en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李金强,E-mail:lijinqiang@hrbeu.edu.cn

中图分类号:O328

文献标识码:A

文章编号:1672-6553-2023-21(7)-020-008

DOI:10.6052/1672-6553-2023-085

参考文献 1
关淮桐,田瑞兰,张子文.仿蝴蝶形蜂窝结构夹层板的振动特性研究 [J].哈尔滨工程大学学报,2022,43(9):1383-1390.GUAN H T,TIAN R L,ZHANG Z W.Study of the vibrational characteristics of butterfly-shaped honeycomb sandwich panel [J].Journal of Harbin Engineering University,2022,43(9):1383-1390.(in Chinese)
参考文献 2
陆姗姗,盛美萍,任杰安.格栅夹层板抑振性能研究 [J].动力学与控制学报,2012,10(2):157-161.LU S S,SHENG M P,Ren J A.Vibration suppression performance research of sandwich plate with lattice grids [J].Journal of Dynamics and Control,2012,10(2):157-161.(in Chinese)
参考文献 3
刘建良,梅志远,张焱冰,等.浮力材料和橡胶格栅夹层板振动响应试验对比研究 [J].中国舰船研究,2019,14(4):1-6+13 LIU J L,MEI Z Y,ZHANG Y B,et al.Comparative study on vibration response test of buoyancy-core and rubber-core grid sandwich panels [J].Chinese Journal of Ship Research,2019,14(4):1-6+13.(in Chinese)
参考文献 4
陈永清,仇琨,李响.类蜂窝夹层结构振动特性分析及应用研究 [J].机械,2022,49(1):9-15+36.CHEN Y Q,QIU K,LI X.Vibration characteristics analysis and application research of honeycomb-like sandwich structure [J].Machinery,2022,49(1):9-15+36.(in Chinese)
参考文献 5
XIN F X,LU T J.Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures:Sound transmission [J].Journal of the Mechanics and Physics of Solids 2010;58(9):1374-1396.
参考文献 6
FENG L J,WEI G T,YU G C,et al.Underwater blast behaviors of enhanced lattice truss sandwich panels [J].International Journal of Mechanical Sciences,2019,150:238–246.
参考文献 7
SONG Y B,FENG L P,LIU Z B,et al.Suppression of the vibration and sound radiation of a sandwich plate via periodic design [J].International Journal of Mechanical Sciences,2019,150:744-754.
参考文献 8
任鹏,田阿利,张伟.水下冲击载荷下波纹夹层结构动态响应特性分析 [J].振动与冲击,2016,35(23):90-94+105.REN P,TIAN A L,ZHANG W.Dynamic response characteristics of a corrugated core sandwich panel subjected to underwater shock loading [J].Journal of Vibration and Shock,2016,35(23):90-94+105.(in Chinese)
参考文献 9
刘文萍,丁雨.船体夹层板结构耐冲击性能优化研究 [J].舰船科学技术,2023,45(7):18-21.LIU W P,DING Y.Research on impact resistance optimization of hull sandwich plate structure [J].Ship Science and Technology,2023,45(7):18-21.(in Chinese)
参考文献 10
刘建良,梅志远,唐宇航,等.几种典型复合材料板振动特性综合对比分析及设计规律研究 [J].振动与冲击,2019,38(15):65-72.LIU J L,MEI Z Y,TANG Y H,et al.Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law [J].Journal of Vibration and Shock,2019,38(15):65-72.(in Chinese)
参考文献 11
靳奉华,郭辉,孙裴,等.方形晶格夹层板减振性能仿真与优化 [J].人工晶体学报,2022,51(2):248-255.JIN F H,GUO H,SUN P,et al.Simulation and optimization of vibration reduction performance of square lattice sandwich plate [J].Journal of Synthetic Crystals,2022,51(2):248-255.(in Chinese)
参考文献 12
SALARI-SHARIF L,SCHAEDLER T A,VALDEVIT L.Hybrid hollow microlattices with unique combination of stiffness and damping [J].Journal of Engineering Materials and Technology,2018,140:031003.
参考文献 13
王亚琴,徐晓美,林萍.薄膜型声学超材料的结构设计与隔声特性 [J].应用声学,2022,41(6):875-883.WANG Y Q,XU X M,LIN P.Structural design and sound insulation characteristics of the membrane-type acoustic metamaterial [J].Journal of Applied Acoustics,2022,41(6):875-883.(in Chinese)
参考文献 14
王翌伟,徐晓美,林萍,等.薄膜型声学超材料隔声特性研究 [J].噪声与振动控制,2021,41(6):42-48.WANG Y W,XU X M,LIN P,et al.Sound insulation properties of membrane-type acoustic metamaterials [J].Noise and Vibration Control,2021,41(6):42-48.(in Chinese)
参考文献 15
邱克鹏,秦云飞,费晨,等.薄膜声学超材料降噪性能分析及设计 [J].噪声与振动控制,2021,41(2):7-14.QIU K P,QIN Y F,FEI C,et al.Analysis and design of sound insulation performance of membrane-type acoustical metamaterials [J].Noise and Vibration Control,2021,41(2):7-14.(in Chinese)
参考文献 16
YANG Z,MEI J,YANG M,et al.Membrane-type acoustic metamaterial with negative dynamic mass [J].Physical Review Letters,2008,101:204301.
参考文献 17
NAIFY C J,CHANG C M,MCKNIGHT G,et al.Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials [J].Journal of Applied Physics,2010,108:114905.
参考文献 18
NAIFY C J,CHANG C M,MCKNIGHT G,et al.Membrane-type metamaterials:transmission loss of multi-celled arrays [J].Journal of Applied Physics,2011,109:104902.
参考文献 19
LIN G C,CHEN S Q,YUAN X B,et al.Transmission loss of thin membrane-type acoustic metamaterials with multi-masses [J].International Conference on Innovative Material,2016.
参考文献 20
周国建,吴九汇,路宽,等.多态反共振协同型薄膜声学超材料低频隔声性能 [J].西安交通大学学报,2020,54(1):64-74.ZHOU G J,WU J H,LU K,et al.Low-frequency sound insulation performance of membrane-type acoustic metamaterials with multi-state anti-resonance synergy [J].Journal of Xi’an Jiaotong University,2020,54(1):64-74.(in Chinese)
参考文献 21
LI J Q,ZHANG Y,FAN X L,et al.Multi bandgaps design of sandwich metamaterial plate with embedded membrane-type resonators [J].Journal of Sandwich Structures & Materials 2023;25(3):311-329.
参考文献 22
陈传敏,乔钏熙,郭兆枫,等.半主动式薄膜型声学超材料超低频隔声特性研究 [J].噪声与振动控制,2023,43(3):60-65.CHEN C M,QIAO C X,GUO Z F,et al.Study on ultra-low frequency sound insulation characteristics of semi-active membrane type acoustic metamaterials [J].Noise and Vibration Control,2023,43(3):60-65.(in Chinese)
参考文献 23
杨坤,杨明月,崔世明,等.大尺寸薄膜型声学超材料复合结构低频宽带隔声性能研究 [J].振动与冲击,2022,41(22):14-22.YANG K,YANG M Y,CUI S M,et al.Low-frequency and broadband sound insulation performance of large-scale composite structures based on membrane-type acoustic metamaterials [J].Journal of Vibration and Shock,2022,41(22):14-22.(in Chinese)
参考文献 24
郭磊,张均东,曾鸿.变厚度薄膜型声学超材料单胞的隔声性能数值研究 [J].舰船科学技术,2020,42(1):38-42.GUO L,ZHANG J D,ZENG H.The numerical study of sound insulation performance of membrane acoustic metamaterial cell with variable thickness [J].Ship Science and Technology,2020,42(1):38-42.(in Chinese)
参考文献 25
曹卫锋,白鸿柏,朱庆.薄膜型声学超材料的低频吸收性能研究 [J].振动与冲击,2018,37(14):188-194+238.CAO W F,BAI H B,ZHU Q.Analysis on the low frequency acoustic absorption performance of a metamaterial membrane [J].Journal of Vibration and Shock,2018,37(14):188-194+238.(in Chinese)
目录contents

