en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨天智,E-mail:yangtianzhi@me.neu.edu.cn

中图分类号:O328

文献标识码:A

文章编号:1672-6553-2023-21(7)-001-004

DOI:10.6052/1672-6553-2023-087

参考文献 1
倪旭,张小柳,卢明辉,等.声子晶体和声学超构材料[J].物理,2012,41(10):655-662.NI X,ZHANF X L,LU M H,et al.Phononic crystals and acoustic metamaterials [J].Physics,2012,41(10):655-662.(in Chinese)
参考文献 2
李政阳,王彦正,马天雪,等.智能压电声子晶体与超材料研究现状与展望 [J].科学通报,2022,67(12):1305-1325.LI Z Y,WANG Y Z,MA T X,et al.Smart piezoelectric phononic crystals and metamaterials:State-of-the-art review and outlook[J].Chinese Science Bulletin,2022,67(12):1305-1325.(in Chinese)
参考文献 3
尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用 [J].力学进展,2022,52(3):508-586.YIN J F,CAI L,FANG X,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control [J].Advances in Mechanics,2022,52(3):508-586.(in Chinese)
参考文献 4
LIU Z,ZHANG X,MAO Y,et al.Locally resonant sonic materials [J].Science,2000,289(5485):1734-1736.
参考文献 5
WANG G,WEN X,WEN J,et al.Two-dimensional locally resonant phononic crystals with binary structures [J].Physical Review Letters,2004,93(15):154302.
参考文献 6
CAI C,ZHOU J,WANG K,et al.Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap [J].Journal of Sound and Vibration,2022,540:117297.
参考文献 7
FANG X,WEN J,BONELLO B,et al.Ultra-low and ultra-broad-band nonlinear acoustic metamaterials [J].Nature Communications,2017,8:1288.
参考文献 8
WANY Y Z,LI F M,WANG Y S,et al.Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J].International Journal of Mechanical Sciences,2016,106:357-362.
参考文献 9
DARAIO C,NESTERENKO V F,HERBOLD E B,et al.Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals [J].Physical Review E,2006,73(2):026610.
参考文献 10
WANG Y F,WANG Y Z,WU B,et al.Tunable and active phononic crystals and metamaterials [J].Applied Mechanics Reviews,2020,72(4):040801.
参考文献 11
POPA B I,ZIGONEANU L,CUMMER S A.Tunable active acoustic metamaterials [J].Physical Review B,2013,88(2):024303.
参考文献 12
吴九汇,马富银,张思文,等.声学超材料在低频减振降噪中的应用评述 [J].机械工程学报,2016,52(13):68-78.WU J H,MA F Y,ZHANG S W,et al.Application of acoustic metamaterials in low-frequency vibration and noise reduction [J].Journal of Mechanical Engineering,2016,52(13):68-78.(in Chinese)
参考文献 13
顾金桃,王晓乐,汤又衡,等.提高飞机壁板低频宽带隔声的层合声学超材料 [J].航空学报,2022,43(1):347-356.GU J T,WWANG X L,TANG Y H,et al.Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels [J].Acta Aeronautica,2022,43(1):347-356.(in Chinese)
参考文献 14
刘宏,余江,张凯,等.多稳态力学超材料带隙特性及调控研究 [J].动力学与控制学报,2023,21(7):5-11.LIU H,Y U J,ZHANG K,et al.Multi-stable mechanical mematerials for band gap tuning [J].Journal of Dynamics and Control,2023,21(7):5-11.(in Chinese)
参考文献 15
王勇,张汉青,李盈利.复合负泊松比蜂窝超结构板低频减振特性研究 [J].动力学与控制学报,2023,21(7):12-19.WANG Y,ZHANG H Q,LI Y L.Research on low frequency vibration attenuation characteristics of composite honeycomb superstructure plate with negative poisson ratio [J].Journal of Dynamics and Control,2023,21(7):12-19.(in Chinese)
参考文献 16
刘金辉,李金强,张垚,等.双层薄膜型超材料夹层板的多带隙设计 [J].动力学与控制学报,2023,21(7):20-27.LIU J H,LI J Q,ZHANG Y,et al.Multi-bandgap design of double membrane-type acoustic metamaterial [J].Journal of Dynamics and Control,2023,21(7):20-27.(in Chinese)
参考文献 17
郭世怡,田树才,张小龙,等.直曲增强型负泊松比超材料的力学性能与减振研究 [J].动力学与控制学报,2023,21(7):28-37.GUO S Y,TIAN S C,ZHANG X L,et al.Mechanical properties and vibration reduction analysis of a straight-arc strut enhanced metamaterials with negative poisson’s ratio [J].Journal of Dynamics and Control,2023,21(7):28-37.(in Chinese)
参考文献 18
姚凌云,姚敦辉.圆柱壳弹性波超材料分级排列的带隙拓宽方法研究 [J].动力学与控制学报,2023,21(7):38-42.YAO L Y,YAO G H.Research on the widening method of bandgap with graded arrangement for elastic wave metamaterial in cylindrical shell [J].Journal of Dynamics and Control,2023,21(7):38-42.(in Chinese)
参考文献 19
程乾,尹剑飞,温激鸿,等.极小曲面力学超材料抗冲吸能特性分析 [J].动力学与控制学报,2023,21(7):43-50.CHENG Q,YIN J F,WEN J H,et al.Impact resistance and energy absorption of mechanical metamaterials with minimal surface [J].Journal of Dynamics and Control,2023,21(7):43-50.(in Chinese)
参考文献 20
杨永,李明浩,吴阶平,等.基于相位聚焦的驻波声场悬浮与运输方法研究 [J].动力学与控制学报,2023,21(7):51-58.YANG Y,LI M H,WU J P,et al.Research on suspension and transportation of standing wave sound field based on phase focusing [J].Journal of Dynamics and Control,2023,21(7):51-58.(in Chinese)
目录contents

