en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

康厚军,E-mail:HJKang@gxu.edu.cn

中图分类号:U448.22;TU311.3

文献标识码:A

文章编号:1672-6553-2022-21(5)-086-007

DOI:10.6052/1672-6553-2023-054

参考文献 1
陈宝春,刘君平.世界拱桥建设与技术发展综述[J].交通运输工程学报,2020,20(1):27-41.CHEN B C,LIU J P.Review of construction and technology development of arch bridges in the world [J].Journal of Traffic and Transportation Engineering,2020,20(1):27-41.(in Chinese)
参考文献 2
ZHENG J L,WANG J J.Concrete-filled steel tube arch bridges in China [J].Engineering,2018,4(1):143-155.
参考文献 3
AU F T K,WANG J J,LIU G D.Construction control of reinforced concrete arch bridges [J].Journal of Bridge Engineering,2003,8(1):39-45.
参考文献 4
赵人达,张正阳.我国钢管混凝土劲性骨架拱桥发展综述[J].桥梁建设,2016,46(6):45-50.ZHAO R D,ZHANG Z Y.A summary of development of concrete-filled steel tube framed arch bridges in China [J].Bridge Construction,2016,46(6):45-50.(in Chinese)
参考文献 5
邓年春,李长胜,郭晓,等.钢管混凝土劲性骨架拱桥主拱圈施工方法进展[J].科学技术与工程,2021,21(15):6132-6139.DENG N C,LI C S,GUO X,et al.Progress of construction method of main arch ring of steel tube concrete stiff skeleton arch bridge [J].Science Technology and Engineering,2021,21(15):6132-6139.(in Chinese)
参考文献 6
杨国静,徐勇,黄毅.大跨度劲性骨架拱桥外包混凝土方案优化[J].铁道工程学报,2017,34(10):50-54,82.YANG G J,XU Y,HUANG Y.The outer-covered concrete construction scheme optimization of the long-span concrete arch bridge with stiff skeleton [J].Journal of Railway Engineering Society,2017,34(10):50-54,82.(in Chinese)
参考文献 7
谢海清,徐勇,陈列,等.沪昆高铁北盘江特大桥主拱结构形式及参数比选[J].桥梁建设,2019,49(2):97-102.XIE H Q,XU Y,CHEN L,et al.Comparison and selection of structural types and parameters of main arch of Beipanjiang Bridge on Shanghai-Kunming High-Speed Railway [J].Bridge Construction,2019,49(2):97-102.(in Chinese)
参考文献 8
苏潇阳,康厚军,丛云跃.混合体系多塔斜拉桥竖弯刚度评估动力学理论[J].动力学与控制学报,2020,18(4):26-32.SU X Y,KANG H J,CONG Y Y.Dynamic theory for evaluation on vertical bending stiffness of multi-tower cable-stayed bridge with hybrid system [J].Journal of Dynamics and Control,2020,18(4):26-32.(in Chinese)
参考文献 9
XIN L F,LI X Z,ZHANG Z T,et al.Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions [J].Engineering Structures,2019,180:148-159.
参考文献 10
王志搴.多索-单梁耦合结构的动力学建模及非线性特性研究 [J].动力学与控制学报,2023,21(1):1-7.WANG Z Q.Study on dynamic characteristics and nonlinear characteristics of multi-cable single beam coupled structures [J].Journal of Dynamics and Control,2023,21(1):1-7.(in Chinese)
参考文献 11
吴庆雄,黄宛昆,陈宝春.中、下承式钢管混凝土拱桥面内振动模态分析[J].工程力学,2012,29(11):221-227.WU Q X,HUANG W K,CHEN B C.Modal analysis of in-plane vibrations for half-through and through concrete-filled steel tubular arch bridges [J].Engineering Mechanics,2012,29(11):221-227.(in Chinese)
参考文献 12
吴梅容,卓卫东,孙颖,等.中承式钢管混凝土拱桥动力特性分析[J].振动与冲击,2017,36(24):85-90,102.WU M R,ZHUO W D,SUN Y.Dynamic characteristics of half-through concrete-filled steel tubular arch bridges [J].Journal of Vibration and Shock,2017,36(24):85-90,102.(in Chinese)
参考文献 13
徐华,吴宜涛,解威威.400m级铁路CFST拱桥合理拱肋内倾角研究[J].铁道科学与工程学报,2021,18(5):1203-1212.XU H,WU Y T,XIE W W.Analysis on the value of leaning angle on span of 400m class concrete filled steel tubular railway arch bridge [J].Journal of Railway Science and Engineering,2021,18(5):1203-1212.(in Chinese)
参考文献 14
WANG W,YAN W C,DENG L,et al.Dynamic analysis of a cable-stayed concrete-filled steel tube arch bridge under vehicle loading [J].Journal of Bridge Engineering,2015,20(5):04014082.
参考文献 15
LI Y,CAI C S,LIU Y,et al.Dynamic analysis of a large span specially shaped hybrid girder bridge with concrete-filled steel tube arches [J].Engineering Structures,2016,106:243-260.
参考文献 16
林春姣,郑皆连.劲性骨架拱桥主拱圈混凝土四工作面浇筑法[J].交通运输工程学报,2020,20(6):82-89.LIN C J,ZHENG J L.Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge [J].Journal of Traffic and Transportation Engineering,2020,20(6):82-89.(in Chinese)
参考文献 17
童加明,邓年春,林春姣,等.600m级劲性骨架拱桥外包混凝土浇筑方案[J].桂林理工大学学报,2021,41(4):791-796.TONG J M,DENG N C,LIN C J,et al.Outercovered concrete construction scheme of 600m concrete arch bridge with stiff skeleton [J].Journal of Guilin University of Technology,2021,41(4):791-796.(in Chinese)
参考文献 18
郭增伟,程皓,周水兴.钢管混凝土劲性骨架拱桥混凝土外包过程非线性屈曲分析[J].重庆交通大学学报(自然科学版),2021,40(10):52-62.GUO Z W,CHENG H,ZHOU S X.Nonlinear buckling analysis of concrete encasement process of arch bridge with CFST stiff skeleton [J].Journal of Chongqing Jiaotong University(Natural Science),2021,40(10):52-62.(in Chinese)
目录contents