    摘要

    本文将薄膜型声学超材料结构与格栅夹层板结构相结合,发展了一种双层薄膜型超材料夹层板结构.采用有限元方法,建立薄膜型超材料夹层板结构模型,并分析其带隙产生机理.在单层薄膜型超材料夹层板结构的基础上,提出了相同质量与不同质量的双层薄膜型超材料夹层板结构,将其产生的局域共振带隙与单层薄膜型超材料夹层板结构进行对比分析.结果表明,相较于只含单层薄膜结构的夹层板,具有相同振子质量的双层薄膜型超材料夹层板结构,可以有效拓宽带隙范围.不同质量双层薄膜型超材料夹层板结构,可以增加带隙数量.如果改变“薄膜-质量”谐振器质量块的粘附位置,结构的不对称性会使双层薄膜型超材料夹层板产生多个局域共振带隙,且位置相近的带隙可能合并为较宽的带隙.

    Abstract

    In this paper, a membrane-type metamaterial sandwich plate structure is proposed by combining the membrane-type acoustic metamaterial structure with the grid sandwich plate structure. The structural model of the membrane metamaterial sandwich plate is established by the finite element method, and the mechanism of band gap generation is analyzed. Based on the single-layer membrane-type metamaterial sandwich plate structure, double membrane-type acoustic metamaterials sandwich plate structures with the same masses and different masses are proposed, and the local resonance band gap generated by them is compared with the single-layer membrane-type metamaterial sandwich plate structure. The results show that the double membrane-type acoustic metamaterials sandwich plate structure with the same masses can effectively broaden the band gap range and the double membrane-type acoustic metamaterials sandwich plate structure with the different masses can effectively increase the number of band gaps. In addition, if the mass adhesion position of the ‘film-mass’ resonators with the same masses and different masses is changed respectively, the asymmetry of the structure will cause the double membrane-type acoustic metamaterials plate to produce multiple resonant band gaps, and the bandwidth generated by the resonator with the same masses does not overlap but the adjacent band gaps will be combined into a larger band gap, while the band gap width of other band gaps will be reduced.

  • 引言

  • 格栅夹层板结构[1-3]是由两块平行的面板与中间的空间周期性加强筋[45]结构形成的复合结构,该结构是在航空、航天、海军建筑和汽车工程等工程应用领域具有实际重要性的结构元件.格栅夹层板结构具有轻质、高比强度、高比刚度和多功能集成的优点[6].然而,从质量定律的角度来看,该结构高比刚度和强度的特性导致低频吸声隔振性能较差[7].尤其是在航空和航天领域中,结构通常受到声激励或动态冲击[89],研究新的方法和理论来解决格栅夹层板结构的良好机械性能和高振动性能之间的矛盾变得越来越重要.为了解决这一难题,近年来发展了许多方法,刘建良等[10]分析了不同格栅材料的夹层板对于振动的抑制作用,可根据工作频段范围、结构承载情况选择合适的组合方案.靳奉华等[11]研究了以钢为边界、铜和硅橡胶交替填充的方形晶格夹层板的减振性能,并通过引入传输损耗系数对其进行优化.Salari-Sharif L[12]通过阻尼设计的方法在结构的共振频率处获得有效的振动抑制效果,但在其它频率范围内,尤其是在低频区域,振动抑制效果较为有限.

