Focused Transducer for Two-Dimensional Manipulation of Particles [J].Japanese Journal of Applied Physics,2014,37(5B):2974-2978.

    • [13] TRINH E,ROBEY J,JACOBI N,et al.Dual-temperature acoustic levitation and sample transport apparatus [J].The Journal of the Acoustical Society of America,1986,79(3):604-612.

    • [14] FLETCHER J C A,WANG T G,SAFFREN M M,et al.Material suspension within an acoustically excited resonant chamber [P].VS,VS3882732A,1975.

    • [15] KOYAMA D,NAKAMURA K.Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector [J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(5):1152-1159.

    • [16] OMIROU T,MARZO A,SEAH S A,et al.LeviPath:Modular acoustic levitation for 3D path visualisations [C].In:Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems ACM 2015:309-312.

    • [17] HUANG S,ZHANG Y,ZEMING W,et al.A one-step method to fabricate bio-friendly patterned superhydrophobic surface by atmospheric pressure cold plasma [J].Journal of Advanced Manufacturing Science and Technology,2021,1(1):2020005.

    • [18] BRUUS H.Acoustofluidics 7:The acoustic radi-ation force on small particles [J].Lab on a Chip,2012,12(6):1014-1021.

    • [19] MARZO A,SEAH S A,DRINKWATER B W,et al.Holographic acoustic elements for manipulation of levitated objects [J].Nature Communications,2015,6(1):1-7.

    • [20] 杜功焕,朱哲民,龚秀芬.声学基础 [M].第3版.南京:南京大学出版社,2012:223-225.DU G H,ZHU ZH M,GONG X F.Fundamentals of acoustics.3rd Edition [M].Nanjing:Nanjing University Press,2012:223-225.(in Chinese)

    • [21] 朱纪霖,高东宝,曾新吾.基于相位变换声镊的单个微粒平面移动操控 [J].物理学报,2021,70(21):166-174.ZHU J L,GAO D B,ZENG X W.Single particle plane movement control based on phase transformation acoustic tweezers [J].Chinese Journal of Physics,2021,70(21):166-174.(in Chinese)

    • [22] ANDRADE M A B,PÉREZ N,ADAMOWSKI J C.Review of progress in acoustic levitation [J].Brazilian Journal of Physics,2018,48(2):190-213.

    • [23] 王宁.超声驻波悬浮/传输稳定性仿真与实验研究[D].哈尔滨:哈尔滨工业大学,2016.WANG N.Simulation and experimental study on suspension/transmission stability of ultrasonic standing wave[D].Harbin:Harbin Institute of Technology,2016.(in Chinese)

    • [24] SUA Q,LIA X,LUB Y,et al.Designing an ultrasonic array device to transport space particle suspension [J].Journal of Advanced Manufacturing Science and Technology,2022,2(1):2022004.

  • 参考文献

    • [1] GOR'KOV L P.On the forces acting on a small particle in an acoustical field in an ideal fluid [J].Soviet Physics Doklady,1962,6(1):773.

    • [2] LAM K H,HSU H,LI Y,et al.Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application [J].Biotechnology and Bioengineering,2013,110(3):881-886.

    • [3] FORESTI D,POULIKAKOS D.Acoustophoretic contactless elevation,orbital transport and spinning of matter in air [J].Physical Review Letters,2014,112(2):24301.

    • [4] XIE W J,CAO C D,L U Y J,et al.Acoustic method for levitation of small living animals [J].Applied Physics Letters,2006,89(21):214102.

    • [5] CHEN Y,DING X,STEVEN LIN S,et al.Tunable nanowire patterning using standing surface acoustic waves [J].ACS Nano,2013,7(4):3306-3314.

    • [6] LI Y,LEE C,CHEN R,et al.A feasibility study of in vivo applications of single beam acoustic tweezers [J].Applied Physics Letters,2014,105(17):173701.

