en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李盈利,E-mail:liyingli@csu.edu.cn

中图分类号:O32;TB535.1

文献标识码:A

文章编号:1672-6553-2023-21(7)-012-008

DOI:10.6052/1672-6553-2023-012

参考文献 1
李文朝.压力波动下的高速列车车厢内低频噪声的研究[D].北京:北京交通大学,2020.LI W Z.Research on low-frequency noise in high-speed train compartment under pressure fluctuation [D].Beijing:Beijing Jiaotong University,2020.(in Chinese)
参考文献 2
SHARMA S K,KUMAR A.Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system [J].Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2017,232(1):32-48.
参考文献 3
沈曼莉,陈忠林,程莉,等.沈阳一号线地铁噪声的分析与控制措施 [J].辽宁大学学报(自然科学版),2012,39(2):123-126.SHEN M L,CHEN Z L,CHEN L,et al.Influence of and countermeasures against noise pollution of Shenyang subway line 1 [J].Journal of Liaoning University(Natural Science Edition),2012,39(2):123-126.(in Chinese)
参考文献 4
孙金栋,李静,魏一聪,等.北京地铁4号线大兴线车内噪声水平调查与分析 [J].铁道车辆,2020,58(10):34-36+6.SUN J D,LI J,WEI Y C,et al.Investigation and analysis of the noise level inside the train of Beijing Metro Line 4 Daxing Line [J].Railway Vehicle,2020,58(10):34-36+6.(in Chinese)
参考文献 5
刘仁福,熊亮,魏晓婷,等.广州地铁7号线列客室噪声分析与整治措施 [J].城市轨道交通研究,2020,23:19-23.LIU R F,XIONG L,WEI X T,et al.Noise analysis and remediation measures in passenger room of Guangzhou Metro Line 7 [J].Urban Rail Transit Research,2020,23:19-23.(in Chinese)
参考文献 6
YAO C,MA A K,CUSHING S L,et al.Noise exposure while commuting in Toronto-a study of personal and public transportation in Toronto [J].Journal of Otolaryngol Head Neck Surg,2017,46(1):62.
参考文献 7
刘志远,高纯友,阴晓铭,等.北京地铁14号线车辆振动和噪声异常原因分析及改善措施 [J].城市轨道交通研究,2018,21:74-77.LIU Z Y,GAO C Y,YIN X M,et al.Analysis and improvement measures of abnormal vehicle vibration and noise of Beijing Metro Line 14 [J].Urban Rail Transit Research,2018,21:74-77.(in Chinese)
参考文献 8
ZHANG X,HAO H,TIAN R,et al.Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption [J].Composite Structures,2022,288:115399.
参考文献 9
ZHAO C,ZHOU Z,ZHANG K,et al.Experimental study on tensile mechanics of arrow combination structure with carbon fiber-epoxy resin composite [J].Arabian Journal for Science and Engineering,2021,46(3):2891-2900.
参考文献 10
LIU Z,ZHANG X,MAO Y,et al.Locally resonant sonic materials [J].Science,2000,289(5485):1734-1736.
参考文献 11
BONNET G,MONCHIET V.Dynamic behaviour of elastic metamaterials containing soft elliptic fibers [J].Journal of the Mechanics and Physics of Solids,2020,140:103953.
参考文献 12
CAVALIERI T,CEBRECOS A,GROBY J P,et al.Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation:Application to train noise reduction [J].Applied Acoustics,2019,146:1-8.
参考文献 13
张若军.典型声学超材料的低频隔声特性研究[D].长沙:国防科学技术大学,2015.ZHANG R J.Research on low-frequency sound insulation properties of typical acoustic metamaterials[D].Changsha:National University of Defense Technology,2015.(in Chinese)
参考文献 14
ZHAO P,ZHANG K,ZHAO C,et al.In-plane wave propagation analysis for waveguide design of hexagonal lattice with Koch snowflake [J].International Journal of Mechanical Sciences,2021,209:106724.
参考文献 15
ZHANG Z,TIAN R,ZHANG X,et al.A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness [J].Journal of Materials Science,2021,56(25):14139-14156.
参考文献 16
YANG Z,MEI J,YANG M,et al.Membrane-type acoustic metamaterial with negative dynamic mass [J].Physical Review Letters,2008,101(20):204301.
参考文献 17
LEE S H,PARK C M,SEO Y M,et al.Acoustic metamaterial with negative density [J].Physics Letters A,2009,373(48):4464-4469.
参考文献 18
LEE S H,PARK C M,SEO Y M,et al.Acoustic metamaterial with negative modulus [J].Journal of Phys Condens Matter,2009,21(17):175704.
参考文献 19
FANG N,XI D,XU J,et al.Ultrasonic metamaterials with negative modulus [J].Nature Materials,2006,5(6):452-456.
参考文献 20
WU Y,LAI Y,ZHANG Z Q.Elastic metamaterials with simultaneously negative effective shear modulus and mass density [J].Physics Review Letter,2011,107(10):105506.
参考文献 21
DING C,HAO L,ZHAO X.Two-dimensional acoustic metamaterial with negative modulus [J].Journal of Applied Physics,2010,108(7):074911.
参考文献 22
ZHU R,LIU X N,HU G K,et al.Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial [J].Nature Communications,2014,5:5510.
参考文献 23
LAKERS R.Foam structures with a negative poisson's ratio [J].Science,1987,235(4792):1038-1040.
参考文献 24
FRANCESCONI L,BALDI A,LIANG X,et al.Variable Poisson's ratio materials for globally stable static and dynamic compression resistance [J].Extreme Mechanics Letters,2019,26:1-7.
参考文献 25
GAO Q,ZHAO X,WANG C,et al.Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading [J].Materials & Design,2018,143:120-30.
参考文献 26
冯陈程.地铁列车车内异常噪声原因分析及控制措施研究 [D].成都:西南交通大学,2018.FENG C C.Analysis on the causes of abnormal noise in subway trains and research on control measures [D].Chengdu:Southwest Jiaotong University,2018.(in Chinese)
目录contents

