en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

温激鸿,E-mail:wenjihong@vip.sina.com

中图分类号:TB34

文献标识码:A

文章编号:1672-6553-2023-21(7)-043-008

DOI:10.6052/1672-6553-2023-062

参考文献 1
温激鸿,蔡力,郁殿龙,等.声学超材料基础理论与应用 [M].北京:科学出版社,2018 WEN J H,CAI L,YU D L,et al.Basic theory and application of acoustic metamaterials [M].Beijing:Science Press,2018.(in Chinese)
参考文献 2
尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用 [J].力学进展,2022,52(3):508-586.YIN J F,CAI L,FANG X,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control [J].Advance in Mechanics,2022,52(3):508-586.(in Chinese)
参考文献 3
于相龙,周济.力学超材料的构筑及其超常新功能 [J].中国材料进展,2019,38:14-21.YU X L,ZHOU J.Mechanical metamaterials:architected materials and unexplored properties [J].Materials China,2019,38:14-21.(in Chinese)
参考文献 4
于靖军,谢岩,裴旭.负泊松比超材料研究进展 [J].机械工程学报,2019,54:1-14.YU J J,XIE Y,PEI X.State-of-art of metamaterials with negative Poisson’s ratio [J].Journal of Mechanical Engineering,2019,54:1-14.(in Chinese)
参考文献 5
任晨辉,杨德庆.二维负刚度负泊松比超材料及其力学性能 [J].哈尔滨工程大学学报,2020,41:1129-1135.REN C H,YANG D Q.Mechanical properties of a 2D metamaterials with negative stiffness and negative Poisson’s ratio [J].Journal of Harbin Engineering University,2020,41:1129-1135.(in Chinese)
参考文献 6
张新春,刘颖,李娜.具有负泊松比效应蜂窝材料的面内冲击动力学性能 [J].爆炸于冲击,2012,32(5):475-482.ZHANG X C,LIU Y,LI N.In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects [J].Journal of Explosion and Shock Waves,2012,32(5):475-482.(in Chinese)
参考文献 7
尹冠生,姚兆楠.梯度负泊松比蜂窝材料的冲击动力学性能 [J].动力学与控制学报,2017,15(1):52-58.YIN G S,YAO Z N.Dynamic crushing performance of graded auxetic honeycombs with negative Poisson’s ratio [J].Journal of Dynamics and Control,2017,15(1):52-58.(in Chinese)
参考文献 8
韩会龙,张新春,王鹏.负泊松比蜂窝材料的动力学响应及能量吸收特性 [J].爆炸与冲击,2019,39(1):11-22.HAN H L,ZHANG X C,WANG P.Dynamic response and energy absorption properties of honeycombs with negative Poisson’s ratio [J].Journal of Explosion and Shock Waves,2019,39(1):11-22.(in Chinese)
参考文献 9
ABUEIDDA D W,BAKIR M,AL-RUB R K.Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures [J].Materials & Design,2017,122:255-267.
参考文献 10
ABUEIDDA D W,ELHEBEARY M,SHIANG C S.Mechanical properties of 3D printed polymeric Gyroid cellular structures:Experimental and finite element study [J].Materials & Design,2019,165:107597
参考文献 11
ABUEIDDA D W,AL-RUB R K,DALAQ A S.Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces [J].Mechanics of Materials,2016,95:102-115.
参考文献 12
MASKERY I,ABOULKHAIR N T,AREMU A O.Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J].Additive Manufacturing,2017,16:24-29.
参考文献 13
SHEN M,QIN W,XING B.Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures [J].Journal of the European Ceramic Society,2021,41(2):1481-1489.
参考文献 14
孙鹏飞,张跃,尹鹏,等.隐式曲面梯度多孔结构拓扑优化设计方法 [J].西安交通大学学报,2022,56(1):85-95.SUN P F,ZHANG Y,YIN P,et al.A topology optimization design method of grade cellular structures with implicit surfaces [J].Journal of Xi’an Jiaotong University,2022,56(1):95-95.(in Chinese)
参考文献 15
余学伟,李琳慧,张涛,等.基于三周期极小曲面和体素距离场的复杂轮廓点阵结构建模 [J].重庆大学学报,2022,45(6):75-84.YU X W,LI L H,ZHANG T,et al.Modeling of complex contour lattice structures based on triply periodic minimal surface and voxel distance field [J].Journal of Chongqing University,2022,45(6):75-84.(in Chinese)
参考文献 16
石志良,王伟,高杰.变形三周期极小曲面多孔结构参数化设计 [J].计算机辅助设计与图形学学报,2022,34(6):970-976.SHI Z L,WANG W,GAO J.Parametric design of porous scaffold with deformed triply periodic minimal surface [J].Journal of Computer-Aided Design & Computer Graphics,2022,34(6):970-976.(in Chinese)
参考文献 17
FAN X,TANG Q,FENG Q.Design,mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting [J].International Journal of Mechanical Sciences,2021,204:106586.
参考文献 18
Wang H,Tan D,Liu Z.On crashworthiness of novel porous structure based on composite TPMS structures [J].Engineering Structures,2022,252:113640.
参考文献 19
LIANG H,WANG Q,PU Y.In-plane compressive behavior of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness [J].International Journal of Mechanical Sciences,2021,209:106723.
参考文献 20
LI P,YANG F,BIAN Y.Deformation pattern classification and energy absorption optimization of the eccentric body centered cubic lattice structures [J].International Journal of Mechanical Sciences,2021,212:106813.
参考文献 21
IMBALZANO G,LINFORTH S,NGO T D.Blast resistance of auxetic and honeycomb sandwich panels:Comparisons and parametric designs [J].Composite Structures,2018,183:242-261.
目录contents

