en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

胡腾飞,E-mail:125864837@qq.com

中图分类号:TU317;U448.27

文献标识码:A

文章编号:1672-6553-2023-21(5)-069-007

DOI:10.6052/1672-6553-2023-029

参考文献 1
陈政清.桥梁风工程 [M].北京:人民交通出版社,2005.CHEN Z Q.Bridge wind engineering [M].Beijing:China Communications Press,2005.(in Chinese)
参考文献 2
郭蹦.斜拉桥设计中拉索抗风问题研究综述 [J].城市道桥与防洪,2008(8):161-168.GUO B.Summarization on study of stay cable wind resistant problem in design of cable-stayed bridge [J].Urban Roads Bridges & Flood Control,2008(8):161-168.(in Chinese)
参考文献 3
蔡畅,何旭辉,敬海泉,等.错列斜拉索尾流驰振及其抑振措施研究 [J].振动与冲击,2020(6):37-43.CAI C,HE X H,JING H Q,et al.Wake galloping of staggered cables and its suppression measures [J].Journal of Vibration and Shock,2020(6):37-43.(in Chinese)
参考文献 4
李永乐,王涛,廖海黎.斜拉桥并列拉索尾流驰振风洞试验研究 [J].工程力学,2010(S1):216-221.LI Y L,WANG T,LIAO H L.Investigation on wake galloping of parallel cables in cable-stayed bridge by wind tunnel test [J].Engineering Mechanics,2010(S1):216-221.(in Chinese)
参考文献 5
FUJINO Y,KIMURA K,TANAKA H.Wind resistant design of bridges in japan [M].New York:Developments and practices,2011,197-229.
参考文献 6
TANAKA H.Aerodynamics of cables [C].Fifth International Symposium on Cable Dynamics.Italy,2003:11-21.
参考文献 7
陈强,华旭刚,冯丛,等.大跨度三塔斜拉桥超长加劲平行斜拉索气弹模型风洞试验研究 [J].中国铁路,2021(9):110-117.CHEN Q,HUA X G,FENG C,et al.Wind tunnel test of aeroelastic model of super-long stiffening parallel stay cables of long-span three-pylon cable-stayed bridge [J].China Railway,2021(9):110-117.(in Chinese)
参考文献 8
吴其林,华旭刚,胡腾飞.基于能量方法的拉索尾流驰振风洞试验研究 [J].振动与冲击,2017,36(4):218-225.WU Q L,HUA X G,HU T F.Investigation on wake galloping of parallel cables by wind tunnel test based on an energy method [J].Journal of Vibration and Shock,2017,36(4):218-225.(in Chinese)
参考文献 9
胡腾飞.斜拉桥并列超长拉索尾流驰振理论分析与风洞试验研究 [D].长沙:湖南大学,2015.HU T F.Wind tunnel and analytical investigations into the wake galloping of parallel twin cables [D].Changsha:Hunan University,2015.(in Chinese)
参考文献 10
傅亨仁,王灵芝,晏致涛,等.错列布置下游圆柱尾流驰振特性的数值模拟与荷载分析[J].重庆大学学报,2022,45(9):73-82.FU H R,WANG L Z,YAN Z T,et al.Numerical simulation on wake galloping of a downstream circular cylinder and aerodynamic forces analysis in staggered arrangement [J].Journal of Chongqing University,2022,45(9):73-82.(in Chinese)
参考文献 11
马如进,倪美娟.中间索面斜拉桥并列拉索尾流驰振数值研究 [J].振动与冲击,2013,32(10):91-94.MA R J,NI M J.Numerical simulation on wake galloping of parallel cables of cable stayed bridge with central cable planes [J].Journal of Vibration and Shock,2013,32(10):91-94.(in Chinese)
参考文献 12
胡建华,赵跃宇,刘慕广等.串列双索气弹模型的风洞试验研究 [J].动力学与控制学报,2006(2):179-186.HU J H,ZHAO Y Y,LIU M G,et al.Wind tunnel studies on the behavior of aeroelastic twin cable model [J].Journal of Dynamics and Control,2006(2):179-186.(in Chinese)
参考文献 13
Sumner D.Two circular cylinders in cross-flow:a review [J].Journal of Fluids and Structures,2010,26:849-899.
参考文献 14
顾志福,孙天风,林荣生.高雷诺数时串列双圆柱平均压力的实验研究 [J].空气动力学学报,1997,15(3):393-399.GU Z F,SUN T F,LIN R S.Time-mean pressure on the surface of two circular cylinders in tandem arrangements at high Reynolds numbers [J].Acta Aerodynamica Sinica,1997,15(3):393-399.(in Chinese)
参考文献 15
李加武.桥梁断面雷诺数效应及其控制研究 [D].上海:同济大学,2003.LI J W.The study on Reynolds number effects of bridge decks and its control [D].Shanghai:Tongji University,2003.(in Chinese)
目录contents