    摘要

    低频振动和噪声的有效控制一直是动力学与控制学科的经典难题,急需新的思路进行交叉研究.作为动力学与控制学科的一个重要分支,声学超材料和生子晶体的研究近年来一直很受重视.在国家科技部门和相关行业的支持下,声学超材料和声子晶体的振动噪声控制机理及其应用研究取得了大力发展.本文从声学超材料和声子晶体的发展趋势和应用前景等研究角度出发,重点介绍了声学超材料的设计方法和隔振降噪特性,力学超材料的抗冲吸能特性,以及声场悬浮与运输方法等三个方面的研究成果.这些成果在一定程度上反映了作者们目前所关注的问题和拟解决途径,希望能给声学超材料和声子晶体的其他研究者们提供一些借鉴和参考.

    Abstract

    The effective control of low-frequency vibration and noise has always been a classic challenge in the field of dynamics and control, and there is an urgent need for new ideas for cross research. As an important branch of dynamics and control, the research on acoustic metamaterials and crystal growth has been highly valued in recent years. With the support of the national science and technology department and related industries, significant progress has been made in the study of vibration and noise control mechanisms and applications of acoustic metamaterials and phononic crystals. This article starts from the research perspectives of the development trends and application prospects of acoustic metamaterials and phononic crystals, focusing on the design methods and vibration and noise reduction characteristics of acoustic metamaterials, the impact and energy absorption characteristics of mechanical metamaterials, and the methods of sound field suspension and transportation. These achievements to some extent reflect the current concerns and proposed solutions of the authors, hoping to provide some reference and reference for other researchers in acoustic metamaterials and phononic crystals.