    摘要

    为实现低频宽带减振,将星型蜂窝与内凹六边形蜂窝组合,形成复合负泊松比蜂窝结构.利用多物理场软件COMSOL Multiphysics通过施加Floquet周期性边界条件获得了复合蜂窝元胞的色散曲线,并计算有限周期结构的传输特性,验证色散曲线中带隙的存在.设计并制备了复合蜂窝超结构板样件,通过试验分析其弹性波激励下的响应,验证有限元分析结果.以低频宽带为目标,利用遗传算法对结构参数进行优化,在1000~2000Hz打开了多条宽频带隙,可以为带隙设计提供有益指导.最后,将地铁实车测试获取的地板振动频谱作为激励,对超结构的减振性能进行了仿真测试,结果表明,复合蜂窝超结构板能够有效衰减列车地板1000~2000Hz的振动峰值.

    Abstract

    In order to achieve low-frequency broadband vibration reduction, the star honeycomb and the concave hexagonal honeycomb are combined to form a composite negative Poisson's ratio honeycomb structure. The dispersion curve of the composite honeycomb cell is obtained by COMSOL Multiphysics software with Floquet periodic boundary conditions. The transmission characteristics of the finite periodic structure are calculated to verify the existence of the band gap in the dispersion curve. The composite honeycomb super-structure plate sample is designed and prepared. The response of the composite honeycomb plate under elastic wave excitation is analyzed by experiments to verify the finite element analysis results. Genetic algorithm is used to optimize the structure parameters, and several wide bandgaps are opened at 1000~2000Hz, which provides useful guidance for bandgap design. Finally, the vibration spectrum of the floor obtained from the real subway test is used as excitation to simulate the vibration reduction performance of the superstructure. The results show that the composite honeycomb superstructure plate can effectively attenuate the vibration peak of the train floor in 1000~2000Hz.

  • 引言

  • 城市轨道交通以其绿色节能、安全可靠、运量大、占地少等特点有效缓解城市拥堵得到快速发展,在满足便捷、安全的前提下,轨道交通乘车舒适性引起广泛关注[12].国内外进行了大量轨道交通噪声测量研究,沈阳地铁一号线运行时,不同路段间车厢内最大噪声在76.5dB(A)~87.5dB(A)范围波动[3];北京地铁4号线运行时,车内噪声最大等效声级超出标准限值10dB以上,超出标准限值时长占总运行时长的3.8%~8%,车内噪声主要来源于轮轨噪声[4];广州地铁7号线60km/h工况下司机室标准点噪声高达90dB以上[5];多伦多城市地铁乘客噪声平均暴露量为79.8dB(A)[6];北京地铁14号线车内噪声峰值在80dB(A)以上[7].城市轨道交通车辆车内噪声水平较高,这不仅会给车内乘客带来不良的乘坐体验,长期处在噪声环境下,也会对人体心理和生理功能产生不同程度的损害.