  • 近年来兴起的声子晶体和声学超材料领域为实现夹层结构的振动与噪声控制提供了新的解决策略.其中,薄膜型声学超材料结构[13-15]因其重量轻、易于制造和成本相对较低等诸多优点得到广泛研究.2008年,Yang等[16]人首次提出在弹性薄膜上附加质量的薄膜型声学超材料.能够实现在低频突破质量定律的有效隔声.Naify[1718]通过有限元仿真和实验的方式研究了不同薄膜张紧力以及不同附加质量下薄膜型声学超材料的隔声范围.Lin等[19]将单一集中质量划分为多个,可产生多个隔声峰值,在低频范围隔声效果有了显著提高.周国建等[20]提出了一种摆臂式柔性薄膜型声学超材料结构,通过在子单胞内引入多态反共振模式实现了低频隔声频带的拓宽及隔声量的提高.Li等[21]提出了一种具有优良振动抑制性能的薄膜型超材料夹芯板结构.然而,大多数关于薄膜型声学超材料结构的研究主要集中在隔声或吸声[22-25]应用上,关于振动控制应用的研究数量有限.虽然已经有一些初步研究,为振动控制应用方面的进一步发展提供了基础,但一些区域仍然没有被深入地探索.

  • 因此,本文旨在开发一种多功能的新型结构,该结构能够继承格栅夹层结构和薄膜型声学超材料结构的诸多优点,如重量轻、强度高、低频振动噪声抑制、成本低和易于制造.在本文中,通过将薄膜型声学超材料结构系统集成到格栅夹层板结构中,提出了一种双层薄膜型超材料夹层板结构.利用有限元方法计算了双层薄膜型超材料夹层板结构的能带结构.研究了双层薄膜型声学超材料结构系统中附加质量的位置对带隙特性的影响.本文提出的薄膜型超材料夹层板结构的设计方法和带隙调控策略将有助于推动其在轻质夹层结构振动控制方面的应用.

  • 1 模型和方法

  • 1.1 结构模型

  • 图1给出了本文所设计的双层薄膜型超材料夹层板结构的单胞模型.该模型由带有空间周期性加强筋结构的上下两层面板、格栅结构以及双层“薄膜-质量”谐振器系统组成,并使用螺栓螺母通过预留好的螺纹孔进行连接与固定.“薄膜-质量”谐振器系统由一个弹性薄膜,两个对称粘接在薄膜上下两个表面的圆形质量块组成.带有空间周期性加强筋结构的面板采用环氧树脂材料,弹性薄膜使用聚氯乙烯塑料.为方便粘接与移动,质量块由两块磁铁代替.薄膜型超材料夹层板结构的晶格常数a=37mm,上下面板的厚度tf=2mm,空间周期性加强筋结构的厚度与高度分别为tc=2mm、hc=5mm,弹性薄膜的厚度hm=0.2mm,质量块的厚度与直径分别为hd=2mm、d=20mm.表1列出了双层薄膜型超材料夹层板的材料参数.

  • 图1 双层薄膜型超材料夹层板结构的单胞模型

  • Fig.1 A unit cell of the metamaterial sandwich plate with bilayer membrane-mass resonators

  • 表1 双层薄膜型超材料夹层板的材料属性

  • Table1 The materials parameters of the metamaterial sandwich plate

  • 1.2 仿真模型建立

  • 本文采用有限元法计算双层薄膜型超材料夹层板的能带结构.根据图1与表1所提供的双层薄膜型超材料单胞的几何模型与参数,在有限元软件中建立如图2所示的单胞模型.在进行仿真模拟计算时,选择三维模型与固体力学模块,研究项目设置为“特征频率”,将所有实体域设置为线弹性材料.在单胞xy方向的边界设置Floquet 周期性边界条件来计算无限周期结构上的弹性波的传播情况,需要说明的是,在多物理仿真软件COMSOL Multiphysics 5.6中,不同几何特征之间的连接与固定可以直接设定,为了提升计算效率与降低计算量,螺杆螺母在有限元仿真计算中不再进行实体建模.

  • 图2(a)有限元单胞模型全局视图与(b)侧视图

  • Fig.2 (a) Global view of finite element unit cell and (b) side view of (a)

  • 2 计算结果和讨论

  • 2.1 带隙机理分析

  • 为了分析“薄膜-质量”谐振器的引入对于格栅夹层板结构的影响,我们首先计算了无谐振器夹层板和较为简单的单层薄膜型超材料夹层板结构的能带结构.单层薄膜型超材料夹层板仅由上下面板及单层“薄膜-质量”谐振器系统组成.

  • 在某些频率范围内,本征值的缺失表明了带隙的存在.从图3可以看出,在我们所考虑的0Hz~500Hz频率范围内,无谐振器夹层板的能带结构是连续的.也就是说,在0Hz~500Hz频率范围内,振动可以在没有“薄膜-质量”谐振器的格栅夹层板中自由传播.随着“薄膜-质量”谐振器的引入,发现存在一个清晰的带隙,该带隙以灰色区域突出显示.且该带隙的下边界和上边界取决于超材料夹层板的共振模态(a)与共振模态(d).这表明,“薄膜-质量”系统可以看作是一个局域共振型谐振器,具有局域化振动能量和抑制夹层板基体结构振动的能力.