  • 引言

  • 声学超材料和声子晶体为研究动力学与控制学科的经典难题提供了新的思路和解决方案.声学超材料和声子晶体是多种材料或结构周期性排布而成的、具有自然材料所不具备超常波动特性的人工结构或复合材料.声学超材料和声子晶体的优异特性,如吸声隔声、隔振减振、负折射、超分辨率成像、滤波、隐身、非互易传输、拓扑波动等,为装备的振动噪声控制、故障诊断、信号处理、水下隐身、精准波导等提供了全新的技术手段[1-3].然而,目前声学超材料和声子晶体在微结构设计、多物理场耦合建模、动力响应分析与控制、材料、功能、结构一体化设计等方面的研究仍存在很大困难.

  • 面向装备在振动噪声控制领域的重大需求,以及声学超材料和声子晶体机理研究难点,国内外学者展开了大量研究,提出了亚波长声学超材料[45]、超低频隔振超材料[67]、非线性超材料[7-9]和主动超材料[1011]等,实现了低频宽带振动噪声控制,在汽车、船舶、高速列车、航空航天器等装备的振动噪声控制领域展现了良好的前景[1213].

  • 在《动力学与控制学报》上出版声学超材料和声子晶体专刊,一方面得益于近年来我国高速列车、航空航天器等高端装备对振动噪声控制的迫切需求,吸引了一大批专家和学者开展相关研究工作;一方面得益于国家自然科学基金等基础研究项目的大力支持下,声学超材料和声子晶体的许多基础理论问题取得重要进展.本次声学超材料和声子晶体专刊从国内多个科研院校征集了7篇优秀的学术论文,其中声学超材料的设计方法和隔振降噪特性方面的研究成果5篇,力学超材料的抗冲吸能特性方面的研究成果1篇,以及声场悬浮与运输方法方面的研究成果1篇.接下来,本文就从声学超材料的设计方法和隔振降噪特性,力学超材料的抗冲吸能特性,以及声场悬浮与运输方法等三个方面介绍目前的主要进展情况.

  • 1 声学超材料的设计方法和隔振降噪特性

  • 振动与噪声品质是衡量航天飞机、大型客机、高速列车、大型发电机组、高档数控机床等重大装备综合性能的重要技术指标.强烈的振动和噪声会严重影响装备的工作性能、精度、效率,以及运行的安全性、可靠性和服役寿命等.声学超材料的优异波动调控能力为装备的振动噪声控制提供了新的技术手段.

  • 多稳态力学超材料具有多重稳定状态和几何重构特性,在能带调控等方面有重要的研究价值.西北工业大学刘宏等[14]提出了一种由曲杆和相关实体支撑结构组成的多稳态力学超材料,计算了结构的能带结构,分析了不同稳态条件下结构的带隙特性,得到了几何参数对结构带隙的影响规律,并研究了由5×5个单胞组成的阵列结构中部分单胞变形时,整体结构的传输率.研究发现,双稳态连杆的变形状态可显著改变结构的带隙,并且在低频范围内产生了更宽的带隙.

  • 为实现低频宽带减振,中南大学王勇等[15]将星型蜂窝与内凹六边形蜂窝组合,形成复合负泊松比蜂窝结构,研究了复合蜂窝元胞的色散曲线,并计算有限周期结构的传输特性.设计并制备了复合蜂窝超结构板样件,通过试验分析其弹性波激励下的响应.以低频宽带为目标,利用遗传算法对结构参数进行优化,在1000~2000Hz形成多条宽频带隙.最后,将地铁实车测试获取的地板振动频谱作为激励,对超结构的减振性能进行了仿真测试.结果表明,复合蜂窝超结构板能够有效衰减列车地板1000~2000Hz的振动峰值.

  • 哈尔滨工程大学刘金辉等[16]将薄膜型声学超材料结构与格栅夹层板结构相结合,发展了一种双层薄膜型超材料夹层板结构,建立了薄膜型超材料夹层板结构模型,并分析其带隙产生机理.结果表明,相较于只含单层薄膜结构的夹层板,具有相同振子质量的双层薄膜型超材料夹层板结构,可以有效拓宽带隙范围;具有不同质量双层薄膜型超材料夹层板结构,可以增加带隙数量.

