en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

朱红钧,E-mail:ticky863@126.com

中图分类号:O322

文献标识码:A

文章编号:1672-6553-2023-21(6)-066-006

DOI:10.6052/1672-6553-2023-081

参考文献 1
YIH T S,GRIFFITH P.Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components [M].Cambridge,Mass.M.I.T.Dept.of Mechanical Engineering,1968.
参考文献 2
PATEL M H,SEYED F B.Internal flow-induced behaviour of flexible risers [J].Engineering Structures,1989,11(4):266-280.
参考文献 3
CHATJIGEORGIOU I K.Hydroelastic response of marine risers subjected to internal slug-flow [J].Applied Ocean Research,2017,62:1-17.
参考文献 4
BORDALO S N,MOROOKA C K.Slug flow induced oscillations on subsea petroleum pipelines [J].Journal of Petroleum Science and Engineering,2018:535-549.
参考文献 5
ORTEGA A,RIVERA A,NYDAL O,et al.On the dynamic response of flexible risers caused by internal slug flow [C].The 31st International Conference on Ocean,Offshore and Arctic Engineering,Rio de Janeiro,Brazil,2012.
参考文献 6
ORTEGA A,RIVERA A,LARSEN C.Flexible riser response induced by combined slug flow and wave loads [C].ASME 2013 32nd International Conference on Ocean,Nantes,France,2013.
参考文献 7
AN C,SU J.Dynamic behavior of pipes conveying gas-liquid two-phase flow [J].Nuclear Engineering and Design,2015,292:204-212.
参考文献 8
ZHU H J,GAO Y,ZHAO H L.Experimental investigation of slug flow-induced vibration of a flexible riser [J].Ocean Engineering,2019,189:106370.
参考文献 9
罗小明.气液两相和油气水三相段塞流流动特性研究 [D].青岛:中国石油大学,2007.LUO X M.Investigation on hydrodynamic characteristics of two-phase and oil-gas-water three-phase slug flow [D].Qingdao:China University of Petroleum(EastChina),2007.(in Chinese)
参考文献 10
PAGLIANTI A,GIONA M,SOLDATI A.Characterization of subregimes in two-phase slug flow [J].International Journal of Multiphase Flow,1996,22(4):783-796.
目录contents

    摘要

    随着深海战略的推进,海洋油气开采向深海挺进,越来越多的海洋立管投入使用.因油气输量的变化及海底地形起伏的影响,立管中经常出现气液两相段塞流,段塞流动的周期性变化使立管受到不稳定的流体力作用从而激发振动,造成立管的疲劳损伤.本文在气液两相流循环实验系统中开展了水动力段塞流诱导的悬链线型柔性立管振动响应测试,利用高速摄像非介入测试方法同步捕捉了柔性立管的振动位移与管内的段塞流动细节,研究了气液混合流速和气液比两个流动参数对柔性立管振动响应的影响,分析了振幅与振频的时空分布、管内液塞长度、压力波动的变化规律及它们间的内在联系.发现固定气液比时,随着混合流速的增大,柔性立管的振幅逐渐增大,但振动模态始终由一阶主导.液塞长度随混合流速的增大变化不明显,但压力波动随混合流速的增大愈发剧烈.固定气液混合流速时,随着气液比的增大,立管振幅逐渐增大,气塞和液塞长度也逐渐增大,进出口压差波动加剧,但压差平均值逐渐减小.

    Abstract

    With the development of the deep-sea strategy, the offshore oil and gas exploitation towards to deep sea, and more and more offshore risers are put into use in ocean engineering. Due to the variable flow rate and seabed terrain, the slug flow is typically encountered in flexible risers. Slug flow characterized by the obvious period usually contributes to the unstable fluid forces acting on the pipe wall and hence the dynamic response, causing the fatigue failure of flexible riser. The experiments of slug flow-induced vibration are performed in an air-water loop. The synchronous monitoring of vibration response and flow regime are achieved using the non-intrusive high-speed cameras. The influence of mixture velocity and gas-liquid ratio on flexible riser vibration is examined in terms of the tempo-spatial amplitude and frequency, liquid slug length, pressure fluctuation and the associated relationships among them. The results indicate that the amplitude is enlarged while the fundamental mode dominates the vibration response with increasing the gas-liquid mixture velocity at a fixed gas-liquid ratio. Although the variation of liquid slug length is not pronounced, the pressure fluctuation becomes more violent. The amplitude is increased and the length of gas plug and liquid slug are prolonged as the gas-liquid ratio increases at a fixed mixture velocity. In addition, the pressure fluctuation is also enhanced though the average pressure is decreased.