    摘要

    本文基于极小曲面结构构建了一类力学超材料,并研究了其准静态及动态力学特性.首先,通过对等效密度为30%、40%和50%的超材料样件进行准静态压缩试验,分析了不同等效密度下结构准静态力学特性变化规律,结果表明,结构模量及平台应力随等效密度的增长呈指数上升,其变化规律可用Gibson-Ashby模型进行精准拟合;其次,研究了不同冲击工况对极小曲面力学超材料动态力学特性的影响规律.根据动态力学特性影响因素及变化规律,分别构建了刚性-完美塑性-锁定模型和简化吸能特性预测模型,对冲击时的力学超材料强度及吸能特性进行预测.结果表明,基于三周期极小曲面的力学超材料具有良好的抗压抗冲吸能特性,且其动态力学性能可以通过建立的模型进行精确预测,为高性能防护结构设计提供了理论基础.

    Abstract

    Based on triply periodic minimal surfaces structures, the Gyroid type mechanical metamaterials are proposed, and the quasi-static and dynamic properties of the proposed structure are investigated. Firstly, the quasi-static compression tests of the Gyroid structure with the relative density of 30%, 40% and 50% are performed to investigate the effect of the density on quasi-static mechanical properties. Results found that, the structure modulus and average plateau stress increase exponentially with the increase of equivalent density, and Gibson-Ashby model is used to predict the change rules. Then, the influence of dynamic loadings on mechanical response of minimal surfaces mechanical metamaterials is investigated. According to the influence factors and variation tendence, the rigid-perfectly plastic-lock model and simplified prediction model of energy absorption are conducted to predict the crushing strength and energy absorption of gyroid structures under dynamic impact. This work demonstrated that, the mechanical metamaterials based on triply periodic minimal surface structure possess prominent load bearing and impact resistance capability, and the key performance can be predicted by the theoretical model, which provide theoretical foundation of the design of high-performance protective structure.

  • 引言

  • 随着现代工业的飞速发展,冲击工况广泛存在于日常生活及工业生产当中,对生命财产安全造成了一定威胁.抗冲吸能防护结构动态力学特性及吸能特性依赖于组成材料性能以及拓扑特征,传统冲击吸能结构多利用材料阻尼特性耗散冲击能量,存在吸能效率低、力学特性不易调控等缺点.由特殊设计的人工微结构单元构筑的力学超材料具有轻质、高强、负参数等超常/极端物理特性,在航空航天、车辆船舶、工程建筑、军事国防等领域具有广阔的应用前景[1-3].近年来,研究人员围绕力学超材料的超常特性开展了一系列基础研究[4-5],极大的丰富了理论框架以及挖掘出其潜在工程应用价值.在冲击防护领域,力学超材料也为防护结构设计提供了新的思路,如负泊松比力学超材料在冲击作用下具有高抗剪强度、韧性增强、抗压痕等优异力学特性,使其展现出更好的冲击防护能力.

  • 基于负泊松比蜂窝结构,张新春[6]等人在保持胞元边长和壁厚不变的情况下,系统的研究了胞元扩张角以及冲击速度对其面内变形以及能量吸收特性的影响.尹冠生等人构建了密度梯度泊松比超材料模型,并将其在动态冲击下的力学响应与吸能特性和均质内凹蜂窝进行了对比,探讨了几何参数对其力学性能的影响规律[7].韩会龙将方形蜂窝节点替换成内凹蜂窝,构建了具有负泊松比特性的节点层级蜂窝结构[8].动态冲击仿真结果表明,负泊松比蜂窝材料的动态承载能力明显高于传统方形蜂窝,充分体现了负泊松比结构在冲击防护工程领域的应用潜力.