    摘要

    通过气动弹性模型风洞试验,测试了不同风攻角及索间距下,并列超长拉索间的风致振动特性,研究了拉索尾流驰振的运动轨迹及其控制措施.研究表明,拉索发生尾流驰振时,其运动轨迹通常为椭圆轨道,振动主轴与来流方向成一定倾角;运动方向为靠近尾流外侧时,向下游运动,靠近尾流中心时,向上游运动;尾流驰振发生时,拉索从来流中吸收能量,振幅缓慢增大;随着风速增加,振幅增加较快直至出现明显的、振动主轴近似沿来流方向的极限环为止;采用分隔架可以有效抑制尾流驰振的发生,研究结果对并列拉索的抗风设计与振动控制具有指导意义.

    Abstract

    The wind-induced vibration performance of super long parallel cables was investigated through a series of systematic aeroelastic model wind tunnel tests. The twin cables with different attack angles and spacing ratios were tested, and the characteristics of the motion track and the suppression measures were researched. Studies have shown that the downstream cable motion is elliptical and the vibratory direction is inclined to the wind axis. The direction of the elliptical orbit is such that the cable moves downstream near the outer edges of the wake and upstream nearer the center of the wake during the process of wake galloping. When the wake galloping occurs, the downstream cable absorbs energy from the wind flow at constant velocity and the amplitude changes slowly, while with the increase of wind velocity, the amplitude is growing quickly until an apparent limit cycle is reached. However, this motion consists of large oscillations in an elliptical orbit with the long ellipse axis oriented approximately along the main flow direction rather than inclined to that. Finally, the separator measures are carried out to suppress the wake galloping, and the study results can direct both the wind-resistant design and the vibration control of the parallel cables in cable-stayed bridges.

  • 引言

  • 超长斜拉索具有质量轻、柔度大、阻尼小等特点,在风荷载作用下,易发生各种风致振动[1],如参数共振、抖振、涡激共振及经典驰振等[2],对于并列拉索还可能导致尾流驰振的发生[3-4],严重影响桥梁的正常运营和使用寿命.拉索尾流驰振是指当两根斜拉索沿风向斜列时,在一定条件下,由于上游拉索的湍流尾流诱发,下游拉索会产生一定振幅的驰振振荡现象,其振幅通常小于3倍的拉索直径[5].根据两索中心间距的不同,通常将尾流驰振划分为远距失稳区、稳定区及近距失稳区 [6].

  • 随着桥梁跨径的不断增大,拉索长度不断增加且布置形式呈现多样化,使得拉索尾流驰振成为国内外学者研究的热点,因其理论机理复杂,在实际工程和理论研究中多采用风洞试验[7-9]和数值模拟[10-12]的方法进行相互验证和补充.目前,我国尚无系统、成熟的超长拉索制振措施与实践,因此有必要进行超长并列拉索模型风洞试验研究,验证其减振措施设计的有效性和合理性.