  • 列车车厢内的噪声和振动水平作为影响乘车舒适度的因素之一,在设计、制造列车车辆时必须加以考虑.降低车厢内部的噪声和振动水平需要从噪声振动的产生机制/根源以及其传递路径两个方面入手[8].车内内部的噪声振动主要来源是轮轨、流致振动/噪声以及辅助设备的噪声振动[9].这些激励源位于列车外部,可以通过空气传播和固体传播影响车内.列车内部的噪声振动控制,既要关注源头,也要关注传递路径.

  • 近年来,声子晶体[10-12]概念的提出为实现轻质条件下的低频隔振提供了新的理论基础和技术途径[13].通过人工设计周期性排列的结构单元组成新型结构[1415],可以获得负质量密度[1617]、负模量[18-21]和负折射[22]等自然界材料所不具有的超常特性,亦称为超材料/结构.研究表明,某些声子晶体(如负泊松比超结构)中的结构单元在弹性波激励下会发生低频局域共振,阻碍弹性波的传播,在轻质条件下实现了高效低频减振降噪.因此,这类声子晶体/超结构在低频减振降噪领域具有广阔的应用前景.

  • 本文将以轨道交通车辆的减振降噪为设计目标,将声子晶体引入到轨道交通车辆的振动控制中,研究分析其带隙机理与减振特性,兼顾轨道交通车辆车体结构的轻量化和低噪声振动需求,为轨道交通车辆的减振降噪提供新的技术途径和实现手段,具有重要的理论研究意义和工程应用价值.

  • 1 复合蜂窝超结构色散关系与传输特性

  • 1.1 复合蜂窝超结构设计

  • 声子晶体/超结构的物理性能主要取决于结构单元构型,通过合理地选择材料或设计结构单元构型,能够实现独特的弹性波特性.1987年,Lakes将负泊松比概念引入材料科学领域之后,负泊松比结构独特的力学性能和潜在的应用前景引起了学者的广泛关注[2324].与传统结构相比,负泊松比结构具有更高的能量吸收率,以及更轻质、优良的减振性能[25].

  • 为了进一步降低负泊松比超结构的带隙频率范围,本文将典型负泊松比结构—内凹六边形和星型蜂窝进行组合,从而构建了一种新型二维复合蜂窝超结构,如图1所示. 内凹六边形的短边和长边分别为R1R2,相邻的短边和长边的夹角为θ.星型结构的边长为R3.该结构的密度ρ、杨氏模量E、泊松比μ等材料参数如表1所示.根据几何关系,元胞的晶格常数lii=1,2)可以写为:

  • 图1 由内凹六边形和星型蜂窝组合而成的复合蜂窝超结构

  • Fig.1 Composite honeycomb superstructures composed of concave hexagons and star honeycombs

  • l1=2R1sinθ
    (1)
  • l2=2R2-R1cosθ
    (2)
  • 复合蜂窝超结构的元胞及其不可约布里渊区如图2所示.复合蜂窝超结构中,内凹结构的内部直杆,即中左边直杆的宽度为tHSL,与相邻元胞相连的直杆,即右边直杆的宽度为tHSR.内凹结构的内部下斜杆宽度为tHIDR,上斜杆宽度为tHIUR.与相邻结构相连的上斜杆宽度为tHIUL,下斜杆宽度为tHIDL.四个星型结构的宽度分别为t1t2t3t4.

  • 表1 复合蜂窝超结构材料参数

  • Table1 Material parameters of auxetic composite honeycomb superstructures

  • 图2 复合蜂窝结构元胞及不可约布里渊区

  • Fig.2 Composite honeycomb structural cells and irreducible Brillouin zone

  • 1.2 复合蜂窝超结构数值分析

  • Floquet-Bloch 定理对周期结构的波传播分析的可靠性已得到广泛验证.图2中给出了复合蜂窝超结构元胞的不可约布里渊区.在周期结构中,eii=1,2)为晶格基矢,可用笛卡尔坐标系基向量与晶格常数表示:

  • e1=a1i,e2=a2i
    (3)
  • 周期结构可以通过将元胞在二维空间中沿晶格基矢(e1e2)平移获得.