  • 虽然负泊松比结构在抗冲吸能特性上展现出良好的应用潜力,然而,由结构特征造成的承载特性降低的缺点也限制了其在工程中的广泛应用.现代工业的飞速发展迫切需要高性能多功能的防护装置.设计轻质高强、吸能特性优良的冲击防护结构已然成为了研究热点.三周期极小曲面(Triply Periodic minimal surfaces,TPMS)结构由零曲率曲面组成,具有优异的抗压强度[9].同时,结构的零曲率曲面特征能有效衰减应力集中现象,保障结构在进入到致密化前不会发生全局失效.Abueidda等人系统研究了TPMS的力学特性,包括弹性模量、变形行为和能量吸收性能[9-11].Maskery等人通过实验分析研究了晶格常数和热处理对其力学响应的影响,研究发现结构弹性模量与元胞在单轴压缩下高度局部化的塑性变形有关[12].TPMS结构的几何和拓扑结构对其力学性能有重要影响.为了评估几种TPMS结构的结构性能,Shen等研究了S14、IWP、Gyroid和Primitive结构在准静态压缩载荷下的力学性能[13],结果表明结构的抗压强度性能为S14>IWP>Gyroid>Primitive.

  • TPMS结构新奇的结构特征及其静动态力学特性引起了科研人员的广泛关注[14-16].目前,国内对TPMS结构的研究多集中在准静态加载工况下,缺少对其动态力学特性的深入研究.因此,面向工程应用中的抗冲防护需求,本文基于TPMS结构设计了抗冲吸能力学超材料,研究了准静态工况下结构等效密度对其抗压强度和吸能特性的影响规律,探讨了不同冲击速度下结构动态力学性能的变化规律,为力学超材料的工程应用奠定了基础.

  • 1 仿真模型及评价指标

  • 1.1 三周期极小曲面结构建模

  • TPMS可由隐式方程求解获得.通过求解三维空间方程,得出空间各点数值,采用水平集方法绘制等值曲面,进而获得TPMS结构.本文主要研究Gyroid结构在准静态及动态冲击下的力学性能,其三维曲面构造方程为[17]

  • ϕP(x,y,z)=coskxxsinkyy+coskyysinkzz+coskzzsinkxx=c
    (1)
  • 其中:

  • ki=2πniLi(i=x,y,z)
    (2)
  • 式中,ni为结构在xyz方向上的周期数,Li为结构胞元在各个方向上的晶格常数.c为控制曲面结构三维特征的关键参数,结构几何特征可以通过参数c进行调控.

  • 通过上述方程,本文构建了如图1所示的Gyroid极小曲面超材料.其中,ni=5,Li=6mm.

  • 图1 Gyroid极小曲面力学超材料结构及其元胞

  • Fig.1 Gyroid type minimal surfaces mechanical metamaterials and its unit cell

  • 1.2 数值仿真模型

  • 借助于仿真软件LS-Dyna,本文采用有限元方法对极小曲面超材料受载工况进行建模和分析.为简化建模流程提高计算效率,采用Bleytschko-Lin-Tsay壳单元[18]对曲面结构进行建模,并在软件中赋予壳体壁厚来模拟不同等效密度的Gyroid结构.

  • 如图2所示,在仿真模型中,Gyroid结构底端赋予固定约束,顶部均质钢板匀速向下挤压Gyroid结构,直至结构完全致密化.通过设置均质钢板向下运动速度,来模拟不同加载速度工况.其中,上下面板与Groid结构的接触采用*Automatic_nodes_to_surface定义,结构自接触采用*Automatic_single_surface定义,静、动摩擦系数分别为0.2和0.3[19].

  • 图2 Gyroid极小曲面超材料有限元仿真模型

  • Fig.2 Finite element modelling of Gyroid type minimal surfaces metamaterials

  • 1.3 性能评价指标

  • 为了量化不同加载工况下的力学超材料性能,从仿真和试验压缩应力-应变曲线中提取了平均平台应力、致密化应变和能量吸收特性3个关键性能指标.在动态冲击下,结构的应力和应变可以由下式计算得出:

  • σ=FS
    (3)
  • ε=δh
    (4)
  • 式中,F为结构受力,S为结构截面积,δ为结构压缩距离,h为结构高度.