  • 图3 格栅夹层板能带结构(蓝色点线)、单层薄膜型超材料夹层板的能带结构(红色点线)和各阶模态(a)-(d)

  • Fig.3 Band structure of the sandwich plate without resonator (dotted blue line) and the single-layer metamaterial sandwich plate (dotted red line) and the mode shapes (a) - (d) of each order

  • 值得引起关注的现象是,超材料夹层板的共振模态(b)和(c)并不能产生局部共振型带隙.为了进一步研究“薄膜-质量”谐振器引起局域共振型带隙的形成机理,本文基于式(1)计算了“薄膜-质量”谐振器各阶模态振型在z方向上的加速度积分:

  • P=ρa(x,y,z)dxdydz
    (1)
  • 其中ρ表示“薄膜-质量”谐振器的密度,为常值;axyz)为各阶振型下板式谐振器在几何空间(xyz)处z方向上的加速度.注意,此处的P的设定仅仅用来做一个定性的比较,故而不列出其具体的数值.实际结构中,加速度积分P表现为“薄膜-质量”系统共振时产生的作用于基体结构上的异相惯性力,用以抵消基体格栅夹层板结构的内部剪切力,抑制基体格栅夹层板的弯曲,从而抑制弹性波在基体结构中的传播.计算结果如图4所示,可以发现,“薄膜-质量”谐振器第一阶共振模态(a)的加速度积分是非零值,且恰好产生局域共振型带隙;而其余的共振模态(b)和(c)的加速度积分等于零并且不能形成局域共振型带隙.据此,可以推断具有非零加速度积分P的共振模式是产生局部共振带隙的必要条件.

  • 图4 谐振器各阶模态振型(a)-(c)的加速度积分

  • Fig.4 Comparison of acceleration integration of the mode shapes (a) - (c) of the membrane-mass structure

  • 2.2 相同质量双层薄膜型超材料夹层板带隙分析

  • 根据上文的研究内容可知,“薄膜-质量”谐振器可以使薄膜型超材料夹层板产生局域共振型带隙,并分析了不同模态下的“薄膜-质量”谐振器引起局域共振型带隙的形成机理.基于此,我们对双层薄膜型超材料夹层板结构的带隙机理进行分析,并将详细讨论三种双层“薄膜-质量”谐振器不同的组合方式对薄膜型超材料夹层板结构带隙特性的影响.

  • 第一种双层的“薄膜-质量”谐振器由两个相同的单层谐振器组成,两个单层薄膜谐振器的粘附质量均位于薄膜的中心.为了对比分析,相应的单层结构的能带结构以蓝色点线绘出.如图5所示,较单层结构而言,双层结构的带隙起始频率未发生变化,截至频率向高频移动,带隙范围被大大拓宽了.带隙上下边界共振模态如图5(a),(b)所示,结合2.1小节分析可知,图5(c),(d)由于其加速度积分P等于零的共振模态而并未产生带隙.

  • 以上所分析的“薄膜-质量”谐振器,其质量均位于薄膜中心,而第二种双层“薄膜-质量”谐振器同样由两个相同的单层谐振器组成,不同之处在于薄膜谐振器的粘附质量不在薄膜中心.为了方便描述,如图6所示,将坐标原点设置在薄膜的中心,坐标轴与薄膜边界保持平行.用一对参数ξζ来说明说明黏附质量在薄膜表面x方向和y方向的偏移量.

  • 图5 双层薄膜型超材料夹芯板的各阶模态(a)-(d)及其能带结构(红色点线)和相对应单层薄膜型超材料夹芯板(蓝色点线)的能带结构

  • Fig.5 The mode shapes (a) - (d) and the band structure (dotted red line) of the double membrane-type acoustic metamaterials sandwich plate and the band structure of the corresponding single-layer membrane-type metamaterial sandwich plate ( dotted blue line)

  • 图6 粘附质量位置

  • Fig.6 Adhesion mass position

  • 第二种双层“薄膜-质量”谐振器的两个粘附质量都位于(ξ=4mm,ζ=3mm).同样地,计算双层与相应单层薄膜型超材料夹层板的能带结构,并分别用红色点线与蓝色点线绘制于图7.与图5的单层无偏心薄膜型超材料板相比,由于粘附质量位置发生改变,导致“薄膜-质量”谐振器系统的各阶共振模态中质量块的运动形式发生变化,由此引起了带隙的位置及宽度发生变化.结合2.1小节的研究,由于粘附质量位置的改变,“薄膜-质量”结构的对称性遭到破坏,这提供了许多具有非零加速度积分P的非对称共振模式,使单层偏心薄膜型超材料板产生了三条共振带隙.而双层偏心薄膜型超材料板使其第一、第二、第三带隙均被拓宽,但各个带隙的起始位置不会发生改变,这与第一种双层“薄膜-质量”谐振器情况相同.

  • 图7 相同偏移量双层薄膜型超材料夹芯板的各阶模态(a)-(h)及其能带结构(红色点线)和相对应单层薄膜型超材料夹芯板(蓝色点线)的能带结构

  • Fig.7 The mode shapes (a) - (h) and the band structure (dotted red line) of the double membrane-type acoustic metamaterials sandwich plate with the same offset and the band structure of the corresponding single-layer membrane-type metamaterial sandwich plate (dotted blue line)

  • 图8 不同偏移量双层薄膜型超材料夹芯板的各阶模态(a)-(j)及其能带结构(红色点线)和相对应单层薄膜型超材料夹芯板(蓝色和绿色点线)的能带结构

  • Fig.8 The mode shapes (a) - (j) and the band structure (dotted red line) of the double membrane-type acoustic metamaterials sandwich plate with the different offset and the band structure of the corresponding single-layer membrane-type metamaterial sandwich plate ( dotted blue and green line)

  • 第三种双层“薄膜-质量”谐振器由两个不同位置的单层谐振器组成,单层薄膜谐振器的粘附质量分别位于(ξ=4mm,ζ=3mm)和(ξ=4mm,ζ=0mm).如图8所示,以红色点线表示双层薄膜型超材料夹芯板结构的带隙结构,以绿色点线表示粘附质量位于(ξ=4mm,ζ=3mm)的单层结构的能带结构,以蓝色点线表示粘附质量位于(ξ=4mm,ζ=0mm)的单层结构的能带结构.观察发现,双层薄膜型声学超材料的能带结构第一、四带隙由粘附质量位于(ξ=4mm,ζ=0mm)的谐振器共振所产生,第二、三、五带隙由粘附质量位于(ξ=4mm,ζ=3mm)的谐振器共振所产生.粘附质量位置的不同使双层薄膜型超材料夹芯板产生了更为丰富的带隙.