    摘要

    研究劲性骨架拱桥混凝土外包过程中的动力特性和抗风性能对其施工具有重要的指导意义.本文以天峨龙滩特大桥为例,采用有限元分析软件MIDAS/Civil,建立了实桥空间有限元模型,研究了在三种不同工作面条件下,不同施工阶段桥梁的自振频率以及抗风能力的变化规律.结果表明:在外包混凝土的过程中桥梁横向频率呈现单调上升的趋势,而竖向频率却呈现先下降再上升的趋势,并且会出现veering现象;抗风能力呈现出先提高,再降低,最后再提高的变化趋势;抗风性能也会受到工作面数量的影响,工作面越多,结构的横向抗风性能越弱.

    Abstract

    The study on dynamic characteristics and wind-resistance performance of concrete encasement stage of arch bridge with stiff skeleton has great guidance for its construction. Tian’e Longtan Bridge serves as the research model here. With the aid of FEM software MIDAS/Civil, three-dimensional finite element models of Tian’e Longtan Bridge are set up. Then, the change laws of natural frequency and wind resistance performance of the bridge in different construction stages under three different working platform conditions is investigated. The results show that the lateral frequency of the bridge shows a monotonically upward trend in the process of encasing concrete, while the vertical frequency is decreased first and then increased, and the phenomenon of veering will occur. the wind resistance performance is increased first, then decreased and finally increased again. The wind resistance is also affected by the number of working platforms. The more working platform there are, the weaker the lateral wind resistance of the structure.