  • 晶格的动力学方程可以写为:

  • K-ω2MU=F
    (4)
  • 其中,K为刚度矩阵,M为质量矩阵,U为节点位移,F为外加激励.当外加激励为0时,该方程有非零解的前提是系数矩阵的行列式为0,从而求得不同波矢(q1q2)对应的固有频率ω,获得晶格的色散关系,也称之为能带结构.

  • 仿真分析中,星型晶格和内凹六边形的夹角均为60°,其他结构参数如表2所示,形成的结构如图3所示.利用有限元仿真计算软件COMSOL Multiphysics,在复合蜂窝元胞上施加Floquet周期性边界条件,通过扫描不可约布里渊区的边界,获得其能带结构.

  • 表2 复合蜂窝超结构形状参数

  • Table2 Shape parameters of composite honeycomb superstructures

  • 图3 复合蜂窝结构单胞与有限周期结构仿真示意图

  • Fig.3 Schematic diagram of the unit cell composite honeycomb structure and finite period structure

  • 图4 色散曲线和传输特性曲线

  • Fig.4 Dispersion curve and transmission characteristic curve

  • 计算有限周期结构的传输特性可以验证带隙的存在.因此,在图3中,还构建了由多个元胞周期性排列成的6*5有限周期结构.通过在左侧施加不同频率的位移激励,检测右侧的振动幅值,从而获取其传输特性.

  • 利用表2所示参数设计的复合蜂窝结构的色散曲线和谐波激励下有限周期结构的响应曲线如图4所示.阴影部分为不可约布里渊区中所有波矢均无对应频散曲线的频率范围,即完全带隙范围.有限周期结构在带隙频率范围内有着明显的衰减,验证了带隙的存在.值得注意的是,该传输特性曲线除了能够反映完全带隙的振动衰减性能,还可以体现出超结构在Г~X的方向带隙内的减振特性.

  • 1.3 有限周期复合蜂窝超结构振动传输试验验证

  • 利用联泰打印机(IT-600)、光固化(Stereolithography)工艺、光敏树脂(4600)制备样件,通过激振器(HEV-200N)施加全频带白噪声激励,在结构的两端布置振动加速度传感器(LC 0101E),利用B&K数据采集系统(B&K 3050-A-060)采集输入端和输出端振动加速度,测试结构的振动响应特性,如图5所示.由数据采集软件B&K PULSE保存测试结果.

  • 图5 试验设备与样件

  • Fig.5 Experimental equipment and samples

  • 振动加速度传感器所采得的数据为离散时域信号,而本文主要分析数据的频谱特征,因此需要对数据进行预处理,数据预处理流程如图6所示.

  • 图6 振动加速度信号数据处理流程

  • Fig.6 Vibration acceleration signal data processing flow

  • 一方面离散的时域信号在频域上具有周期性,另一方面由于传感器的温漂等因素的影响,时序数据具有较多噪声.因此在处理时序数据之前,需要进行滤波.傅里叶变换只能对有限长的数据分析,需要截取有限长度的信号.对数据进行截取的时候会发生能量泄露,为了减小能量泄露误差,对数据进行了加窗处理.测得的振动加速度信号具有多个频率分量,本文采用汉宁窗对数据进行处理.

  • 对于幅值为1,具有N+1个采样点的汉宁窗可以表示为

  • w(n)=0.51-cos2πnN,0nN
    (5)
  • 加窗后利用离散快速傅里叶变换,将时域信号转换为频域信号,获得振动加速度的频域分布.对于具有N个采样点的时序信号,其离散傅里叶变换为

  • x^[k]=n=0N-1 e-i2πNnkxnk=0,1,,N-1
    (6)
  • 通过图6所示流程处理输入端和输出端的振动加速度信号,绘制了传递特性曲线,如图7所示.在带隙对应的频率范围内(阴影部分)出现了明显的振动衰减,并且由于材料阻尼的作用,高频处的传输特性出现了较大的衰减幅度.

  • 图7 振动传递率试验结果

  • Fig.7 Experimental results

  • 然而,试验得出的振动衰减范围与数值仿真所得的带隙范围略有偏移,其原因主要有以下几个方面:实验样品加工的误差和实验仪器的精确度有限;实验样品的材料性能与有限元仿真计算结果不完全一致;有限周期结构的单元个数较少.尽管如此,实验结果依然较好地验证了复合负泊松比蜂窝超结构的减振特性.