  • 2.3 不同质量双层薄膜型超材料夹层板带隙分析

  • 上文所讨论的均为相同“薄膜-质量”谐振器的双层薄膜型超材料夹层板.本节针对不同“薄膜-质量”谐振器的双层薄膜型超材料夹层板的带隙进行分析.将上层“薄膜-质量”谐振器的粘附质量换成金属铝,其密度为2700kg/m3,弹性模量为70GPa,泊松比为0.3,而下层“薄膜-质量”谐振器不变.然后来我们就不同质量双层薄膜型超材料夹层板的三种不同组合方式所产生的带隙进行分析.

  • 第一种不同质量双层薄膜型超材料夹芯板结构的两粘附质量均位于薄膜中心.如图9所示,不同质量双层薄膜型超材料夹层板产生了两条带隙,如图9(d)所示,第一条带隙由下层的“薄膜-磁铁质量”谐振器所产生,且带隙起始频率与相对应的单层结构(蓝色点线)相同,但截止频率有所减小.如图9(a)所示,第二条带隙由上层的“薄膜-铝质量”谐振器所产生,带隙起始频率与相对应的单层结构(绿色点线)相同,截止频率有所减小.而图9(c)是加速度积分P的对称共振模式,所以未产生局域共振带隙.

  • 第二种不同质量双层薄膜型超材料夹芯板结构的两个粘附质量均位于(ξ=4mm,ζ=3mm).与相同质量双层薄膜型超材料夹芯板原理相同,由于粘附质量位置的改变,会出现具有非零加速度积分P的非对称共振模式,由此产生多条带隙.由于两质量块的差异,在图10中可以观察到六条带隙.如图10(g),(k),(c)所示,第一、三、四条带隙由下层的“薄膜-磁铁质量”谐振器共振产生,且带隙起始频率与蓝色点线所表示的单层磁铁质量薄膜型超材料夹芯板相同,但带隙范围有所减小.相对应可以在图10(j),(e),(a)观察到,第二、五、六条带隙由上层的“薄膜-铝质量”谐振器共振产生,带隙范围与绿色点线所表示的单层铝质量薄膜型超材料夹芯板相比有所减小.

  • 图9 不同质量双层薄膜型超材料夹芯板的各阶模态(a)-(e)及其能带结构(红色点线)和相对应单层薄膜型超材料夹芯板(蓝色和绿色点线)的能带结构

  • Fig.9 The mode shapes (a) - (e) and the band structure ( dotted red line) of the double membrane-type acoustic metamaterials sandwich plate with different masses and the band structure of the corresponding single-layer membrane-type metamaterial sandwich plate (dotted blue and green line)

  • 图10 不同质量相同偏移量双层薄膜型超材料夹芯板的各阶模态(a)-(l)及其能带结构(红色点线)和相对应单层薄膜型超材料夹芯板(蓝色和绿色点线)的能带结构

  • Fig.10 The mode shapes (a) - (l) and the band structure (dotted red line) of the double membrane-type acoustic metamaterials sandwich plate with different masses and the same offset and the band structure of the corresponding single-layer membrane-type metamaterial sandwich plate (dotted blue and green line)

  • 图11 不同质量不同偏移量双层薄膜型超材料夹芯板的各阶模态(a)-(k)及其能带结构(红色点线)和相对应单层薄膜型超材料夹芯板(蓝色和绿色点线)的能带结构

  • Fig.11 The mode shapes (a) - (k) and the band structure (dotted red line) of the double membrane-type acoustic metamaterials sandwich plate with different masses and the different offset and the band structure of the corresponding single-layer membrane-type metamaterial sandwich plate ( dotted blue and green line)

  • 第三种不同质量双层薄膜型超材料夹芯板结构的两个粘附质量的位置各不相同.上层铝质量位于(ξ=4mm,ζ=3mm),下层磁铁质量位于(ξ=4mm,ζ=0mm).如图11所示,以红色点线表示不同质量双层薄膜型超材料夹芯板结构的带隙结构,以蓝色点线表示粘附质量位于(ξ=4mm,ζ=0mm)的单层“薄膜-磁铁质量”结构的能带结构,以绿色点线表示粘附质量位于(ξ=4mm,ζ=3mm)的单层“薄膜-铝质量”结构的能带结构.如图11所示,图中共有五条带隙.在图11(g),(c)和(j),(e),(a)中可以观察到,第一、三条带隙由下层的“薄膜-磁铁质量”谐振器共振产生,第二、五、六条带隙由上层的“薄膜-铝质量”谐振器共振产生,且带隙起始频率与截止频率的对应情况与图10所示的第二种不同质量双层薄膜型超材料夹芯板结构相同.但有所差异的是,由于下层质量位置的改变,使图11(k)所示的共振模式加速度积分P为零,未产生局域共振带隙.