  • 石家庄铁道大学郭世怡等[17]在弧形内凹负泊松比结构中加入直杆,设计了一类直杆增强型直曲耦合内凹超材料结构,利用能量法推导出了曲边内凹蜂窝结构的横/纵向等效泊松比与等效弹性模量的解析表达式,并讨论了结构参数对等效泊松比与等效弹性模量的影响.考虑几何非线性大变形,建立了曲边内凹负泊松比结构的有限元模型,分析表明等效泊松比与等效弹性模量均随变形增大而变化.利用谐响应分析计算结构的整体减振性能,发现随层数增加减振性能逐渐增大,并且在低频范围内对激励产生的响应具有良好的抑制作用.

  • 针对圆柱壳弹性波超材料的弯曲波窄带隙限制其实际工程中的宽频隔振要求的问题,西南大学姚凌云等[18]研究了基于局域共振机理的圆柱壳弹性波超材料弯曲波带隙特点,以及局域谐振器质量和弹簧劲度系数的关系,将周期分级排列的组合方式应用于圆柱壳类弹性波超材料的宽带隙设计,利用有限元法进行能带结构和振动传输特性计算.研究结果显示,利用组合法构建的轴向周期分级排列圆柱壳弹性波超材料可实现705~1226Hz频率范围内弯曲波的高效衰减,带隙拓宽至单一谐振器的2.55倍.

  • 2 力学超材料的抗冲吸能特性

  • 冲击是日常生活及工业生产不可避免的工况,对生命财产安全产生重要影响.传统冲击吸能结构多利用材料阻尼耗散冲击能量,存在吸能效率低、力学特性不易调控等缺点.国防科技大学程乾等[19]基于极小曲面结构构建了一类力学超材料,并研究了其准静态及动态力学特性.对等效密度为30%、40%和50%的超材料样件进行准静态压缩试验,分析了不同等效密度下结构准静态力学特性变化规律.结果表明,结构模量及平台应力随等效密度的增长呈指数上升.根据动态力学特性影响因素及变化规律,分别构建了刚性-完美塑性-锁定模型和简化吸能特性预测模型,对冲击时的力学超材料强度及吸能特性进行预测.结果表明,基于三周期极小曲面的力学超材料具有良好的抗压抗冲吸能特性,其动态力学性能可以通过建立的模型进行精确预测,为高性能防护结构设计提供了理论基础.

  • 3 声场悬浮与运输方法

  • 超声悬浮是一种易于操控、媒介种类丰富、适合于无容器处理的非接触控制技术.相比其他非接触控制技术,超声悬浮具有悬浮与控制范围较大、对物体材料特性与尺寸几乎没有要求、可以穿过非透明物质等优势.湖南大学杨永等[20]基于超声驻波悬浮原理,详细分析了单驻波、平面驻波、空间驻波声场声压、相位分布情况,并基于聚焦原理使用相位调制的方法实现对声场的定点聚焦、聚苯乙烯小球悬浮与运输.结果表明,单驻波声场可通过双向相位调制方法实现小球稳定运输,在横向相位差为π的情况下使用PLL多时钟信号可实现多方向、不同速度的同时运输,空间阵列驻波声场通过定点聚焦声压提高了83%,且通过连续改变焦点位置实现了小球直线运输.

  • 4 结语

  • 声学超材料和声子晶体的研究范畴非常广泛,涉及的领域较多,限于篇幅,专刊主要刊登了声学超材料的设计方法和隔振降噪特性,力学超材料的抗冲吸能特性,以及声场悬浮与运输方法等三个方面的研究成果.同样限于篇幅,本文主要针对专刊论文涉及的相关研究问题以及取得的研究进展进行简要讨论.