  • 本文以某大跨三塔斜拉桥为背景,针对工程设计中采用的超长并列斜拉索可能导致的尾流驰振问题进行了专门的风洞试验研究.通过测试不同索间距、风攻角下并列拉索间的气动干扰特性,研究了尾流驰振时拉索的运动轨迹、运动方向、极限环最大振幅及控制措施.研究结果对并列斜拉索的尾流驰振设计与振动控制具有参考意义.

  • 1 尾流驰振风洞试验

  • 1.1 拉索模型设计

  • 拉索尾流驰振风洞试验在湖南大学风工程试验研究中心HD-2风洞大试验段(长15m×宽8.5m×高2.0m)进行.风攻角定义为上游拉索与下游拉索中心的连线与来流风速的夹角(见图1),当上下游拉索在同一水平位置(α=0°)时.图1中W为两拉索中心间距,D为拉索直径,U为来流风速(其中箭头示意为来流U的方向).

  • 图1 风攻角示意图

  • Fig.1 Diagrammatic sketch of wind attack angle

  • 图2 模型索设计示意图(单位:mm)

  • Fig.2 Design schematic diagram of model cables

  • 表1 模型索试验参数

  • Table1 Experimental parameters of model cables

  • 图3 安装在风洞中的并列索模型

  • Fig.3 Parallel cables installed in wind tunnel

  • 综合考虑风洞尺寸、模型索与实桥索几何相似比、频率比、风速比、拉索沿长度方向的三维效应后,确定拉索模型与实桥拉索的几何缩尺比为1∶60,频率比为7.598∶1,风速比为1∶7.897,实桥拉索长419.6m,直径D=0.187m,拉索中心间距比为W/D=4.3,根据相似比要求,设计了模型索的基本参数如表1所示.并列索模型均由一根φ2.5mm钢丝和φ4.0mm热缩管均匀受热后包裹在一起组成,热缩管直径和厚度的选择根据其单位长度受热前后体积保持不变的原则确定,模型索设计如图2所示.试验中为获得明显的尾流驰振运动轨迹,适当放松了对阻尼比的相似要求,模型索阻尼比为0.14%.实桥拉索索力为8108kN.

  • 1.2 试验装置

  • 试验中采用分别布置于模型索跨中和靠近下端1/4跨处的4个微型加速度传感器(质量仅为0.6g),以测量拉索面内与面外两个方向的振动响应,并列索模型现场试验如图3所示.

  • 1.3 拉索模型动力特性

  • 采用大型通用有限元结构分析软件ANSYS对实桥拉索和模型索进行模态分析,考虑拉索垂度效应后得到其动力特性如表2所示.

  • 表2 实桥索与模型索动力特性

  • Table2 Dynamic characteristics of real cable and model cable

  • 1.4 雷诺数的影响

  • 风洞试验气弹模型设计,原则上要求模型与原型之间应当满足几何参数(外形)、惯性参数(密度比)、重力参数(弗劳德数)、弹性参数(柯西数)、阻尼参数(对数衰减率)和黏性参数(雷诺数)的相似准则,然而实际雷诺数在常规风洞中通常难以完全模拟.由于拉索为圆形截面,其气动力系数对雷诺数变化较为敏感,因此研究雷诺数对拉索气动力系数影响时通常采用圆柱模型.就双圆柱而言,当雷诺数处于亚临界区间时,前后圆柱之间存在一个临界间距,使得前后柱的平均阻力系数、脉动升力系数和脉动阻力系数发生一个不连续的阶跃[13],经典的临界间距比通常位于W/D=3.5~4.0之间 [14],而本文间距比W/D=4.3,不受此临界间距比的影响; 在其他雷诺数区间时,雷诺数对拉索的升、阻力系数影响相对较小.此外,上游拉索尾迹中的紊流能够抑制雷诺数效应[415].

  • 2 试验结果及分析

  • 因实桥并列超长拉索的间距正好位于尾流驰振的近距失稳区间,拉索尾流驰振病害在实际中很可能发生,因此试验设计中主要针对风攻角、索间距等重要影响因素进行研究,以便提出对应的振动控制措施.下文中下游拉索响应未作说明时均指其1/4跨处的响应.