  • 引言

  • 混凝土拱桥因造价低、刚度大、耐久性好且美观等优点,深受工程师们的青睐并被广泛应用于我国山区公路桥梁工程中[1-3].随着施工技术的进步和电子计算机的运用,混凝土拱桥跨径也随之增大.但是,由于受到混凝土拱桥自重等因素的限制,要想突破更大的跨度,必须探索新的结构形式.在此背景下,劲性骨架混凝土拱桥将成为大跨度拱桥发展的主要方向,其最大跨度已经达到445m[4-5].劲性骨架混凝土拱桥是通过预先形成一个内置的劲性骨架,并将其作为施工支架,在其上安装模板完成拱圈混凝土的浇筑.这种结构形式的桥梁克服了由自身结构过重而引起的施工困难的问题[6-7].然而,随着跨度的增大和结构自重的减少,同样会带来很多问题,其中结构的动力特性、抗风和抗震等动力学方面的问题尤为突出[8-10].

  • 目前国内外学者已经对混凝土拱桥的动力性能进行了一些研究.吴庆雄等[11]基于Rayleigh能量法提出了用于预估和校核中、下承式钢管混凝土拱桥面内低阶频率的计算方法,并讨论了主拱跨径、截面和桥道系结构对其面内振动模态特性的影响.吴梅容等[12]在统计分析了158座国内已建成的中承式钢管混凝土拱桥设计资料后,进行了基准桥梁试设计.探讨了矢跨比、宽跨比、主拱肋刚度等结构参数改变时无推力中承式钢管混凝土拱桥结构动力特性的变化规律.徐华等[13]以一座400m级铁路特大跨钢管混凝土拱桥为例,分析计算了不同拱肋内倾角取值下结构的自振特性和强震作用下结构的内力和位移响应.结果表明,此类拱桥拱肋倾角取值范围宜为3.5°~4°.Wang等[14]基于三维车桥耦合模型,介绍了斜拉钢管混凝土拱桥在车辆荷载作用下的动力分析结果,并研究了车辆负载条件,车速和路面条件对桥梁动态冲击系数等指标的影响.Li等[15]对带有移动车辆的钢管混凝土拱特殊形状混合桥梁的动力性能进行了实验和数值研究.研究结果表明,该桥拱肋平面外刚度较弱,主跨桥面具有明显的扭转和弯曲耦合振动模式.

  • 尽管上述研究取得了显著的成果,但是其研究对象均为处于成桥状态的钢管混凝土拱桥,而对劲性骨架混凝土拱桥的研究却少有报道,尤其是在其施工过程中.众所周知,劲性骨架混凝土拱桥一般采用分环分段施工外包混凝土.在外包混凝土过程中,骨架上的混凝土重量不断增加,截面也在不断变化,结构刚度也在逐步增加,同时阻风面积也在变化,特别是在浇筑腹板环时[16-18].因此,外包过程中结构的动力特性和抗风性能就存在一定的不确定性,有必要对这方面进行深入研究.本文以一座在建的计算跨径为600m的劲性骨架混凝土拱桥(天峨龙滩特大桥)为依托,通过运用有限元分析软件MIDAS/Civil,对其外包混凝土过程中的动力特性和抗风性能进行了研究.

  • 1 工程实例

  • 1.1 工程概况

  • 天峨龙滩特大桥(图1)主桥为上承式钢管混凝土劲性骨架混凝土拱桥,大桥位于河池市天峨县内,跨越龙滩库区,是南丹至天峨下老高速公路的控制工程.该桥主拱计算跨径为600m,计算矢高为125m,拱轴线为悬链线,拱轴系数为1.9,横向设置两片拱肋,呈平行拱形式.拱肋采用等宽度变高度的混凝土箱肋拱截面,拱脚位置的箱高12m、箱宽6.5m,拱顶位置的箱高8m、箱宽6.5m、拱肋横向中心距16.5m,总宽度23m.钢管混凝土劲性骨架中,弦管为Φ900mm×30mm等直径等厚度Q420D圆形钢管,管内灌注C80自密实微膨胀混凝土.