  • 除了以上研究主题,将大数据和人工智能技术引入声学超材料和声子晶体,可以实现其微结构和功能序构的智能化设计;结合声学超材料和声子晶体的3D打印等制备工艺,可以实现声学超材料和声子晶体的设计制造一体化.面向深海高压的极端环境,开展功能驱动的声学超材料和声子晶体的材料-结构-功能一体化设计,也是该领域的研究热点和发展趋势.

  • 参考文献

    • [1] 倪旭,张小柳,卢明辉,等.声子晶体和声学超构材料[J].物理,2012,41(10):655-662.NI X,ZHANF X L,LU M H,et al.Phononic crystals and acoustic metamaterials [J].Physics,2012,41(10):655-662.(in Chinese)

    • [2] 李政阳,王彦正,马天雪,等.智能压电声子晶体与超材料研究现状与展望 [J].科学通报,2022,67(12):1305-1325.LI Z Y,WANG Y Z,MA T X,et al.Smart piezoelectric phononic crystals and metamaterials:State-of-the-art review and outlook[J].Chinese Science Bulletin,2022,67(12):1305-1325.(in Chinese)

    • [3] 尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用 [J].力学进展,2022,52(3):508-586.YIN J F,CAI L,FANG X,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control [J].Advances in Mechanics,2022,52(3):508-586.(in Chinese)

    • [4] LIU Z,ZHANG X,MAO Y,et al.Locally resonant sonic materials [J].Science,2000,289(5485):1734-1736.

    • [5] WANG G,WEN X,WEN J,et al.Two-dimensional locally resonant phononic crystals with binary structures [J].Physical Review Letters,2004,93(15):154302.

    • [6] CAI C,ZHOU J,WANG K,et al.Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap [J].Journal of Sound and Vibration,2022,540:117297.

    • [7] FANG X,WEN J,BONELLO B,et al.Ultra-low and ultra-broad-band nonlinear acoustic metamaterials [J].Nature Communications,2017,8:1288.

    • [8] WANY Y Z,LI F M,WANG Y S,et al.Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J].International Journal of Mechanical Sciences,2016,106:357-362.

    • [9] DARAIO C,NESTERENKO V F,HERBOLD E B,et al.Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals [J].Physical Review E,2006,73(2):026610.

    • [10] WANG Y F,WANG Y Z,WU B,et al.Tunable and active phononic crystals and metamaterials [J].Applied Mechanics Reviews,2020,72(4):040801.

    • [11] POPA B I,ZIGONEANU L,CUMMER S A.Tunable active acoustic metamaterials [J].Physical Review B,2013,88(2):024303.

    • [12] 吴九汇,马富银,张思文,等.声学超材料在低频减振降噪中的应用评述 [J].机械工程学报,2016,52(13):68-78.WU J H,MA F Y,ZHANG S W,et al.Application of acoustic metamaterials in low-frequency vibration and noise reduction [J].Journal of Mechanical Engineering,2016,52(13):68-78.(in Chinese)

    • [13] 顾金桃,王晓乐,汤又衡,等.提高飞机壁板低频宽带隔声的层合声学超材料 [J].航空学报,2022,43(1):347-356.GU J T,WWANG X L,TANG Y H,et al.Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels [J].Acta Aeronautica,2022,43(1):347-356.(in Chinese)

    • [14] 刘宏,余江,张凯,等.多稳态力学超材料带隙特性及调控研究 [J].动力学与控制学报,2023,21(7):5-11.LIU H,Y U J,ZHANG K,et al.Multi-stable mechanical mematerials for band gap tuning [J].Journal of Dynamics and Control,2023,21(7):5-11.(in Chinese)

    • [15] 王勇,张汉青,李盈利.复合负泊松比蜂窝超结构板低频减振特性研究 [J].动力学与控制学报,2023,21(7):12-19.WANG Y,ZHANG H Q,LI Y L.Research on low frequency vibration attenuation characteristics of composite honeycomb superstructure plate with negative poisson ratio [J].Journal of Dynamics and Control,2023,21(7):12-19.(in Chinese)