  • 2 复合蜂窝超结构低频带隙参数优化

  • 2.1 遗传算法结构参数优化

  • 由于上节所设计的结构减振频率在3000Hz以上,本节利用COMSOL Livelink for MATLAB接口,通过遗传算法对结构进行优化,以打开低于2000 Hz的带隙.图8为遗传算法优化流程图.

  • 图8 遗传算法优化流程图

  • Fig.8 Genetic algorithm optimization flowchart

  • 为实现更低频的减振,本文将目标函数设置为

  • min:F(Φ)=-i=130 Bi/fci
    (7)
  • 其中,Bi为第i个带隙的带宽,fci为第i个带隙的中心频率,Φ为各个杆件的宽度.为保证结构的基本构型不变,令R1=3×R3R2=5×R3.各个杆件的宽度的约束条件如表3所示.

  • 表3 杆件宽度约束

  • Table3 Member width constraint

  • 2.2 优化过程评价指标

  • 利用遗传算法在满足上述约束条件的杆件宽度空间N内,搜索得到目标函数要求的一组或多组可行解.首先在杆件宽度空间N内随机生成初始种群P,计算种群内的个体适应度F,包括最好适应度和平均适应度.采用轮盘赌法,选取适应度大于平均适应度的个体,经过交叉和变异产生下一代种群,新种群在下一次迭代中成为当前种群.图9为优化过程中种群平均适应度和最佳适应度的变化曲线.从图中可以看出,经过50次迭代之后,种群的平均适应度和最佳适应度趋于收敛.

  • 图9 优化过程评价指标

  • Fig.9 Optimization process evaluation index

  • 表4 优化参数结果

  • Table4 Optimization parameter results

  • 图10 优化结构及其能带结构

  • Fig.10 Optimized structure and its band structure

  • 通过上述算法优化流程,获得了一组如表4所示的优化参数结果.图10给出了优化后的结构及其能带结构,在1000~2500Hz范围打开了多条带隙,可以实现更低频的减振性能.

  • 3 实车载荷下复合蜂窝超结构减振性能分析

  • 这一小节对所提的复合蜂窝超结构进行实际的应用测试.车厢地板的振动辐射噪声作为车内噪声的主要来源之一[26],有必要对该传递过程进行优化,以降低车内噪声水平,提高乘车舒适性.因此,我们首先通过实车试验获取了车厢地板的振动激励,随后利用实测激励来检验复合蜂窝超结构的减振性能.

  • 3.1 地铁车厢实车振动测试

  • 如图11所示,在某线路地铁上进行了实车振动测试,将加速度传感器贴附在列车地板上,使用B&K数据采集系统(B&K 3050-A-060)采集数据,测试列车不同运行速度时的地板振动加速度.根据测试结果,本文选取50km/h、60km/h、70km/h和90km/h直线行驶四种工况下车厢内部地板的振动加速度数据进行分析,图12为四种工况下车厢地板实测振动加速度频谱图.从图中可以看出,四种工况下的地板振动加速度在不同频率下的幅值略有不同,但振动峰值的频率分布规律是相似的.地板在200Hz、1200Hz以及1600Hz附近出现了三个峰值,在300Hz~1000Hz频段具有较多的振动能量分布.城市地铁列车最高时速通常限制在70~80km/h,因此本文选取了70km/h速度作为典型工况进行后续研究,其结果对于其他工况也具有重要参考意义.

  • 图11 地铁实车振动测试现场

  • Fig.11 The actual vibration test site of metro train

  • 图12 地铁车厢地板实测振动加速度

  • Fig.12 Measured vibration acceleration of train floor

  • 3.2 实车振动激励下二维超结构振动响应

  • COMSOL软件可以调用MATLAB函数进行联合仿真,将频率作为变元,通过调用读取振动位移频谱数据的MATLAB函数,将70km/h直线行驶工况下实车激励施加在优化后的二维超结构边界上,其传递率如图13中的实线所示.从图中可以看出,该结构对1000Hz~2000Hz的激励具有较好的衰减作用,能够衰减1200Hz~1300Hz以及1600Hz附近的实测振动加速度峰值.此外还计算了均质参考板的频率响应特性,如图13中的虚线所示,受自身模态的影响,均质板在部分频率下出现共振,在大部分频率范围内没有表现出振动衰减性能.相较之下,所提优化结构表现出了更好的减振性能.