  • 1.2 模型说明

  • 采用MIDAS/Civil有限元软件进行分析,计算模型如图1所示.其中,劲性骨架,外包混凝土底板、腹板、顶板和钢管混凝土分别采用梁单元,板单元和组合截面梁单元进行模拟.计算时不考虑累计的施工内力、施工临时荷载的影响.

  • 本次计算考虑了三种拱圈混凝土浇筑的工作面设置情况:2工作面、4工作面、8工作面.各工作面示意图如图2所示.其中,2工作面、8工作面分段皆按与4工作面的各节段浇筑方量一致划分.外包混凝土底板环分6节段、腹板环分7节段、顶板环分6节段共19节段浇筑完成.

  • 图1 天峨龙滩特大桥

  • Fig.1 Tian’e Longtan Bridge

  • 图2 拱圈混凝土浇筑的工作面设置

  • Fig.2 Working platform setting when pouring arch ring concrete

  • 2 动力特征

  • 2.1 频率分析

  • 图3(a)给出了2、4、8工作面条件下,不同施工阶段前四阶自振频率变化曲线.这里需指出的是,从下往上依次为第1~4阶自振频率变化曲线,且第1、3阶是横向弯曲振动,第2、4阶为竖向弯曲振动.可以看到,对于竖向振动频率,随着底板的浇筑,结构频率是在下降的,频率降幅0.05Hz左右.这说明相比于混凝土成形后提供刚度来说,混凝土的荷载对结构产生的影响更大,结构总体属于受荷过程.而随着腹板、顶板节段的浇筑,频率又逐渐增加.此时,施工过程大体上是刚度增强的过程.在外包混凝土过程中,结构的频率总趋势是在增加的,也就是相对于质量的增加,结构刚度的增加更为显著.此外,高阶频率的增加相对于低阶频率的增加更为显著.

  • 图3 不同施工阶段固有频率变化曲线

  • Fig.3 Variation curves of natural frequency in different construction stages

  • 由于不考虑施工过程的积累,在底板、腹板、顶板成环时,不同工作面数量的工况中,结构的刚度和荷载皆一样,因此这些施工阶段的频率为不动点.不同工作面数的前四阶频率整体来看,2工作面的频率相对较高,其次是4工作面,最后是8工作面.结构频率与结构的刚度成正关系,与质量成反关系,即与两个因素同时关联.各工作面工况的各阶段浇筑方量基本一致,工作面越多,质量分布越分散,刚度分布也越分散.多工作面的刚度不连续是使得浇筑过程频率整体降低的原因.

  • 2.2 频率穿越

  • 图3(b)给出了在4工作面情况下,不同施工阶段,前10阶自振频率曲线.这里需要注意的是从下往上依次为第1~10阶自振频率变化曲线.可以看到,总体来看,阶数越高,频率总体的增长越明显.我们发现一个有趣的现象,在腹板浇筑至4节段时,结构第9阶频率和第10阶频率十分接近(其中第9阶频率为0.198Hz,第10阶频率为0.199Hz).在腹板浇筑至4节段附近时,相关振型如图4所示.

  • 图4 第9阶和第10阶振型

  • Fig.4 The9th and 10th order mode shapes

  • 可以看出,在浇筑腹板第3节段时,第9阶为对称扭转模态,第10阶为反对称扭转模态.在浇筑腹板第4节段时,第9阶近似为反对称扭转模态,第10阶近似为对称模态.无论是反对称还是对称性都在一定程度上被破坏,也就是说,两个模态的振型相互影响,相互耦合.频谱上也发生了频率穿越现象.在浇筑第5节段时,相关的模态又恢复了反对称振型和对称振型.出现频率穿越的两个模态相互耦合,极易产生内共振现象,此时外界的振动能量被结构吸收后,在两个模态间相互转化,使得振幅增大,降低机械能耗散率,使得振动更为持久.因此,需要在工程中尽量避免此类情况的发生,或考虑增加必要的耗能装置.值得注意的是,特大跨度拱桥的工程频率较低,频率穿越现象出现时的外激励频率需与结构内共振相关频率十分相近,否则相差只有0.1Hz或0.01Hz时,不一定会出现频率穿越或模态耦合.其次,在本算例中,模态耦合现象出现在结构的高阶振动中,如果外部激励主要以低阶振动响应为主,或在高阶频率区输入能量较小,也不一定产生明显的内共振现象.