  • 引言

  • 柔性立管是海洋油气开采中连接海床与海面的关键纽带,随着深海油气资源的开发,越来越多的柔性立管投入使用.然而,立管长度随开采水深的增加急剧增大,此时的柔性立管在复杂的海洋环境中易产生交变应力,导致疲劳破坏.海流对立管服役寿命的影响广受关注,而油气两相流在混输过程中给柔性立管带来的安全隐患也是不可忽视的.因气液比、流量变化及地形起伏等因素的影响,立管中的油气流通常以段塞流的形式存在,其在流动过程中密度、压力等的剧烈波动,容易诱发立管的振动,造成立管的疲劳损伤.

  • 尽管人们已经意识到内流诱导柔性立管振动的危害,但国内外就此问题开展的研究较少.Yih和Griffith[1]最早提出了两相流动引起的管道振动,发现流速和系统压力变化是导致立管振动的主要因素.Patel和Seyed[2]分析了直管在稳定段塞流作用下的振动响应,预测了作用于管壁的流体作用力特性.Chatjigeorgiou[3]基于质量与动量守恒原理,建立了水动力段塞流作用下悬链线型管道动力响应的耦合方程,分析了流固耦合响应特征.Bordalo和Morooka[4]计算了悬链线型和懒散波型管道在段塞流作用下的振动响应,发现段塞流动频率与管道固有频率接近时,管道的振动较大.Ortega等[56]分析了柔性立管的振动响应与段塞流动之间的耦合效应.An和Su[7]模拟研究了气液两相流诱导的立管振动响应,发现立管的振动与气体的体积分数和液体流量相关.

  • 上述研究大多为数值模拟研究,针对弯管气液两相内流流致振动的实验研究还较少.悬链线型柔性立管由于其自身的几何非线性,在不稳定的段塞作用下,更容易受到流动参数变化的影响,产生复杂的非线性动力响应.因此,本文重点研究气液两相混合流速和气液比对柔性立管振动的影响,旨在辨识柔性立管段塞流致振动的主导因素.

  • 1 实验方法

  • 如图1所示,实验在气液两相流循环系统中开展,气液两相流介质分别采用空气和水.实验中,液体由潜水泵泵送,并通过针型阀控制液体流量,最后经电磁涡轮流量计进行计量.空气由气泵泵送,通过玻璃转子流量计调节并计量流量,在气体进入气液混合三通前的之路上加装止回阀防止水倒流进入空气流路.气液两相经T形三通混合后,通过水平段充分发展,然后进入实验测试段.测试段为内径4mm、壁厚1mm、长径比360的透明硅胶管,具体参数如表1所示,柔性立管模型两端采用固定约束.

  • 图1 段塞流流致振动实验装置示意图

  • Fig.1 schematic of experiment set-up

  • 实验采用高速摄像非介入测试方法[8]同步捕捉柔性立管的振动位移和管内流体的流动细节,其中高速摄像的图像分辨率为2048×1088,拍摄频率为100fps(frames per second).两台高速摄像分别布置在柔性立管所在弯曲平面的正前方和斜上方,采集柔性立管平面内(XOZ平面)和平面外(Y方向)的位移.如图1所示,利用两个压力传感器分别对柔性立管进、出口的实时压力进行监测.

  • 表1 柔性立管模型的参数

  • Table1 Parameters of the flexible riser model

  • 为研究混合流速和气液比对柔性立管振动的影响,实验中分别通过固定气液比、改变混合流速和固定混合流速、改变气液比的方式开展测试,具体的实验组次如表2所示.因柔性立管的固有频率会随管内流体质量的变化而变化,进行衰减测试时考虑了空管和管内充满水两种极限工况.测试得到柔性立管在平面内两个方向的固有频率相同,充满水时平面内前三阶固有频率分别为2.20Hz、3.46Hz和5.45Hz,而空管的前三阶固有频率分别为2.32Hz、3.83Hz和5.66Hz.