  • 3 结论

  • 本文通过将“薄膜-质量”谐振器系统集成到格栅夹层板结构中,提出了一种继承有格栅夹层结构和薄膜声学超材料结构诸多优点的薄膜型超材料夹层板结构.基于单层薄膜型超材料夹层板结构的带隙产生机理,分析和讨论了相同质量和不同质量下双层薄膜型超材料夹层板结构.通过对双层结构不同组合方式的分类讨论,主要结论如下:

  • (1)当双层“薄膜-质量”谐振器的两个质量块相同,相较于单层薄膜夹层板结构,两个粘附质量块均位于薄膜中心时,其带隙范围可以被有效拓宽;两个粘附质量发生相同偏移时,会产生多个局域共振带隙,带隙范围均可以被有效拓宽.

  • (2)当双层“薄膜-质量”谐振器的两个质量块不同,两个不同质量块位于薄膜中心时,会产生两个不同带隙,且带隙位置与两个单层“薄膜-质量”谐振器的固有频率相同.

  • (3)当双层“薄膜-质量”谐振器的两个质量块相同而发生不同位置偏移或两个质量块不同发生任意位置偏移时,由于结构的不对称,会产生多个带隙,且彼此相邻的带隙有可能合并为较宽的带隙.

  • 参考文献

    • [1] 关淮桐,田瑞兰,张子文.仿蝴蝶形蜂窝结构夹层板的振动特性研究 [J].哈尔滨工程大学学报,2022,43(9):1383-1390.GUAN H T,TIAN R L,ZHANG Z W.Study of the vibrational characteristics of butterfly-shaped honeycomb sandwich panel [J].Journal of Harbin Engineering University,2022,43(9):1383-1390.(in Chinese)

    • [2] 陆姗姗,盛美萍,任杰安.格栅夹层板抑振性能研究 [J].动力学与控制学报,2012,10(2):157-161.LU S S,SHENG M P,Ren J A.Vibration suppression performance research of sandwich plate with lattice grids [J].Journal of Dynamics and Control,2012,10(2):157-161.(in Chinese)

    • [3] 刘建良,梅志远,张焱冰,等.浮力材料和橡胶格栅夹层板振动响应试验对比研究 [J].中国舰船研究,2019,14(4):1-6+13 LIU J L,MEI Z Y,ZHANG Y B,et al.Comparative study on vibration response test of buoyancy-core and rubber-core grid sandwich panels [J].Chinese Journal of Ship Research,2019,14(4):1-6+13.(in Chinese)

    • [4] 陈永清,仇琨,李响.类蜂窝夹层结构振动特性分析及应用研究 [J].机械,2022,49(1):9-15+36.CHEN Y Q,QIU K,LI X.Vibration characteristics analysis and application research of honeycomb-like sandwich structure [J].Machinery,2022,49(1):9-15+36.(in Chinese)

    • [5] XIN F X,LU T J.Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures:Sound transmission [J].Journal of the Mechanics and Physics of Solids 2010;58(9):1374-1396.

    • [6] FENG L J,WEI G T,YU G C,et al.Underwater blast behaviors of enhanced lattice truss sandwich panels [J].International Journal of Mechanical Sciences,2019,150:238–246.

    • [7] SONG Y B,FENG L P,LIU Z B,et al.Suppression of the vibration and sound radiation of a sandwich plate via periodic design [J].International Journal of Mechanical Sciences,2019,150:744-754.

    • [8] 任鹏,田阿利,张伟.水下冲击载荷下波纹夹层结构动态响应特性分析 [J].振动与冲击,2016,35(23):90-94+105.REN P,TIAN A L,ZHANG W.Dynamic response characteristics of a corrugated core sandwich panel subjected to underwater shock loading [J].Journal of Vibration and Shock,2016,35(23):90-94+105.(in Chinese)

    • [9] 刘文萍,丁雨.船体夹层板结构耐冲击性能优化研究 [J].舰船科学技术,2023,45(7):18-21.LIU W P,DING Y.Research on impact resistance optimization of hull sandwich plate structure [J].Ship Science and Technology,2023,45(7):18-21.(in Chinese)

    • [10] 刘建良,梅志远,唐宇航,等.几种典型复合材料板振动特性综合对比分析及设计规律研究 [J].振动与冲击,2019,38(15):65-72.LIU J L,MEI Z Y,TANG Y H,et al.Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law [J].Journal of Vibration and Shock,2019,38(15):65-72.(in Chinese)

    • [11] 靳奉华,郭辉,孙裴,等.方形晶格夹层板减振性能仿真与优化 [J].人工晶体学报,2022,51(2):248-255.JIN F H,GUO H,SUN P,et al.Simulation and optimization of vibration reduction performance of square lattice sandwich plate [J].Journal of Synthetic Crystals,2022,51(2):248-255.(in Chinese)

    • [12] SALARI-SHARIF L,SCHAEDLER T A,VALDEVIT L.Hybrid hollow microlattices with unique combination of stiffness and damping [J].Journal of Engineering Materials and Technology,2018,140:031003.

    • [13] 王亚琴,徐晓美,林萍.薄膜型声学超材料的结构设计与隔声特性 [J].应用声学,2022,41(6):875-883.WANG Y Q,XU X M,LIN P.Structural design and sound insulation characteristics of the membrane-type acoustic metamaterial [J].Journal of Applied Acoustics,2022,41(6):875-883.(in Chinese)

    • [14] 王翌伟,徐晓美,林萍,等.薄膜型声学超材料隔声特性研究 [J].噪声与振动控制,2021,41(6):42-48.WANG Y W,XU X M,LIN P,et al.Sound insulation properties of membrane-type acoustic metamaterials [J].Noise and Vibration Control,2021,41(6):42-48.(in Chinese)

    • [15] 邱克鹏,秦云飞,费晨,等.薄膜声学超材料降噪性能分析及设计 [J].噪声与振动控制,2021,41(2):7-14.QIU K P,QIN Y F,FEI C,et al.Analysis and design of sound insulation performance of membrane-type acoustical metamaterials [J].Noise and Vibration Control,2021,41(2):7-14.(in Chinese)

    • [16] YANG Z,MEI J,YANG M,et al.Membrane-type acoustic metamaterial with negative dynamic mass [J].Physical Review Letters,2008,101:204301.