  • 当结构承受压缩载荷时,应力会逐渐上升至屈服强度,随后进入平缓变化的应力平台区,最后当结构完全致密化时,应力急速上升,此时结构无明显拓扑特征,近似为一块均质板.平台区应力是衡量结构吸能特性的关键指标,可由下式计算得出:

  • σp=1εD-εyεyεD σ(y)dε
    (5)
  • 式中,εD为结构致密化应变,εy为结构屈服应变.致密化应变可由吸能效率曲线峰值点确定[20]

  • ddε1σ(ε)0ε σ(ε)dεε=εD=0
    (6)
  • 吸能特性为结构压缩至致密化所需的所有能量,可由压缩力和压缩位移的积分求得,具体计算公式为:

  • EA=0δ F(x)dx
    (7)
  • 式中,Fx)为结构在压缩距离x处的压缩力.该指标是防护结构设计的关键性能指标.吸能特性数值越高,表明结构完全破坏所需能量越大,防护性能越好.

  • 2 结果与讨论

  • 2.1 准静态力学特性

  • 等效密度对于结构静态力学性能有着显著影响.为揭示结构等效密度对结构准静态力学性能的影响规律,本文采用白色尼龙材料通过3D打印技术制备了等效密度分别为30%,40%和50%的Gyroid极小曲面超材料模型,对应元胞壁厚分别为0.612mm,0.831mm和1.074mm.

  • 为测量打印材料性能,构建并制备拉伸样件,基于GB/T1040.2-2006标准开展拉伸试验,拉伸速度为2mm/min.样件具体尺寸及拉伸应力应变曲线如图3所示.由此可求得白色尼龙材料性能参数,见表1.

  • 表1 尼龙材料参数

  • Table1 Material properties of Nylon

  • 图3 拉伸样件及其拉伸应力应变曲线

  • Fig.3 Tensile samples and the stress-strain curves

  • 3 D打印Gyroid结构及试验布置图如图4所示,采用硬质塑料压缩性能实验方法(ASTM-D695-15)对其开展准静态压缩试验,压缩速度为2mm/min.基于结构准静态压缩应力应变数据,根据式(6)可求得结构的吸能效率曲线,进而求得结构致密化应变.三种不同结构的准静态应力应变曲线和吸能效率曲线如图5所示.为便于数据分析,提取不同密度结构的弹性模量、平均平台应力、致密化应变和吸能特性参数列于表2.从表中可以看出,随着等效密度的升高,结构力学性能显著上升.50%密度的Gyroid结构的弹性模量以及平均平台应力分别为374.358MPa和23.593MPa,相比于30%密度结构提升了107.9%和170.22%;结构致密化应变随着壁厚变大而逐渐减小,50% 密度的Gyroid结构其致密化应变仅为0.458.结构模量和平均平台应力的变化呈现出了明显的指数增长规律.本文结合Gibson-Ashby模型[17]对结构弹性模量以及平均平台应力进行拟合,拟合方程如下:

  • EcelEm=C1ρ*m
    (8)
  • σplσm=C2ρ*n
    (9)
  • 式中,Ecel为结构的弹性模量,Em为组成材料的弹性模量,σpl是结构的平台区平均应力,σm为材料的屈服模量,ρ*为结构的等效密度C1C2mn为拟合参数.

  • 图4 3D打印Gyroid极小曲面力学超材料结构及准静态压缩试验图

  • Fig.4 3D printed Gyroid minimal surface mechanical metamaterials and the quasi-static compression test

  • 图5 不同等效密度结构的准静态压缩应力应变及吸能特性曲线

  • Fig.5 The stress-strain and energy absorption curves of three structures with different relative densities under quasi-static compression

  • 图6 Gibson-Ashby拟合曲线与仿真数据对比图

  • Fig.6 The comparison of simulation results and Gibson-Ashby fitting curves

  • 将仿真结果代入式8和式9,求得拟合参数数值,C1C2分别为0.9166和3.412,mn分别为1.536和1.974.将拟合参数和结构参数带入Gibson-Ashby模型,绘制拟合曲线于图6,从中可以看出,拟合模型对于结构模量及平台区平均应力随密度变化的规律有良好的一致性,拟合精度高,可用于预测不同密度下的结构力学性能.