  • 3 抗风性能

  • 图5给出了不同工作面、不同施工阶段在横向静风荷载作用下的横向最大位移情况.结构横向位移表征了结构在横向静风荷载作用下的抵抗能力,这个物理量不仅与结构刚度有关,还与结构横向静风荷载有关.由图5可以看出,随着施工过程的进行,结构的抗风性能并不是单调变化的过程,而是随着浇筑底板、腹板、顶板环的进行,抗风能力先提高,再降低,最后再提高.在浇筑底板时,截面阻风作用小于结构的刚度增强的效果,因此总体来看,结构抗风性能逐步提高.在浇筑腹板时,截面阻风作用增强快于结构刚度的增强,综合来看,结构的整体抗风性能逐步下降.浇筑顶板时,截面阻风作用基本不变,但随着截面箱式逐步成型,刚度还在继续增强,因此,抗风能力再次升高.最后可以看到,最开始的桁式结构虽然风荷载较小,但刚度更弱,与最终的混凝土箱型截面相比,箱型断面的综合抗风性能相对更强.

  • 图5 横向静风荷载作用下的横向最大位移图

  • Fig.5 Graph of maximum transverse displacement under lateral static wind load

  • 从另一个角度来看,不同工作面数量也会影响结构的抗风性能.底板成环过程中,随着工作面的增加,结构的抗风性能在逐渐减弱.在这个过程中,结构的风阻系数变化不大,抗风性能的减弱更多来源于刚度的不同.不同工作面对刚度的影响主要有两个,一个是工作面越多,刚度越分散,形成“链环”形式,整体结构仍是松散的; 另一个影响是当工作面较少时,拱脚附近的刚度会增强较快,范围增大得也快.这就使得对于横向“梁式”构造的拱,在风荷载作用下发生较大变形的“计算长度”有所减短.因此,横向位移相对较小.

  • 在腹板浇筑过程中,可以看到,虽然成环时,不同的施工方式抗风性能一样,但是,2工作面的抗风能力是先增强,再减弱,刚开始浇筑几段的时候最强.而8工作面的刚好相反,抗风能力是先减弱,再增强,最弱的时候是最后浇筑的阶段.至于4工作面施工方式,则介于前述两者之间,抗风性能单调下降.在浇筑顶板过程中,工作面数量的多少对结构抗风性能的影响较小,一方面是因为是否有顶板的存在对风阻系数影响较小,另一方面,由于腹板成型,截面刚度较大,相对于是否有顶板,差别并不明显.因此,多工作面造成的刚度分散和拱脚刚度范围的影响较小,抗风性能差异较小.

  • 4 结论

  • 本文对劲性骨架混凝土拱桥外包过程中的动力性能和抗风性能进行了研究,采用数值模拟,比较了不同施工工作面数量的影响,结论如下:

  • (1)随着外包底板、腹板、顶板混凝土的施工,竖向频率先下降,再上升,横向频率近于单调上升.低阶频率总体上升幅度较小,高阶频率上升幅度较大.工作面越少频率越大,但差距并不明显,特别是在低阶模态中.

  • (2)在外包混凝土浇筑过程中,出现了频率穿越现象,相关模态发生了耦合,可能会引起结构内共振,实际工程中需要注意避免或者增加必要的耗能措施.

  • (3)横向静阵风作用下,结构的抗风性能随着外包混凝土的施工,先增强、再减弱、最后再增强.工作面越多,结构的横向抗风性能越弱.