    • [17] NAIFY C J,CHANG C M,MCKNIGHT G,et al.Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials [J].Journal of Applied Physics,2010,108:114905.

    • [18] NAIFY C J,CHANG C M,MCKNIGHT G,et al.Membrane-type metamaterials:transmission loss of multi-celled arrays [J].Journal of Applied Physics,2011,109:104902.

    • [19] LIN G C,CHEN S Q,YUAN X B,et al.Transmission loss of thin membrane-type acoustic metamaterials with multi-masses [J].International Conference on Innovative Material,2016.

    • [20] 周国建,吴九汇,路宽,等.多态反共振协同型薄膜声学超材料低频隔声性能 [J].西安交通大学学报,2020,54(1):64-74.ZHOU G J,WU J H,LU K,et al.Low-frequency sound insulation performance of membrane-type acoustic metamaterials with multi-state anti-resonance synergy [J].Journal of Xi’an Jiaotong University,2020,54(1):64-74.(in Chinese)

    • [21] LI J Q,ZHANG Y,FAN X L,et al.Multi bandgaps design of sandwich metamaterial plate with embedded membrane-type resonators [J].Journal of Sandwich Structures & Materials 2023;25(3):311-329.

    • [22] 陈传敏,乔钏熙,郭兆枫,等.半主动式薄膜型声学超材料超低频隔声特性研究 [J].噪声与振动控制,2023,43(3):60-65.CHEN C M,QIAO C X,GUO Z F,et al.Study on ultra-low frequency sound insulation characteristics of semi-active membrane type acoustic metamaterials [J].Noise and Vibration Control,2023,43(3):60-65.(in Chinese)

    • [23] 杨坤,杨明月,崔世明,等.大尺寸薄膜型声学超材料复合结构低频宽带隔声性能研究 [J].振动与冲击,2022,41(22):14-22.YANG K,YANG M Y,CUI S M,et al.Low-frequency and broadband sound insulation performance of large-scale composite structures based on membrane-type acoustic metamaterials [J].Journal of Vibration and Shock,2022,41(22):14-22.(in Chinese)

    • [24] 郭磊,张均东,曾鸿.变厚度薄膜型声学超材料单胞的隔声性能数值研究 [J].舰船科学技术,2020,42(1):38-42.GUO L,ZHANG J D,ZENG H.The numerical study of sound insulation performance of membrane acoustic metamaterial cell with variable thickness [J].Ship Science and Technology,2020,42(1):38-42.(in Chinese)

    • [25] 曹卫锋,白鸿柏,朱庆.薄膜型声学超材料的低频吸收性能研究 [J].振动与冲击,2018,37(14):188-194+238.CAO W F,BAI H B,ZHU Q.Analysis on the low frequency acoustic absorption performance of a metamaterial membrane [J].Journal of Vibration and Shock,2018,37(14):188-194+238.(in Chinese)

  • 参考文献

    • [1] 关淮桐,田瑞兰,张子文.仿蝴蝶形蜂窝结构夹层板的振动特性研究 [J].哈尔滨工程大学学报,2022,43(9):1383-1390.GUAN H T,TIAN R L,ZHANG Z W.Study of the vibrational characteristics of butterfly-shaped honeycomb sandwich panel [J].Journal of Harbin Engineering University,2022,43(9):1383-1390.(in Chinese)

    • [2] 陆姗姗,盛美萍,任杰安.格栅夹层板抑振性能研究 [J].动力学与控制学报,2012,10(2):157-161.LU S S,SHENG M P,Ren J A.Vibration suppression performance research of sandwich plate with lattice grids [J].Journal of Dynamics and Control,2012,10(2):157-161.(in Chinese)

    • [3] 刘建良,梅志远,张焱冰,等.浮力材料和橡胶格栅夹层板振动响应试验对比研究 [J].中国舰船研究,2019,14(4):1-6+13 LIU J L,MEI Z Y,ZHANG Y B,et al.Comparative study on vibration response test of buoyancy-core and rubber-core grid sandwich panels [J].Chinese Journal of Ship Research,2019,14(4):1-6+13.(in Chinese)

    • [4] 陈永清,仇琨,李响.类蜂窝夹层结构振动特性分析及应用研究 [J].机械,2022,49(1):9-15+36.CHEN Y Q,QIU K,LI X.Vibration characteristics analysis and application research of honeycomb-like sandwich structure [J].Machinery,2022,49(1):9-15+36.(in Chinese)

    • [5] XIN F X,LU T J.Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures:Sound transmission [J].Journal of the Mechanics and Physics of Solids 2010;58(9):1374-1396.

    • [6] FENG L J,WEI G T,YU G C,et al.Underwater blast behaviors of enhanced lattice truss sandwich panels [J].International Journal of Mechanical Sciences,2019,150:238–246.

    • [7] SONG Y B,FENG L P,LIU Z B,et al.Suppression of the vibration and sound radiation of a sandwich plate via periodic design [J].International Journal of Mechanical Sciences,2019,150:744-754.