  • 表2 准静态压缩下不同密度下超材料力学性能

  • Table2 Mechanical properties of metamaterials with different relative densities under quasi-static loading

  • 2.2 动态冲击力学响应

  • 在动态加载工况下,由于材料的应变率效应以及结构的惯性效应的影响,结构动态力学特性会发生极大的变化.由于白色尼龙材料刚度低,在中低速冲击下材料性能已达极限,难以应对高速冲击.故在研究结构动态力学性能时,采用铝合金材料建立等效密度为30%的Gyroid极小曲面超材料冲击模型,研究其在10m/s,50m/s,100m/s,150m/s和200m/s的冲击工况下结构的动态力学特性.仿真模型如图2所示,铝合金的材料参数如表3所示.

  • 表3 铝合金材料参数

  • Table3 Material properties of AlSi10Mg

  • 图7 不同冲击速度下结构动态力学特性

  • Fig.7 Dynamic mechanical properties of structures under different velocities impact

  • 图7给出了五种速度下结构的动态应力应变曲线及其局部放大图.从图中可以看出,随着冲击速度的增加,结构的初始峰值应力显著上升.另外,结构的平台区平均应力也会随着冲击速度的提升有不同程度的增长,在10m/s到100m/s的冲击速度下其平台区应力变化较小,仅在初始峰值应变邻域附近存在差异.

  • 为了更直观的分析力学性能随冲击速度变化的趋势,将不同冲击速度下结构的平均平台应力、致密化应变和吸能特性三个指标列于表4.随着冲击速度的增长,结构的三个关键性能指标呈现出相似的增长规律.在10m/s~100m/s的冲击下,结构的平均平台应力和致密化应变无显著变化.当冲击速度上升至150m/s时,结构性能有较大幅度的提升.在200m/s的冲击工况下,结构平均平台应力是10m/s冲击工况下的1.47倍.

  • 冲击速度的增长也会带来致密化应变的增长.相比于10m/s的冲击工况,结构在200m/s的冲击工况下的致密化应变增长了17.1%,即意味着更长的吸能区间.吸能特性是结构致密化应变于平均平台应力的综合体现,是衡量结构防护性能的关键.由于平均平台应力和致密化区间随冲击速度增大有较大提高,因此其增长趋势也于其他指标类似.在200m/s的冲击工况下,吸能特性是10m/s速度下的1.72倍.

  • 为了深入理解动态力学性能随冲击速度的规律,本文采用刚性-完美塑性-锁定(Rigid-Perfectly Plastic-Lock model,R-PP-L)模型[21]对其在动态加载下的力学特性变化规律进行分析.在R-PP-L模型中,结构平均平台应力与等效密度组成材料参数以及冲击速度有关.根据R-PP-L模型,可构建如下拟合方程:

  • σplσys=A0ρ*2+ρ*1-B0ρ*ρsσysv2
    (10)
  • 式中,σys为材料屈服应力,ρs为材料密度,v为冲击速度,A0B0为拟合参数.

  • 图8 抗冲强度仿真数据与R-PP-L拟合曲线

  • Fig.8 Simulation results of crushing strength ratio and R-PP-L fitting curves

  • 将等效密度、冲击速度与材料参数带入式(10)对拟合参数进行求解,求得A0B0分别为3.719和0.06211.绘制R-PP-L模型拟合曲线与仿真数据于图8.从中可以看出,二者具有良好的一致性,充分揭示了Gyroid极小曲面超材料平台区平均应力随冲击速度和结构密度的变化规律.

  • 根据式(7)的吸能特性计算公式,吸能特性也可抽象的描述为以结构致密化应变、应变轴、应力-应变曲线为边界所围区域的面积.研究表明,典型多孔结构在承受压缩载荷时,首先应力会快速上升至结构屈服强度,进而进入稳定平台区,随后进入致密化阶段,如图9所示,而主要吸能区间如图9绿色方块所示.

  • 图9 多孔结构受载时应力应变曲线示意图

  • Fig.9 The stress-strain curve of cellular structures under loadings

  • 根据这一特征,可以建立如下吸能特性简易计算方程:

  • EA=ShσplεD-σyεy2
    (11)
  • 在高速冲击下,结构会在极短的时间内进入屈服阶段,即σy趋近于0.结构的致密化应变主要与等效密度有关,加载工况对其影响较小,在200m/s的冲击下和50m/s冲击下其致密化应变仅相差0.1左右,在该模型中可视为常数.另外,结构平均平台应力与冲击速度的关系已通过R-PP-L模型拟合,将其带入式(11),此时吸能特性预测公式为:

  • EA=ShεDσysA0ρ*2+ρ*1-B0ρ*ρsσysv2
    (12)
  • 将材料参数和拟合参数A0B0带入式(12),致密化应变取估值为0.55,代入不同冲击速度进行计算,将预测结果与仿真结果列于表5,结果表明,该模型在低速冲击下有20%左右的误差,这是因为在低速冲击下结构屈服应变较大,不能完全考虑不计;在高速冲击下,在接触瞬间冲击应力到达峰值,屈服应变极小,可以忽略不计,保证了模型预估精度,在200m/s的冲击工况下误差仅为4.4%,充分证明预测模型在高速冲击下的有效性.