  • 2.1 风攻角的影响

  • W/D=4.3、风攻角-30°≤α≤30°、间隔为5°条件下,下游拉索面内与面外响应随风速(下文中风速均指换算后的实桥风速)的变化曲线如图4所示(因-30°攻角未发生尾流驰振,图中未给出相应的拉索响应曲线).由图4可知,在风攻角-20°≤α≤20°范围内,仅在-5°~5°下游拉索较为稳定,而在其他风攻角范围内,下游拉索均发生了明显的尾流驰振现象,且面外振动强于面内振动; 而在风攻角α=±15°时,临界风速最低; 从整体上看,正风攻角的临界风速较负攻角要小,更易发生尾流驰振现象.

  • 图4 不同攻角时拉索响应随风速变化曲线(W/D=4.3)

  • Fig.4 The response of leeward cable at different angles of attack (W/D=4.3)

  • 图5 不同间距比下的拉索响应(α=0)

  • Fig.5 The response of leeward cable with different spacing ratios (α=0)

  • 2.2 拉索间距的影响

  • 图5为0°风攻角、不同间距比时,下游拉索响应随实桥风速变化曲线.从图可知,下游拉索仅在W/D=4.3时同步发生了面外振动和面内振动的尾流驰振,且面外振动的强度大于面内振动; 在拉索间距比W/D=5.4和6.3时,发生了面外振动; 在W/D=10.0时,发生了面内振动.这可能是由于该间距比恰巧位于尾流驰振的近距失稳区(2<W/D<6)、远距失稳区(10<W/D<20)与稳定区之间的过渡区域.

  • 3 尾流驰振的运动轨迹与运动方向

  • 在上游拉索的气动干扰下,试验中观察到下游拉索发生了明显的尾流驰振现象,但并未观测到上游拉索出现的明显振动,下游拉索运动轨迹近似于椭圆轨道.在W/D=4.3、α=15°时,其运动轨迹随风速变化如图6所示.从图6(a)可知,在风速为22.0m/s,低于临界风速,下游拉索尚未起振,在坐标轴中位于0点; 当风速增加至略大于临界风速22.7m/s时,拉索以0点为中心作小幅度的椭圆运动,其运动主轴与来流方向呈现一定倾角; 尾流驰振过程中,当风速恒定时,其振幅仍会逐渐增大,但较为缓慢; 而随着风速增大,振幅也不断增大,其运动主轴与来流方向不断接近,当风速继续增加时,拉索运动轨迹不断增大,直至出现了明显的极限环,此时椭圆主轴与来流方向基本平行,运动方向均为逆时针方向,其面外振幅可达2D.从图6(b)可以看出,拉索跨中附近点在极限环出现前基本保持静止状态,这与拉索的第二阶模态振型相吻合; 而当拉索振动达到极限环后,面外振幅略有增加,但面内幅值增加较大.这可能是因为在尾流驰振初期,振幅较小,拉索受力处于弹性阶段; 而当其达到大振幅的极限环后,非线性因素较为突出.

  • 图6 不同风速下的尾流驰振运动轨迹

  • Fig.6 Wake galloping trajectory of cable various wind velocities

  • 图7 负攻角下拉索运动轨迹

  • Fig.7 The trajectory of cable at negative angles of attack

  • 图7为下游拉索处于负攻角时尾流驰振发生初期的运动轨迹,可见,在负攻角发生尾流驰振时,下游拉索的运动方向沿顺时针,运动主轴与来流方向的夹角随着风攻角绝对值的增大而增加.

  • 综上所述,下游拉索发生尾流驰振时,运动轨迹为椭圆轨道,运动方向为靠近尾流外侧时,向下游运动; 靠近尾流中心时,向上游运动.

  • 4 振动控制

  • 由上节可知,尾流驰振发生风速低于该桥设计风速(Vd=37m/s),且振幅较大,对其进行振动控制是十分必要的.