  • 表2 实验组次

  • Table2 Experimental cases

  • 2 实验结果及分析

  • 2.1 气液混合流速的影响

  • 为研究气液混合流速的变化对柔性立管振动响应的影响,固定气液比为3.0,通过同步增大气、液流量改变气液混合流速.

  • 气液比固定时,柔性立管在平面内XZ方向的均方根振幅随混合流速的变化如图2所示.由图2可知,柔性立管的均方根振幅随混合流速的增大而增大,但振动模态始终由一阶主导,这与实验的流速较小有关.总体上柔性立管X向的振幅比Z向大,混合流速为1.63v0时,两个方向的最大均方根振幅分别为3.14D和2.08D,且X向的最大振幅主要分布在柔性立管的上部,Z向的最大振幅则出现在柔性立管下部,这与柔性立管悬链线型的布置形式及入口的来流方向有关.

  • 图2 平面内均方根振幅随混合流速的变化

  • Fig.2 The in-plane spanwise evolution of the root mean square amplitude at different mixing velocities

  • 图3为QG/QL=3.0、vm=1.21v0时柔性立管在平面内XZ两个方向的振动包络图,虽然柔性立管的振动由一阶模态主导,但随着时间的变化,柔性立管间歇性地出现了二阶振动(如图3中蓝色虚线所示的瞬时振形),表现出不稳定的模态切换现象,这与气液两相来流不稳定有关.

  • 图3 柔性立管振动包络图(QG/QL=3.0、vm=1.21v0

  • Fig.3 The instantaneous profiles of the flexible riser at QG/QL=3.0、vm=1.21v0

  • 图4展示了柔性立管在Z方向的振动频率沿立管展向的变化.由图4可知,柔性立管的振动频率主要集中在一阶和二阶固有频率附近,立管大部分位置的能量主要集中在一阶模态附近,说明柔性立管的振动由一阶模态主导.随着混合流速的增大,振动能量从一阶振动的波谷位置开始转移,表明模态过渡时因固有振型的影响,模态转移的位置首先出现在振动能量较小的波谷位置.随着混合流速的增大,二阶固有频率附近的能量逐渐增强,且这种多模态共存的振动现象越来越明显.

  • 图4 不同混合流速时的频率空间分布

  • Fig.4 Spanwise evolution of the in-plane vibration frequency at different mixing velocities

  • 图5 不同混合速度时的液塞长度分布

  • Fig.5 Distribution of liquid slug length at different mixing velocities

  • 为分析柔性立管内的流动特性,对通过立管的液塞长度(Ls)进行统计,图5为不同混合流速下50s内通过立管的液塞长度分布.随着混合流速的增大,液塞长度范围变化很小,基本呈偏正态分布,说明气液比相同时,气体表观流速和液体表观流速同步增大,气液两相的速度差变化小是导致液塞长度变化不明显的主要原因.

  • 图6对比了不同混合流速时,长度相同(Ls/D=48)的液塞通过柔性立管相同位置时激发的振动响应.随着混合流速的增大,柔性立管的振动增强,尽管作用在柔性立管上的重力相等,但科氏力和离心力的大小随混合速度的增大而增大,从而加剧了柔性立管的振动.

  • 图6 不同混合速度时的瞬时流动细节及振动响应

  • Fig.6 The instantaneous vibration shape of the flexible riser and the associated liquid slugs inside it at different mixing velocities

  • 图7绘制了柔性立管进出口的压差波动变化.随着混合流速的增大,进出口的平均压差逐渐增大,且压差的概率密度分布逐渐变宽,表明压差波动越来越剧烈,因此剧烈的压力波动也是振动增强的原因之一.

  • 图7 不同混合速度时的压差变化

  • Fig.7 Variation of pressure difference at mixing velocities

  • 2.2 气液比的影响

  • 为分析气液比对柔性立管振动的影响,固定混合流速vm=2.033m/s,测试了四个不同气液比(QG/QL=2.0、2.5、3.0和4.0)工况下的振动响应.