    • [16] 刘金辉,李金强,张垚,等.双层薄膜型超材料夹层板的多带隙设计 [J].动力学与控制学报,2023,21(7):20-27.LIU J H,LI J Q,ZHANG Y,et al.Multi-bandgap design of double membrane-type acoustic metamaterial [J].Journal of Dynamics and Control,2023,21(7):20-27.(in Chinese)

    • [17] 郭世怡,田树才,张小龙,等.直曲增强型负泊松比超材料的力学性能与减振研究 [J].动力学与控制学报,2023,21(7):28-37.GUO S Y,TIAN S C,ZHANG X L,et al.Mechanical properties and vibration reduction analysis of a straight-arc strut enhanced metamaterials with negative poisson’s ratio [J].Journal of Dynamics and Control,2023,21(7):28-37.(in Chinese)

    • [18] 姚凌云,姚敦辉.圆柱壳弹性波超材料分级排列的带隙拓宽方法研究 [J].动力学与控制学报,2023,21(7):38-42.YAO L Y,YAO G H.Research on the widening method of bandgap with graded arrangement for elastic wave metamaterial in cylindrical shell [J].Journal of Dynamics and Control,2023,21(7):38-42.(in Chinese)

    • [19] 程乾,尹剑飞,温激鸿,等.极小曲面力学超材料抗冲吸能特性分析 [J].动力学与控制学报,2023,21(7):43-50.CHENG Q,YIN J F,WEN J H,et al.Impact resistance and energy absorption of mechanical metamaterials with minimal surface [J].Journal of Dynamics and Control,2023,21(7):43-50.(in Chinese)

    • [20] 杨永,李明浩,吴阶平,等.基于相位聚焦的驻波声场悬浮与运输方法研究 [J].动力学与控制学报,2023,21(7):51-58.YANG Y,LI M H,WU J P,et al.Research on suspension and transportation of standing wave sound field based on phase focusing [J].Journal of Dynamics and Control,2023,21(7):51-58.(in Chinese)

  • 参考文献

    • [1] 倪旭,张小柳,卢明辉,等.声子晶体和声学超构材料[J].物理,2012,41(10):655-662.NI X,ZHANF X L,LU M H,et al.Phononic crystals and acoustic metamaterials [J].Physics,2012,41(10):655-662.(in Chinese)

    • [2] 李政阳,王彦正,马天雪,等.智能压电声子晶体与超材料研究现状与展望 [J].科学通报,2022,67(12):1305-1325.LI Z Y,WANG Y Z,MA T X,et al.Smart piezoelectric phononic crystals and metamaterials:State-of-the-art review and outlook[J].Chinese Science Bulletin,2022,67(12):1305-1325.(in Chinese)

    • [3] 尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用 [J].力学进展,2022,52(3):508-586.YIN J F,CAI L,FANG X,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control [J].Advances in Mechanics,2022,52(3):508-586.(in Chinese)

    • [4] LIU Z,ZHANG X,MAO Y,et al.Locally resonant sonic materials [J].Science,2000,289(5485):1734-1736.

    • [5] WANG G,WEN X,WEN J,et al.Two-dimensional locally resonant phononic crystals with binary structures [J].Physical Review Letters,2004,93(15):154302.

    • [6] CAI C,ZHOU J,WANG K,et al.Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap [J].Journal of Sound and Vibration,2022,540:117297.

    • [7] FANG X,WEN J,BONELLO B,et al.Ultra-low and ultra-broad-band nonlinear acoustic metamaterials [J].Nature Communications,2017,8:1288.

    • [8] WANY Y Z,LI F M,WANG Y S,et al.Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J].International Journal of Mechanical Sciences,2016,106:357-362.