  • 图13 优化结构与均质参考板频率响应特性对比

  • Fig.13 Comparison of frequency response characteristics between optimized structure and homogeneous reference plate

  • 4 结论

  • 为了实现低频振动衰减,本文将星型蜂窝嵌入内凹六边形,形成复合蜂窝结构.通过COMSOL Multiphysics软件,施加Floquet周期性边界条件,获得复合蜂窝元胞的色散曲线,并通过有限周期结构的谐波响应来验证带隙的存在.借助光固化技术制备试验样件,验证有限元仿真结果.利用遗传算法优化结构参数,实现了更低频的减振特性.通过地铁实车测试,获得地铁列车直线运行时车厢地板振动加速度的频谱特征,并将其作为激励,仿真测试了该超结构在实际振动激励下的减振性能.结果表明:

  • (1)复合蜂窝元胞的色散曲线能够反映弹性波传播特性,在带隙频率范围内,弹性波无法传播;试验表明,弹性波无法在带隙所在的频率范围内传播,验证了有限元仿真结果的正确性.

  • (2)利用遗传算法优化结构参数,能够有效降低带隙频率,获得具有更低频减振性能的结构参数,为带隙优化提供指导.

  • (3)实车地板载荷激励下的结构响应表明,复合蜂窝结构能够有效衰减实车地板1000~2000Hz频段的振动.

  • 参考文献

    • [1] 李文朝.压力波动下的高速列车车厢内低频噪声的研究[D].北京:北京交通大学,2020.LI W Z.Research on low-frequency noise in high-speed train compartment under pressure fluctuation [D].Beijing:Beijing Jiaotong University,2020.(in Chinese)

    • [2] SHARMA S K,KUMAR A.Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system [J].Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2017,232(1):32-48.

    • [3] 沈曼莉,陈忠林,程莉,等.沈阳一号线地铁噪声的分析与控制措施 [J].辽宁大学学报(自然科学版),2012,39(2):123-126.SHEN M L,CHEN Z L,CHEN L,et al.Influence of and countermeasures against noise pollution of Shenyang subway line 1 [J].Journal of Liaoning University(Natural Science Edition),2012,39(2):123-126.(in Chinese)

    • [4] 孙金栋,李静,魏一聪,等.北京地铁4号线大兴线车内噪声水平调查与分析 [J].铁道车辆,2020,58(10):34-36+6.SUN J D,LI J,WEI Y C,et al.Investigation and analysis of the noise level inside the train of Beijing Metro Line 4 Daxing Line [J].Railway Vehicle,2020,58(10):34-36+6.(in Chinese)

    • [5] 刘仁福,熊亮,魏晓婷,等.广州地铁7号线列客室噪声分析与整治措施 [J].城市轨道交通研究,2020,23:19-23.LIU R F,XIONG L,WEI X T,et al.Noise analysis and remediation measures in passenger room of Guangzhou Metro Line 7 [J].Urban Rail Transit Research,2020,23:19-23.(in Chinese)

    • [6] YAO C,MA A K,CUSHING S L,et al.Noise exposure while commuting in Toronto-a study of personal and public transportation in Toronto [J].Journal of Otolaryngol Head Neck Surg,2017,46(1):62.

    • [7] 刘志远,高纯友,阴晓铭,等.北京地铁14号线车辆振动和噪声异常原因分析及改善措施 [J].城市轨道交通研究,2018,21:74-77.LIU Z Y,GAO C Y,YIN X M,et al.Analysis and improvement measures of abnormal vehicle vibration and noise of Beijing Metro Line 14 [J].Urban Rail Transit Research,2018,21:74-77.(in Chinese)

    • [8] ZHANG X,HAO H,TIAN R,et al.Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption [J].Composite Structures,2022,288:115399.

    • [9] ZHAO C,ZHOU Z,ZHANG K,et al.Experimental study on tensile mechanics of arrow combination structure with carbon fiber-epoxy resin composite [J].Arabian Journal for Science and Engineering,2021,46(3):2891-2900.

    • [10] LIU Z,ZHANG X,MAO Y,et al.Locally resonant sonic materials [J].Science,2000,289(5485):1734-1736.