  • 图8对比了固定混合流速,改变气液比时柔性立管的均方根振幅变化.随着气液比的增大,柔性立管的均方根振幅逐渐增大,且振动由一阶模态主导.柔性立管的均方根振幅分布与改变气液混合流速时相同,进一步说明柔性立管的布置形状和入口来流的方向是产生这种振动特征的重要原因.

  • 图8 平面内均方根振幅随气液比的变化

  • Fig.8 The in-plane spanwise evolution of the root mean square amplitude at different gas-liquid ratios

  • 如图9所示,选择4个有代表性的监测点(12#、17#、20#和23#)分析了不同位置处Z方向的振动频率随时间的变化.图中虚线标出了Z方向的前两阶固有频率(f1Zf2Z),从时频图上可以看出柔性立管大部分位置的振动能量分布在一阶自振频率附近,表现为一阶振动模态主导.在靠近均方根振幅分布的波谷位置,振动能量逐渐向二阶自振频率附近转移,且主导振动频率随时间在一阶和二阶振动频率间切换,尤其在振幅分布的波谷位置处,这种模态切换现象更加剧烈.

  • 为进一步分析柔性立管的振动机理,统计了不同气液比工况下气塞和液塞的长度,图10给出了最长气塞和最长液塞随气液比的变化,随着气液比从2.0变化到4.0,最长气塞从78D增大到288D,最长液塞从37.8D增大到78D.在实验所测的气液比范围内,当QG/QL≤2.5时,最长气塞和液塞的增长缓慢; 当QG/QL>2.5时,最长气塞和液塞的增长较快.这可能是由于混合流速不变时,气液比增大导致入口气体表观流速逐渐增大,液体表观流速逐渐减小,液相速度远小于气相速度,液塞形成后会阻碍后续气体的推进,而气相会使液塞加速,将其前面速度较小的液膜内的液体卷吸进液塞中,使液塞变长.因此,随着气体表观速度的增大,液塞长度增加,而液体表观流速对液塞长度的影响不大,这与罗小明[9]、Paglianti等人[10]的研究结果一致.尽管混合流速不变,但随着气液比的增大,长度增大的液塞流经柔性立管时,一方面施加在管壁上的作用力增大,另一方面立管受力更集中,因而激发出更剧烈的振动.

  • 图9 代表性监测点的时频变化(QG/QL=3.0)

  • Fig.9 Time-frequency variation of representative markers

  • 图11展示了柔性立管进出口压差随气液比的变化.与改变混合流速时的进出口压差变化不同,固定混合速度时,进出口压差的平均值随着气液比的增大而减小,但压差概率密度函数的覆盖宽度增大,表明压差的波动越来越剧烈.液塞长度增大引起重力压降增大可能是进出口产生较大压差波动的原因.

  • 图10 最长气塞和液塞随气液比的变化

  • Fig.10 Variation of the longest gas plug and liquid slug with the gas-liquid ratio

  • 图11 不同气液比时的压力变化

  • Fig.11 Variation of pressure difference at different gas-liquid ratios

  • 3 结论

  • 本文通过实验研究了气液两相段塞流作用下的悬链线型柔性立管振动响应特性,分析了气液两相混合流速和气液比对振动响应的影响规律,在本实验条件下得出以下结论:

  • (1)固定气液比为3.0时,随着气液混合流速从v0增大到1.63v0,柔性立管的振动逐渐增强,平面内XZ方向的最大振幅分别达到3.14D和2.08D,在实验的混合速度范围内,XZ方向的振动始终由一阶主导.随着气液混合速度的增大,液塞长度分布变化很小,进出口的压差平均值逐渐增大,压差波动越来越剧烈.

  • (2)固定混合流速为2.033m/s时,随着气液比的增大,柔性立管的振动强度逐渐增大,且由一阶模态主导,最大液塞长度和气塞长度逐渐增大,进出口的压差平均值逐渐减小,但压差波动逐渐增强.

  • (3)改变气液混合流速主要是通过增大科氏力、离心力和惯性力以及进出口的压差波动强度来增大液塞对管壁产生的脉动冲击力,进而增强振动.改变气液比主要是通过增大液塞的长度,使液塞施加在管壁上的作用力增大,作用位置更加集中,进出口压差波动更加剧烈,从而加剧柔性立管的振动.因此,气液两相流的动量波动激振、进出口的压差波动激振及质量力的变化是柔性立管振动变化的主要原因.