  • 参考文献

    • [1] 陈宝春,刘君平.世界拱桥建设与技术发展综述[J].交通运输工程学报,2020,20(1):27-41.CHEN B C,LIU J P.Review of construction and technology development of arch bridges in the world [J].Journal of Traffic and Transportation Engineering,2020,20(1):27-41.(in Chinese)

    • [2] ZHENG J L,WANG J J.Concrete-filled steel tube arch bridges in China [J].Engineering,2018,4(1):143-155.

    • [3] AU F T K,WANG J J,LIU G D.Construction control of reinforced concrete arch bridges [J].Journal of Bridge Engineering,2003,8(1):39-45.

    • [4] 赵人达,张正阳.我国钢管混凝土劲性骨架拱桥发展综述[J].桥梁建设,2016,46(6):45-50.ZHAO R D,ZHANG Z Y.A summary of development of concrete-filled steel tube framed arch bridges in China [J].Bridge Construction,2016,46(6):45-50.(in Chinese)

    • [5] 邓年春,李长胜,郭晓,等.钢管混凝土劲性骨架拱桥主拱圈施工方法进展[J].科学技术与工程,2021,21(15):6132-6139.DENG N C,LI C S,GUO X,et al.Progress of construction method of main arch ring of steel tube concrete stiff skeleton arch bridge [J].Science Technology and Engineering,2021,21(15):6132-6139.(in Chinese)

    • [6] 杨国静,徐勇,黄毅.大跨度劲性骨架拱桥外包混凝土方案优化[J].铁道工程学报,2017,34(10):50-54,82.YANG G J,XU Y,HUANG Y.The outer-covered concrete construction scheme optimization of the long-span concrete arch bridge with stiff skeleton [J].Journal of Railway Engineering Society,2017,34(10):50-54,82.(in Chinese)

    • [7] 谢海清,徐勇,陈列,等.沪昆高铁北盘江特大桥主拱结构形式及参数比选[J].桥梁建设,2019,49(2):97-102.XIE H Q,XU Y,CHEN L,et al.Comparison and selection of structural types and parameters of main arch of Beipanjiang Bridge on Shanghai-Kunming High-Speed Railway [J].Bridge Construction,2019,49(2):97-102.(in Chinese)

    • [8] 苏潇阳,康厚军,丛云跃.混合体系多塔斜拉桥竖弯刚度评估动力学理论[J].动力学与控制学报,2020,18(4):26-32.SU X Y,KANG H J,CONG Y Y.Dynamic theory for evaluation on vertical bending stiffness of multi-tower cable-stayed bridge with hybrid system [J].Journal of Dynamics and Control,2020,18(4):26-32.(in Chinese)

    • [9] XIN L F,LI X Z,ZHANG Z T,et al.Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions [J].Engineering Structures,2019,180:148-159.

    • [10] 王志搴.多索-单梁耦合结构的动力学建模及非线性特性研究 [J].动力学与控制学报,2023,21(1):1-7.WANG Z Q.Study on dynamic characteristics and nonlinear characteristics of multi-cable single beam coupled structures [J].Journal of Dynamics and Control,2023,21(1):1-7.(in Chinese)

    • [11] 吴庆雄,黄宛昆,陈宝春.中、下承式钢管混凝土拱桥面内振动模态分析[J].工程力学,2012,29(11):221-227.WU Q X,HUANG W K,CHEN B C.Modal analysis of in-plane vibrations for half-through and through concrete-filled steel tubular arch bridges [J].Engineering Mechanics,2012,29(11):221-227.(in Chinese)

    • [12] 吴梅容,卓卫东,孙颖,等.中承式钢管混凝土拱桥动力特性分析[J].振动与冲击,2017,36(24):85-90,102.WU M R,ZHUO W D,SUN Y.Dynamic characteristics of half-through concrete-filled steel tubular arch bridges [J].Journal of Vibration and Shock,2017,36(24):85-90,102.(in Chinese)

    • [13] 徐华,吴宜涛,解威威.400m级铁路CFST拱桥合理拱肋内倾角研究[J].铁道科学与工程学报,2021,18(5):1203-1212.XU H,WU Y T,XIE W W.Analysis on the value of leaning angle on span of 400m class concrete filled steel tubular railway arch bridge [J].Journal of Railway Science and Engineering,2021,18(5):1203-1212.(in Chinese)

    • [14] WANG W,YAN W C,DENG L,et al.Dynamic analysis of a cable-stayed concrete-filled steel tube arch bridge under vehicle loading [J].Journal of Bridge Engineering,2015,20(5):04014082.