    • [11] BONNET G,MONCHIET V.Dynamic behaviour of elastic metamaterials containing soft elliptic fibers [J].Journal of the Mechanics and Physics of Solids,2020,140:103953.

    • [12] CAVALIERI T,CEBRECOS A,GROBY J P,et al.Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation:Application to train noise reduction [J].Applied Acoustics,2019,146:1-8.

    • [13] 张若军.典型声学超材料的低频隔声特性研究[D].长沙:国防科学技术大学,2015.ZHANG R J.Research on low-frequency sound insulation properties of typical acoustic metamaterials[D].Changsha:National University of Defense Technology,2015.(in Chinese)

    • [14] ZHAO P,ZHANG K,ZHAO C,et al.In-plane wave propagation analysis for waveguide design of hexagonal lattice with Koch snowflake [J].International Journal of Mechanical Sciences,2021,209:106724.

    • [15] ZHANG Z,TIAN R,ZHANG X,et al.A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness [J].Journal of Materials Science,2021,56(25):14139-14156.

    • [16] YANG Z,MEI J,YANG M,et al.Membrane-type acoustic metamaterial with negative dynamic mass [J].Physical Review Letters,2008,101(20):204301.

    • [17] LEE S H,PARK C M,SEO Y M,et al.Acoustic metamaterial with negative density [J].Physics Letters A,2009,373(48):4464-4469.

    • [18] LEE S H,PARK C M,SEO Y M,et al.Acoustic metamaterial with negative modulus [J].Journal of Phys Condens Matter,2009,21(17):175704.

    • [19] FANG N,XI D,XU J,et al.Ultrasonic metamaterials with negative modulus [J].Nature Materials,2006,5(6):452-456.

    • [20] WU Y,LAI Y,ZHANG Z Q.Elastic metamaterials with simultaneously negative effective shear modulus and mass density [J].Physics Review Letter,2011,107(10):105506.

    • [21] DING C,HAO L,ZHAO X.Two-dimensional acoustic metamaterial with negative modulus [J].Journal of Applied Physics,2010,108(7):074911.

    • [22] ZHU R,LIU X N,HU G K,et al.Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial [J].Nature Communications,2014,5:5510.

    • [23] LAKERS R.Foam structures with a negative poisson's ratio [J].Science,1987,235(4792):1038-1040.

    • [24] FRANCESCONI L,BALDI A,LIANG X,et al.Variable Poisson's ratio materials for globally stable static and dynamic compression resistance [J].Extreme Mechanics Letters,2019,26:1-7.

    • [25] GAO Q,ZHAO X,WANG C,et al.Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading [J].Materials & Design,2018,143:120-30.

    • [26] 冯陈程.地铁列车车内异常噪声原因分析及控制措施研究 [D].成都:西南交通大学,2018.FENG C C.Analysis on the causes of abnormal noise in subway trains and research on control measures [D].Chengdu:Southwest Jiaotong University,2018.(in Chinese)

  • 参考文献

    • [1] 李文朝.压力波动下的高速列车车厢内低频噪声的研究[D].北京:北京交通大学,2020.LI W Z.Research on low-frequency noise in high-speed train compartment under pressure fluctuation [D].Beijing:Beijing Jiaotong University,2020.(in Chinese)

    • [2] SHARMA S K,KUMAR A.Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system [J].Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2017,232(1):32-48.

    • [3] 沈曼莉,陈忠林,程莉,等.沈阳一号线地铁噪声的分析与控制措施 [J].辽宁大学学报(自然科学版),2012,39(2):123-126.SHEN M L,CHEN Z L,CHEN L,et al.Influence of and countermeasures against noise pollution of Shenyang subway line 1 [J].Journal of Liaoning University(Natural Science Edition),2012,39(2):123-126.(in Chinese)

    • [4] 孙金栋,李静,魏一聪,等.北京地铁4号线大兴线车内噪声水平调查与分析 [J].铁道车辆,2020,58(10):34-36+6.SUN J D,LI J,WEI Y C,et al.Investigation and analysis of the noise level inside the train of Beijing Metro Line 4 Daxing Line [J].Railway Vehicle,2020,58(10):34-36+6.(in Chinese)

    • [5] 刘仁福,熊亮,魏晓婷,等.广州地铁7号线列客室噪声分析与整治措施 [J].城市轨道交通研究,2020,23:19-23.LIU R F,XIONG L,WEI X T,et al.Noise analysis and remediation measures in passenger room of Guangzhou Metro Line 7 [J].Urban Rail Transit Research,2020,23:19-23.(in Chinese)

    • [6] YAO C,MA A K,CUSHING S L,et al.Noise exposure while commuting in Toronto-a study of personal and public transportation in Toronto [J].Journal of Otolaryngol Head Neck Surg,2017,46(1):62.