  • 表4 不同冲击速度下Gyroid极小曲面超材料动态力学性能

  • Table4 Dynamic mechanical properties of Gyroid type minimal surfaces metamaterials under different

  • 表5 不同冲击速度下Gyroid极小曲面超材料吸能特性仿真值与预测值对比

  • Table5 The comparison of simulation results and prediction results of energy absorption performance of Gyroid type minimal surfaces metamaterials under different impact conditions

  • 3 结论

  • 本文研究了Gyroid型极小曲面力学超材料在准静态及动态冲击工况下的力学性能.从结构弹性模量、强度、吸能特性等方面,探讨了加载工况、等效密度对力学性能的影响规律,并构建相关模型对其规律进行精准拟合.主要结论如下:

  • (1)在准静态加载工况下,Gyroid结构的弹性模量和平台区平均应力会随着等效密度的变化呈指数上升趋势.当结构密度为30%时,其模量和平台区应力分别为180.767MPa和9.397MPa;当等效密度上升至50%时,模量和平台应力分别为374.358MPa和23.593MPa,提升了107.9%和170.22%.用Gibson-Ashby模型可精准拟合结构性能与等效密度的关系,为结构设计及其工程应用提供性能预测方法.

  • (2)当等效密度一定时,结构的平台区平均应力和吸能特性都会随冲击速度的增长而增长,且二者变化的趋势极为相似.在低速冲击工况下,结构应力应变曲线仅在较低应变区域内存在变化,平均平台区应力和吸能特性随速度变化有小幅度波动;当冲击速度提升至150m/s时,此时结构性能有大幅提升,在200m/s的冲击工况下其平台应力和吸能特性相比于10m/s增长了47%和72.5%.引入R-PP-L模型,对平台区平均应力随冲击速度变化规律进行拟合,拟合结果与仿真结果具有高度一致性.根据吸能特性定义,本文提出了吸能特性简化预测模型,能根据冲击工况、材料参数和结构特征对其吸能特性进行预测,将预测结构与仿真结果进行对比,在低速冲击工况下存在近20%的误差,这是由结构屈服应变较大导致;而在高速冲击工况下,屈服应变可近似为0,吸能特性预测仅存在4.4%的误差,充分证明了所提模型的有效性.本文研究工作为工程冲击吸能结构设计与性能评估提供了理论依据.

  • 参考文献

    • [1] 温激鸿,蔡力,郁殿龙,等.声学超材料基础理论与应用 [M].北京:科学出版社,2018 WEN J H,CAI L,YU D L,et al.Basic theory and application of acoustic metamaterials [M].Beijing:Science Press,2018.(in Chinese)

    • [2] 尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用 [J].力学进展,2022,52(3):508-586.YIN J F,CAI L,FANG X,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control [J].Advance in Mechanics,2022,52(3):508-586.(in Chinese)

    • [3] 于相龙,周济.力学超材料的构筑及其超常新功能 [J].中国材料进展,2019,38:14-21.YU X L,ZHOU J.Mechanical metamaterials:architected materials and unexplored properties [J].Materials China,2019,38:14-21.(in Chinese)

    • [4] 于靖军,谢岩,裴旭.负泊松比超材料研究进展 [J].机械工程学报,2019,54:1-14.YU J J,XIE Y,PEI X.State-of-art of metamaterials with negative Poisson’s ratio [J].Journal of Mechanical Engineering,2019,54:1-14.(in Chinese)

    • [5] 任晨辉,杨德庆.二维负刚度负泊松比超材料及其力学性能 [J].哈尔滨工程大学学报,2020,41:1129-1135.REN C H,YANG D Q.Mechanical properties of a 2D metamaterials with negative stiffness and negative Poisson’s ratio [J].Journal of Harbin Engineering University,2020,41:1129-1135.(in Chinese)

    • [6] 张新春,刘颖,李娜.具有负泊松比效应蜂窝材料的面内冲击动力学性能 [J].爆炸于冲击,2012,32(5):475-482.ZHANG X C,LIU Y,LI N.In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects [J].Journal of Explosion and Shock Waves,2012,32(5):475-482.(in Chinese)