    • [9] DARAIO C,NESTERENKO V F,HERBOLD E B,et al.Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals [J].Physical Review E,2006,73(2):026610.

    • [10] WANG Y F,WANG Y Z,WU B,et al.Tunable and active phononic crystals and metamaterials [J].Applied Mechanics Reviews,2020,72(4):040801.

    • [11] POPA B I,ZIGONEANU L,CUMMER S A.Tunable active acoustic metamaterials [J].Physical Review B,2013,88(2):024303.

    • [12] 吴九汇,马富银,张思文,等.声学超材料在低频减振降噪中的应用评述 [J].机械工程学报,2016,52(13):68-78.WU J H,MA F Y,ZHANG S W,et al.Application of acoustic metamaterials in low-frequency vibration and noise reduction [J].Journal of Mechanical Engineering,2016,52(13):68-78.(in Chinese)

    • [13] 顾金桃,王晓乐,汤又衡,等.提高飞机壁板低频宽带隔声的层合声学超材料 [J].航空学报,2022,43(1):347-356.GU J T,WWANG X L,TANG Y H,et al.Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels [J].Acta Aeronautica,2022,43(1):347-356.(in Chinese)

    • [14] 刘宏,余江,张凯,等.多稳态力学超材料带隙特性及调控研究 [J].动力学与控制学报,2023,21(7):5-11.LIU H,Y U J,ZHANG K,et al.Multi-stable mechanical mematerials for band gap tuning [J].Journal of Dynamics and Control,2023,21(7):5-11.(in Chinese)

    • [15] 王勇,张汉青,李盈利.复合负泊松比蜂窝超结构板低频减振特性研究 [J].动力学与控制学报,2023,21(7):12-19.WANG Y,ZHANG H Q,LI Y L.Research on low frequency vibration attenuation characteristics of composite honeycomb superstructure plate with negative poisson ratio [J].Journal of Dynamics and Control,2023,21(7):12-19.(in Chinese)

    • [16] 刘金辉,李金强,张垚,等.双层薄膜型超材料夹层板的多带隙设计 [J].动力学与控制学报,2023,21(7):20-27.LIU J H,LI J Q,ZHANG Y,et al.Multi-bandgap design of double membrane-type acoustic metamaterial [J].Journal of Dynamics and Control,2023,21(7):20-27.(in Chinese)

    • [17] 郭世怡,田树才,张小龙,等.直曲增强型负泊松比超材料的力学性能与减振研究 [J].动力学与控制学报,2023,21(7):28-37.GUO S Y,TIAN S C,ZHANG X L,et al.Mechanical properties and vibration reduction analysis of a straight-arc strut enhanced metamaterials with negative poisson’s ratio [J].Journal of Dynamics and Control,2023,21(7):28-37.(in Chinese)

    • [18] 姚凌云,姚敦辉.圆柱壳弹性波超材料分级排列的带隙拓宽方法研究 [J].动力学与控制学报,2023,21(7):38-42.YAO L Y,YAO G H.Research on the widening method of bandgap with graded arrangement for elastic wave metamaterial in cylindrical shell [J].Journal of Dynamics and Control,2023,21(7):38-42.(in Chinese)

    • [19] 程乾,尹剑飞,温激鸿,等.极小曲面力学超材料抗冲吸能特性分析 [J].动力学与控制学报,2023,21(7):43-50.CHENG Q,YIN J F,WEN J H,et al.Impact resistance and energy absorption of mechanical metamaterials with minimal surface [J].Journal of Dynamics and Control,2023,21(7):43-50.(in Chinese)

    • [20] 杨永,李明浩,吴阶平,等.基于相位聚焦的驻波声场悬浮与运输方法研究 [J].动力学与控制学报,2023,21(7):51-58.YANG Y,LI M H,WU J P,et al.Research on suspension and transportation of standing wave sound field based on phase focusing [J].Journal of Dynamics and Control,2023,21(7):51-58.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码