    • [7] 沈昌乐,解文军,洪振宇,等.声悬浮技术的发展及应用 [J].现代物理知识.2010,22(3):10-13.SHEN C L,XIE W J,HONG ZH Y,et al.Development and application of acoustic levitation technology [J].Knowledge of Modern Physics,2010,22(3):10-13.(in Chinese)

    • [8] WIJAYA H,LATIFI K,ZHOU Q.Two-dimensional manipulation in mid-air using a single transducer acoustic levitator [J].Micromachines,2019,10(4):257.

    • [9] 焦敬品,杨素方,何存富,吴斌.相位加权的矢量全聚焦超声阵列成像方法研究 [J].声学学报,2017,42(4):485-494.JIAO J P,YANG S F,HE C F,et al.Investigation of an ultrasonic array imaging method of phase weighting vector total focusing [J].ACTA Acustica,2017,42(4):485-494.(in Chinese).

    • [10] KUNDT A.Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen [J].Annalen der Physik,1866,203(4):497-523.

    • [11] FORESTI D,NABAVI M,KLINGAUF M,et al.Acoustophoretic contactless transport and handling of matter in air [J].Proceedings of the National Academy of Sciences,2013,110(31):12549-12554.

    • [12] KOZUKA T,TUZIUTI T,MITOME H,et al.Control of a Standing Wave Field Using a Line-Focused Transducer for Two-Dimensional Manipulation of Particles [J].Japanese Journal of Applied Physics,2014,37(5B):2974-2978.

    • [13] TRINH E,ROBEY J,JACOBI N,et al.Dual-temperature acoustic levitation and sample transport apparatus [J].The Journal of the Acoustical Society of America,1986,79(3):604-612.

    • [14] FLETCHER J C A,WANG T G,SAFFREN M M,et al.Material suspension within an acoustically excited resonant chamber [P].VS,VS3882732A,1975.

    • [15] KOYAMA D,NAKAMURA K.Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector [J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(5):1152-1159.

    • [16] OMIROU T,MARZO A,SEAH S A,et al.LeviPath:Modular acoustic levitation for 3D path visualisations [C].In:Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems ACM 2015:309-312.

    • [17] HUANG S,ZHANG Y,ZEMING W,et al.A one-step method to fabricate bio-friendly patterned superhydrophobic surface by atmospheric pressure cold plasma [J].Journal of Advanced Manufacturing Science and Technology,2021,1(1):2020005.

    • [18] BRUUS H.Acoustofluidics 7:The acoustic radi-ation force on small particles [J].Lab on a Chip,2012,12(6):1014-1021.

    • [19] MARZO A,SEAH S A,DRINKWATER B W,et al.Holographic acoustic elements for manipulation of levitated objects [J].Nature Communications,2015,6(1):1-7.

    • [20] 杜功焕,朱哲民,龚秀芬.声学基础 [M].第3版.南京:南京大学出版社,2012:223-225.DU G H,ZHU ZH M,GONG X F.Fundamentals of acoustics.3rd Edition [M].Nanjing:Nanjing University Press,2012:223-225.(in Chinese)

    • [21] 朱纪霖,高东宝,曾新吾.基于相位变换声镊的单个微粒平面移动操控 [J].物理学报,2021,70(21):166-174.ZHU J L,GAO D B,ZENG X W.Single particle plane movement control based on phase transformation acoustic tweezers [J].Chinese Journal of Physics,2021,70(21):166-174.(in Chinese)

    • [22] ANDRADE M A B,PÉREZ N,ADAMOWSKI J C.Review of progress in acoustic levitation [J].Brazilian Journal of Physics,2018,48(2):190-213.

    • [23] 王宁.超声驻波悬浮/传输稳定性仿真与实验研究[D].哈尔滨:哈尔滨工业大学,2016.WANG N.Simulation and experimental study on suspension/transmission stability of ultrasonic standing wave[D].Harbin:Harbin Institute of Technology,2016.(in Chinese)

    • [24] SUA Q,LIA X,LUB Y,et al.Designing an ultrasonic array device to transport space particle suspension [J].Journal of Advanced Manufacturing Science and Technology,2022,2(1):2022004.

  • 微信公众号二维码

    手机版网站二维码