  • 参考文献

    • [1] YIH T S,GRIFFITH P.Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components [M].Cambridge,Mass.M.I.T.Dept.of Mechanical Engineering,1968.

    • [2] PATEL M H,SEYED F B.Internal flow-induced behaviour of flexible risers [J].Engineering Structures,1989,11(4):266-280.

    • [3] CHATJIGEORGIOU I K.Hydroelastic response of marine risers subjected to internal slug-flow [J].Applied Ocean Research,2017,62:1-17.

    • [4] BORDALO S N,MOROOKA C K.Slug flow induced oscillations on subsea petroleum pipelines [J].Journal of Petroleum Science and Engineering,2018:535-549.

    • [5] ORTEGA A,RIVERA A,NYDAL O,et al.On the dynamic response of flexible risers caused by internal slug flow [C].The 31st International Conference on Ocean,Offshore and Arctic Engineering,Rio de Janeiro,Brazil,2012.

    • [6] ORTEGA A,RIVERA A,LARSEN C.Flexible riser response induced by combined slug flow and wave loads [C].ASME 2013 32nd International Conference on Ocean,Nantes,France,2013.

    • [7] AN C,SU J.Dynamic behavior of pipes conveying gas-liquid two-phase flow [J].Nuclear Engineering and Design,2015,292:204-212.

    • [8] ZHU H J,GAO Y,ZHAO H L.Experimental investigation of slug flow-induced vibration of a flexible riser [J].Ocean Engineering,2019,189:106370.

    • [9] 罗小明.气液两相和油气水三相段塞流流动特性研究 [D].青岛:中国石油大学,2007.LUO X M.Investigation on hydrodynamic characteristics of two-phase and oil-gas-water three-phase slug flow [D].Qingdao:China University of Petroleum(EastChina),2007.(in Chinese)

    • [10] PAGLIANTI A,GIONA M,SOLDATI A.Characterization of subregimes in two-phase slug flow [J].International Journal of Multiphase Flow,1996,22(4):783-796.

  • 参考文献

    • [1] YIH T S,GRIFFITH P.Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components [M].Cambridge,Mass.M.I.T.Dept.of Mechanical Engineering,1968.

    • [2] PATEL M H,SEYED F B.Internal flow-induced behaviour of flexible risers [J].Engineering Structures,1989,11(4):266-280.

    • [3] CHATJIGEORGIOU I K.Hydroelastic response of marine risers subjected to internal slug-flow [J].Applied Ocean Research,2017,62:1-17.

    • [4] BORDALO S N,MOROOKA C K.Slug flow induced oscillations on subsea petroleum pipelines [J].Journal of Petroleum Science and Engineering,2018:535-549.

    • [5] ORTEGA A,RIVERA A,NYDAL O,et al.On the dynamic response of flexible risers caused by internal slug flow [C].The 31st International Conference on Ocean,Offshore and Arctic Engineering,Rio de Janeiro,Brazil,2012.

    • [6] ORTEGA A,RIVERA A,LARSEN C.Flexible riser response induced by combined slug flow and wave loads [C].ASME 2013 32nd International Conference on Ocean,Nantes,France,2013.

    • [7] AN C,SU J.Dynamic behavior of pipes conveying gas-liquid two-phase flow [J].Nuclear Engineering and Design,2015,292:204-212.

    • [8] ZHU H J,GAO Y,ZHAO H L.Experimental investigation of slug flow-induced vibration of a flexible riser [J].Ocean Engineering,2019,189:106370.

    • [9] 罗小明.气液两相和油气水三相段塞流流动特性研究 [D].青岛:中国石油大学,2007.LUO X M.Investigation on hydrodynamic characteristics of two-phase and oil-gas-water three-phase slug flow [D].Qingdao:China University of Petroleum(EastChina),2007.(in Chinese)

    • [10] PAGLIANTI A,GIONA M,SOLDATI A.Characterization of subregimes in two-phase slug flow [J].International Journal of Multiphase Flow,1996,22(4):783-796.

  • 微信公众号二维码

    手机版网站二维码