    • [7] 尹冠生,姚兆楠.梯度负泊松比蜂窝材料的冲击动力学性能 [J].动力学与控制学报,2017,15(1):52-58.YIN G S,YAO Z N.Dynamic crushing performance of graded auxetic honeycombs with negative Poisson’s ratio [J].Journal of Dynamics and Control,2017,15(1):52-58.(in Chinese)

    • [8] 韩会龙,张新春,王鹏.负泊松比蜂窝材料的动力学响应及能量吸收特性 [J].爆炸与冲击,2019,39(1):11-22.HAN H L,ZHANG X C,WANG P.Dynamic response and energy absorption properties of honeycombs with negative Poisson’s ratio [J].Journal of Explosion and Shock Waves,2019,39(1):11-22.(in Chinese)

    • [9] ABUEIDDA D W,BAKIR M,AL-RUB R K.Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures [J].Materials & Design,2017,122:255-267.

    • [10] ABUEIDDA D W,ELHEBEARY M,SHIANG C S.Mechanical properties of 3D printed polymeric Gyroid cellular structures:Experimental and finite element study [J].Materials & Design,2019,165:107597

    • [11] ABUEIDDA D W,AL-RUB R K,DALAQ A S.Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces [J].Mechanics of Materials,2016,95:102-115.

    • [12] MASKERY I,ABOULKHAIR N T,AREMU A O.Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J].Additive Manufacturing,2017,16:24-29.

    • [13] SHEN M,QIN W,XING B.Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures [J].Journal of the European Ceramic Society,2021,41(2):1481-1489.

    • [14] 孙鹏飞,张跃,尹鹏,等.隐式曲面梯度多孔结构拓扑优化设计方法 [J].西安交通大学学报,2022,56(1):85-95.SUN P F,ZHANG Y,YIN P,et al.A topology optimization design method of grade cellular structures with implicit surfaces [J].Journal of Xi’an Jiaotong University,2022,56(1):95-95.(in Chinese)

    • [15] 余学伟,李琳慧,张涛,等.基于三周期极小曲面和体素距离场的复杂轮廓点阵结构建模 [J].重庆大学学报,2022,45(6):75-84.YU X W,LI L H,ZHANG T,et al.Modeling of complex contour lattice structures based on triply periodic minimal surface and voxel distance field [J].Journal of Chongqing University,2022,45(6):75-84.(in Chinese)

    • [16] 石志良,王伟,高杰.变形三周期极小曲面多孔结构参数化设计 [J].计算机辅助设计与图形学学报,2022,34(6):970-976.SHI Z L,WANG W,GAO J.Parametric design of porous scaffold with deformed triply periodic minimal surface [J].Journal of Computer-Aided Design & Computer Graphics,2022,34(6):970-976.(in Chinese)

    • [17] FAN X,TANG Q,FENG Q.Design,mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting [J].International Journal of Mechanical Sciences,2021,204:106586.

    • [18] Wang H,Tan D,Liu Z.On crashworthiness of novel porous structure based on composite TPMS structures [J].Engineering Structures,2022,252:113640.

    • [19] LIANG H,WANG Q,PU Y.In-plane compressive behavior of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness [J].International Journal of Mechanical Sciences,2021,209:106723.

    • [20] LI P,YANG F,BIAN Y.Deformation pattern classification and energy absorption optimization of the eccentric body centered cubic lattice structures [J].International Journal of Mechanical Sciences,2021,212:106813.

    • [21] IMBALZANO G,LINFORTH S,NGO T D.Blast resistance of auxetic and honeycomb sandwich panels:Comparisons and parametric designs [J].Composite Structures,2018,183:242-261.

  • 参考文献

    • [1] 温激鸿,蔡力,郁殿龙,等.声学超材料基础理论与应用 [M].北京:科学出版社,2018 WEN J H,CAI L,YU D L,et al.Basic theory and application of acoustic metamaterials [M].Beijing:Science Press,2018.(in Chinese)

    • [2] 尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用 [J].力学进展,2022,52(3):508-586.YIN J F,CAI L,FANG X,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control [J].Advance in Mechanics,2022,52(3):508-586.(in Chinese)

    • [3] 于相龙,周济.力学超材料的构筑及其超常新功能 [J].中国材料进展,2019,38:14-21.YU X L,ZHOU J.Mechanical metamaterials:architected materials and unexplored properties [J].Materials China,2019,38:14-21.(in Chinese)

    • [4] 于靖军,谢岩,裴旭.负泊松比超材料研究进展 [J].机械工程学报,2019,54:1-14.YU J J,XIE Y,PEI X.State-of-art of metamaterials with negative Poisson’s ratio [J].Journal of Mechanical Engineering,2019,54:1-14.(in Chinese)