    • [7] 刘志远,高纯友,阴晓铭,等.北京地铁14号线车辆振动和噪声异常原因分析及改善措施 [J].城市轨道交通研究,2018,21:74-77.LIU Z Y,GAO C Y,YIN X M,et al.Analysis and improvement measures of abnormal vehicle vibration and noise of Beijing Metro Line 14 [J].Urban Rail Transit Research,2018,21:74-77.(in Chinese)

    • [8] ZHANG X,HAO H,TIAN R,et al.Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption [J].Composite Structures,2022,288:115399.

    • [9] ZHAO C,ZHOU Z,ZHANG K,et al.Experimental study on tensile mechanics of arrow combination structure with carbon fiber-epoxy resin composite [J].Arabian Journal for Science and Engineering,2021,46(3):2891-2900.

    • [10] LIU Z,ZHANG X,MAO Y,et al.Locally resonant sonic materials [J].Science,2000,289(5485):1734-1736.

    • [11] BONNET G,MONCHIET V.Dynamic behaviour of elastic metamaterials containing soft elliptic fibers [J].Journal of the Mechanics and Physics of Solids,2020,140:103953.

    • [12] CAVALIERI T,CEBRECOS A,GROBY J P,et al.Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation:Application to train noise reduction [J].Applied Acoustics,2019,146:1-8.

    • [13] 张若军.典型声学超材料的低频隔声特性研究[D].长沙:国防科学技术大学,2015.ZHANG R J.Research on low-frequency sound insulation properties of typical acoustic metamaterials[D].Changsha:National University of Defense Technology,2015.(in Chinese)

    • [14] ZHAO P,ZHANG K,ZHAO C,et al.In-plane wave propagation analysis for waveguide design of hexagonal lattice with Koch snowflake [J].International Journal of Mechanical Sciences,2021,209:106724.

    • [15] ZHANG Z,TIAN R,ZHANG X,et al.A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness [J].Journal of Materials Science,2021,56(25):14139-14156.

    • [16] YANG Z,MEI J,YANG M,et al.Membrane-type acoustic metamaterial with negative dynamic mass [J].Physical Review Letters,2008,101(20):204301.

    • [17] LEE S H,PARK C M,SEO Y M,et al.Acoustic metamaterial with negative density [J].Physics Letters A,2009,373(48):4464-4469.

    • [18] LEE S H,PARK C M,SEO Y M,et al.Acoustic metamaterial with negative modulus [J].Journal of Phys Condens Matter,2009,21(17):175704.

    • [19] FANG N,XI D,XU J,et al.Ultrasonic metamaterials with negative modulus [J].Nature Materials,2006,5(6):452-456.

    • [20] WU Y,LAI Y,ZHANG Z Q.Elastic metamaterials with simultaneously negative effective shear modulus and mass density [J].Physics Review Letter,2011,107(10):105506.

    • [21] DING C,HAO L,ZHAO X.Two-dimensional acoustic metamaterial with negative modulus [J].Journal of Applied Physics,2010,108(7):074911.

    • [22] ZHU R,LIU X N,HU G K,et al.Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial [J].Nature Communications,2014,5:5510.

    • [23] LAKERS R.Foam structures with a negative poisson's ratio [J].Science,1987,235(4792):1038-1040.

    • [24] FRANCESCONI L,BALDI A,LIANG X,et al.Variable Poisson's ratio materials for globally stable static and dynamic compression resistance [J].Extreme Mechanics Letters,2019,26:1-7.

    • [25] GAO Q,ZHAO X,WANG C,et al.Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading [J].Materials & Design,2018,143:120-30.

    • [26] 冯陈程.地铁列车车内异常噪声原因分析及控制措施研究 [D].成都:西南交通大学,2018.FENG C C.Analysis on the causes of abnormal noise in subway trains and research on control measures [D].Chengdu:Southwest Jiaotong University,2018.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码