    • [15] LI Y,CAI C S,LIU Y,et al.Dynamic analysis of a large span specially shaped hybrid girder bridge with concrete-filled steel tube arches [J].Engineering Structures,2016,106:243-260.

    • [16] 林春姣,郑皆连.劲性骨架拱桥主拱圈混凝土四工作面浇筑法[J].交通运输工程学报,2020,20(6):82-89.LIN C J,ZHENG J L.Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge [J].Journal of Traffic and Transportation Engineering,2020,20(6):82-89.(in Chinese)

    • [17] 童加明,邓年春,林春姣,等.600m级劲性骨架拱桥外包混凝土浇筑方案[J].桂林理工大学学报,2021,41(4):791-796.TONG J M,DENG N C,LIN C J,et al.Outercovered concrete construction scheme of 600m concrete arch bridge with stiff skeleton [J].Journal of Guilin University of Technology,2021,41(4):791-796.(in Chinese)

    • [18] 郭增伟,程皓,周水兴.钢管混凝土劲性骨架拱桥混凝土外包过程非线性屈曲分析[J].重庆交通大学学报(自然科学版),2021,40(10):52-62.GUO Z W,CHENG H,ZHOU S X.Nonlinear buckling analysis of concrete encasement process of arch bridge with CFST stiff skeleton [J].Journal of Chongqing Jiaotong University(Natural Science),2021,40(10):52-62.(in Chinese)

  • 参考文献

    • [1] 陈宝春,刘君平.世界拱桥建设与技术发展综述[J].交通运输工程学报,2020,20(1):27-41.CHEN B C,LIU J P.Review of construction and technology development of arch bridges in the world [J].Journal of Traffic and Transportation Engineering,2020,20(1):27-41.(in Chinese)

    • [2] ZHENG J L,WANG J J.Concrete-filled steel tube arch bridges in China [J].Engineering,2018,4(1):143-155.

    • [3] AU F T K,WANG J J,LIU G D.Construction control of reinforced concrete arch bridges [J].Journal of Bridge Engineering,2003,8(1):39-45.

    • [4] 赵人达,张正阳.我国钢管混凝土劲性骨架拱桥发展综述[J].桥梁建设,2016,46(6):45-50.ZHAO R D,ZHANG Z Y.A summary of development of concrete-filled steel tube framed arch bridges in China [J].Bridge Construction,2016,46(6):45-50.(in Chinese)

    • [5] 邓年春,李长胜,郭晓,等.钢管混凝土劲性骨架拱桥主拱圈施工方法进展[J].科学技术与工程,2021,21(15):6132-6139.DENG N C,LI C S,GUO X,et al.Progress of construction method of main arch ring of steel tube concrete stiff skeleton arch bridge [J].Science Technology and Engineering,2021,21(15):6132-6139.(in Chinese)

    • [6] 杨国静,徐勇,黄毅.大跨度劲性骨架拱桥外包混凝土方案优化[J].铁道工程学报,2017,34(10):50-54,82.YANG G J,XU Y,HUANG Y.The outer-covered concrete construction scheme optimization of the long-span concrete arch bridge with stiff skeleton [J].Journal of Railway Engineering Society,2017,34(10):50-54,82.(in Chinese)