    • [5] 任晨辉,杨德庆.二维负刚度负泊松比超材料及其力学性能 [J].哈尔滨工程大学学报,2020,41:1129-1135.REN C H,YANG D Q.Mechanical properties of a 2D metamaterials with negative stiffness and negative Poisson’s ratio [J].Journal of Harbin Engineering University,2020,41:1129-1135.(in Chinese)

    • [6] 张新春,刘颖,李娜.具有负泊松比效应蜂窝材料的面内冲击动力学性能 [J].爆炸于冲击,2012,32(5):475-482.ZHANG X C,LIU Y,LI N.In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects [J].Journal of Explosion and Shock Waves,2012,32(5):475-482.(in Chinese)

    • [7] 尹冠生,姚兆楠.梯度负泊松比蜂窝材料的冲击动力学性能 [J].动力学与控制学报,2017,15(1):52-58.YIN G S,YAO Z N.Dynamic crushing performance of graded auxetic honeycombs with negative Poisson’s ratio [J].Journal of Dynamics and Control,2017,15(1):52-58.(in Chinese)

    • [8] 韩会龙,张新春,王鹏.负泊松比蜂窝材料的动力学响应及能量吸收特性 [J].爆炸与冲击,2019,39(1):11-22.HAN H L,ZHANG X C,WANG P.Dynamic response and energy absorption properties of honeycombs with negative Poisson’s ratio [J].Journal of Explosion and Shock Waves,2019,39(1):11-22.(in Chinese)

    • [9] ABUEIDDA D W,BAKIR M,AL-RUB R K.Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures [J].Materials & Design,2017,122:255-267.

    • [10] ABUEIDDA D W,ELHEBEARY M,SHIANG C S.Mechanical properties of 3D printed polymeric Gyroid cellular structures:Experimental and finite element study [J].Materials & Design,2019,165:107597

    • [11] ABUEIDDA D W,AL-RUB R K,DALAQ A S.Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces [J].Mechanics of Materials,2016,95:102-115.

    • [12] MASKERY I,ABOULKHAIR N T,AREMU A O.Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J].Additive Manufacturing,2017,16:24-29.

    • [13] SHEN M,QIN W,XING B.Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures [J].Journal of the European Ceramic Society,2021,41(2):1481-1489.

    • [14] 孙鹏飞,张跃,尹鹏,等.隐式曲面梯度多孔结构拓扑优化设计方法 [J].西安交通大学学报,2022,56(1):85-95.SUN P F,ZHANG Y,YIN P,et al.A topology optimization design method of grade cellular structures with implicit surfaces [J].Journal of Xi’an Jiaotong University,2022,56(1):95-95.(in Chinese)

    • [15] 余学伟,李琳慧,张涛,等.基于三周期极小曲面和体素距离场的复杂轮廓点阵结构建模 [J].重庆大学学报,2022,45(6):75-84.YU X W,LI L H,ZHANG T,et al.Modeling of complex contour lattice structures based on triply periodic minimal surface and voxel distance field [J].Journal of Chongqing University,2022,45(6):75-84.(in Chinese)

    • [16] 石志良,王伟,高杰.变形三周期极小曲面多孔结构参数化设计 [J].计算机辅助设计与图形学学报,2022,34(6):970-976.SHI Z L,WANG W,GAO J.Parametric design of porous scaffold with deformed triply periodic minimal surface [J].Journal of Computer-Aided Design & Computer Graphics,2022,34(6):970-976.(in Chinese)

    • [17] FAN X,TANG Q,FENG Q.Design,mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting [J].International Journal of Mechanical Sciences,2021,204:106586.

    • [18] Wang H,Tan D,Liu Z.On crashworthiness of novel porous structure based on composite TPMS structures [J].Engineering Structures,2022,252:113640.

    • [19] LIANG H,WANG Q,PU Y.In-plane compressive behavior of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness [J].International Journal of Mechanical Sciences,2021,209:106723.

    • [20] LI P,YANG F,BIAN Y.Deformation pattern classification and energy absorption optimization of the eccentric body centered cubic lattice structures [J].International Journal of Mechanical Sciences,2021,212:106813.

    • [21] IMBALZANO G,LINFORTH S,NGO T D.Blast resistance of auxetic and honeycomb sandwich panels:Comparisons and parametric designs [J].Composite Structures,2018,183:242-261.

  • 微信公众号二维码

    手机版网站二维码