    • [8] 任鹏,田阿利,张伟.水下冲击载荷下波纹夹层结构动态响应特性分析 [J].振动与冲击,2016,35(23):90-94+105.REN P,TIAN A L,ZHANG W.Dynamic response characteristics of a corrugated core sandwich panel subjected to underwater shock loading [J].Journal of Vibration and Shock,2016,35(23):90-94+105.(in Chinese)

    • [9] 刘文萍,丁雨.船体夹层板结构耐冲击性能优化研究 [J].舰船科学技术,2023,45(7):18-21.LIU W P,DING Y.Research on impact resistance optimization of hull sandwich plate structure [J].Ship Science and Technology,2023,45(7):18-21.(in Chinese)

    • [10] 刘建良,梅志远,唐宇航,等.几种典型复合材料板振动特性综合对比分析及设计规律研究 [J].振动与冲击,2019,38(15):65-72.LIU J L,MEI Z Y,TANG Y H,et al.Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law [J].Journal of Vibration and Shock,2019,38(15):65-72.(in Chinese)

    • [11] 靳奉华,郭辉,孙裴,等.方形晶格夹层板减振性能仿真与优化 [J].人工晶体学报,2022,51(2):248-255.JIN F H,GUO H,SUN P,et al.Simulation and optimization of vibration reduction performance of square lattice sandwich plate [J].Journal of Synthetic Crystals,2022,51(2):248-255.(in Chinese)

    • [12] SALARI-SHARIF L,SCHAEDLER T A,VALDEVIT L.Hybrid hollow microlattices with unique combination of stiffness and damping [J].Journal of Engineering Materials and Technology,2018,140:031003.

    • [13] 王亚琴,徐晓美,林萍.薄膜型声学超材料的结构设计与隔声特性 [J].应用声学,2022,41(6):875-883.WANG Y Q,XU X M,LIN P.Structural design and sound insulation characteristics of the membrane-type acoustic metamaterial [J].Journal of Applied Acoustics,2022,41(6):875-883.(in Chinese)

    • [14] 王翌伟,徐晓美,林萍,等.薄膜型声学超材料隔声特性研究 [J].噪声与振动控制,2021,41(6):42-48.WANG Y W,XU X M,LIN P,et al.Sound insulation properties of membrane-type acoustic metamaterials [J].Noise and Vibration Control,2021,41(6):42-48.(in Chinese)

    • [15] 邱克鹏,秦云飞,费晨,等.薄膜声学超材料降噪性能分析及设计 [J].噪声与振动控制,2021,41(2):7-14.QIU K P,QIN Y F,FEI C,et al.Analysis and design of sound insulation performance of membrane-type acoustical metamaterials [J].Noise and Vibration Control,2021,41(2):7-14.(in Chinese)

    • [16] YANG Z,MEI J,YANG M,et al.Membrane-type acoustic metamaterial with negative dynamic mass [J].Physical Review Letters,2008,101:204301.

    • [17] NAIFY C J,CHANG C M,MCKNIGHT G,et al.Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials [J].Journal of Applied Physics,2010,108:114905.

    • [18] NAIFY C J,CHANG C M,MCKNIGHT G,et al.Membrane-type metamaterials:transmission loss of multi-celled arrays [J].Journal of Applied Physics,2011,109:104902.

    • [19] LIN G C,CHEN S Q,YUAN X B,et al.Transmission loss of thin membrane-type acoustic metamaterials with multi-masses [J].International Conference on Innovative Material,2016.

    • [20] 周国建,吴九汇,路宽,等.多态反共振协同型薄膜声学超材料低频隔声性能 [J].西安交通大学学报,2020,54(1):64-74.ZHOU G J,WU J H,LU K,et al.Low-frequency sound insulation performance of membrane-type acoustic metamaterials with multi-state anti-resonance synergy [J].Journal of Xi’an Jiaotong University,2020,54(1):64-74.(in Chinese)

    • [21] LI J Q,ZHANG Y,FAN X L,et al.Multi bandgaps design of sandwich metamaterial plate with embedded membrane-type resonators [J].Journal of Sandwich Structures & Materials 2023;25(3):311-329.

    • [22] 陈传敏,乔钏熙,郭兆枫,等.半主动式薄膜型声学超材料超低频隔声特性研究 [J].噪声与振动控制,2023,43(3):60-65.CHEN C M,QIAO C X,GUO Z F,et al.Study on ultra-low frequency sound insulation characteristics of semi-active membrane type acoustic metamaterials [J].Noise and Vibration Control,2023,43(3):60-65.(in Chinese)

    • [23] 杨坤,杨明月,崔世明,等.大尺寸薄膜型声学超材料复合结构低频宽带隔声性能研究 [J].振动与冲击,2022,41(22):14-22.YANG K,YANG M Y,CUI S M,et al.Low-frequency and broadband sound insulation performance of large-scale composite structures based on membrane-type acoustic metamaterials [J].Journal of Vibration and Shock,2022,41(22):14-22.(in Chinese)

    • [24] 郭磊,张均东,曾鸿.变厚度薄膜型声学超材料单胞的隔声性能数值研究 [J].舰船科学技术,2020,42(1):38-42.GUO L,ZHANG J D,ZENG H.The numerical study of sound insulation performance of membrane acoustic metamaterial cell with variable thickness [J].Ship Science and Technology,2020,42(1):38-42.(in Chinese)

    • [25] 曹卫锋,白鸿柏,朱庆.薄膜型声学超材料的低频吸收性能研究 [J].振动与冲击,2018,37(14):188-194+238.CAO W F,BAI H B,ZHU Q.Analysis on the low frequency acoustic absorption performance of a metamaterial membrane [J].Journal of Vibration and Shock,2018,37(14):188-194+238.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码