    • [7] 谢海清,徐勇,陈列,等.沪昆高铁北盘江特大桥主拱结构形式及参数比选[J].桥梁建设,2019,49(2):97-102.XIE H Q,XU Y,CHEN L,et al.Comparison and selection of structural types and parameters of main arch of Beipanjiang Bridge on Shanghai-Kunming High-Speed Railway [J].Bridge Construction,2019,49(2):97-102.(in Chinese)

    • [8] 苏潇阳,康厚军,丛云跃.混合体系多塔斜拉桥竖弯刚度评估动力学理论[J].动力学与控制学报,2020,18(4):26-32.SU X Y,KANG H J,CONG Y Y.Dynamic theory for evaluation on vertical bending stiffness of multi-tower cable-stayed bridge with hybrid system [J].Journal of Dynamics and Control,2020,18(4):26-32.(in Chinese)

    • [9] XIN L F,LI X Z,ZHANG Z T,et al.Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions [J].Engineering Structures,2019,180:148-159.

    • [10] 王志搴.多索-单梁耦合结构的动力学建模及非线性特性研究 [J].动力学与控制学报,2023,21(1):1-7.WANG Z Q.Study on dynamic characteristics and nonlinear characteristics of multi-cable single beam coupled structures [J].Journal of Dynamics and Control,2023,21(1):1-7.(in Chinese)

    • [11] 吴庆雄,黄宛昆,陈宝春.中、下承式钢管混凝土拱桥面内振动模态分析[J].工程力学,2012,29(11):221-227.WU Q X,HUANG W K,CHEN B C.Modal analysis of in-plane vibrations for half-through and through concrete-filled steel tubular arch bridges [J].Engineering Mechanics,2012,29(11):221-227.(in Chinese)

    • [12] 吴梅容,卓卫东,孙颖,等.中承式钢管混凝土拱桥动力特性分析[J].振动与冲击,2017,36(24):85-90,102.WU M R,ZHUO W D,SUN Y.Dynamic characteristics of half-through concrete-filled steel tubular arch bridges [J].Journal of Vibration and Shock,2017,36(24):85-90,102.(in Chinese)

    • [13] 徐华,吴宜涛,解威威.400m级铁路CFST拱桥合理拱肋内倾角研究[J].铁道科学与工程学报,2021,18(5):1203-1212.XU H,WU Y T,XIE W W.Analysis on the value of leaning angle on span of 400m class concrete filled steel tubular railway arch bridge [J].Journal of Railway Science and Engineering,2021,18(5):1203-1212.(in Chinese)

    • [14] WANG W,YAN W C,DENG L,et al.Dynamic analysis of a cable-stayed concrete-filled steel tube arch bridge under vehicle loading [J].Journal of Bridge Engineering,2015,20(5):04014082.

    • [15] LI Y,CAI C S,LIU Y,et al.Dynamic analysis of a large span specially shaped hybrid girder bridge with concrete-filled steel tube arches [J].Engineering Structures,2016,106:243-260.

    • [16] 林春姣,郑皆连.劲性骨架拱桥主拱圈混凝土四工作面浇筑法[J].交通运输工程学报,2020,20(6):82-89.LIN C J,ZHENG J L.Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge [J].Journal of Traffic and Transportation Engineering,2020,20(6):82-89.(in Chinese)

    • [17] 童加明,邓年春,林春姣,等.600m级劲性骨架拱桥外包混凝土浇筑方案[J].桂林理工大学学报,2021,41(4):791-796.TONG J M,DENG N C,LIN C J,et al.Outercovered concrete construction scheme of 600m concrete arch bridge with stiff skeleton [J].Journal of Guilin University of Technology,2021,41(4):791-796.(in Chinese)

    • [18] 郭增伟,程皓,周水兴.钢管混凝土劲性骨架拱桥混凝土外包过程非线性屈曲分析[J].重庆交通大学学报(自然科学版),2021,40(10):52-62.GUO Z W,CHENG H,ZHOU S X.Nonlinear buckling analysis of concrete encasement process of arch bridge with CFST stiff skeleton [J].Journal of Chongqing Jiaotong University(Natural Science),2021,40(10):52-62.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码