  • 4.1 刚性分隔架措施

  • 在两并列拉索之间四等分位置增加3块刚性分隔架,加速度传感器布置在距拉索下端1/8和3/8跨处,刚性分隔架模型如图8所示,图9为增加刚性分隔架后的拉索响应随风速变化曲线.从图9可知,在临界风速范围内均没有尾流驰振发生,表明增加刚性分隔架对尾流驰振的控制效果较为明显.

  • 图8 刚性分隔架模型

  • Fig.8 Models of the rigid separator

  • 图9 增加刚性分隔架后的拉索响应

  • Fig.9 The response of cable after adding rigid connectors

  • 4.2 柔性分隔架措施

  • 同样在两拉索之间四等分位置增加3块柔性分隔架(与刚性分隔架的区别在于拉索能够在分隔架里面转动),图10为增加柔性分隔架后的拉索响应随风速变化曲线.从结果可知,采用柔性分隔架对尾流驰振同样具有较好的控制效果.

  • 图10 增加柔性分隔架后的拉索响应

  • Fig.10 The response of cable after adding semi-rigid connectors

  • 5 结论

  • 采用并列拉索气弹模型试验,研究了考虑超长并列拉索沿长度方向缩尺影响下的尾流驰振特性,并通过增加3块分隔架的方法对尾流驰振进行了有效控制,得到以下几点结论:

  • (1)拉索发生尾流驰振时,下游拉索运动轨迹为椭圆轨道,振动主轴与水平轴成一定倾角,其运动方向为靠近尾流外侧时,向下游运动; 靠近尾流中心时,向上游运动.

  • (2)尾流驰振发生时,拉索从来流中吸收能量,风速恒定时,其振幅缓慢增大; 随着风速增加,振幅较快增大,直至出现明显的、振动主轴近似沿来流方向的极限环为止,最大振幅可达2D.

  • (3)在并列超长斜拉索之间适当增加分隔架可以有效抑制尾流驰振的发生.

  • 参考文献

    • [1] 陈政清.桥梁风工程 [M].北京:人民交通出版社,2005.CHEN Z Q.Bridge wind engineering [M].Beijing:China Communications Press,2005.(in Chinese)

    • [2] 郭蹦.斜拉桥设计中拉索抗风问题研究综述 [J].城市道桥与防洪,2008(8):161-168.GUO B.Summarization on study of stay cable wind resistant problem in design of cable-stayed bridge [J].Urban Roads Bridges & Flood Control,2008(8):161-168.(in Chinese)

    • [3] 蔡畅,何旭辉,敬海泉,等.错列斜拉索尾流驰振及其抑振措施研究 [J].振动与冲击,2020(6):37-43.CAI C,HE X H,JING H Q,et al.Wake galloping of staggered cables and its suppression measures [J].Journal of Vibration and Shock,2020(6):37-43.(in Chinese)

    • [4] 李永乐,王涛,廖海黎.斜拉桥并列拉索尾流驰振风洞试验研究 [J].工程力学,2010(S1):216-221.LI Y L,WANG T,LIAO H L.Investigation on wake galloping of parallel cables in cable-stayed bridge by wind tunnel test [J].Engineering Mechanics,2010(S1):216-221.(in Chinese)

    • [5] FUJINO Y,KIMURA K,TANAKA H.Wind resistant design of bridges in japan [M].New York:Developments and practices,2011,197-229.

    • [6] TANAKA H.Aerodynamics of cables [C].Fifth International Symposium on Cable Dynamics.Italy,2003:11-21.

    • [7] 陈强,华旭刚,冯丛,等.大跨度三塔斜拉桥超长加劲平行斜拉索气弹模型风洞试验研究 [J].中国铁路,2021(9):110-117.CHEN Q,HUA X G,FENG C,et al.Wind tunnel test of aeroelastic model of super-long stiffening parallel stay cables of long-span three-pylon cable-stayed bridge [J].China Railway,2021(9):110-117.(in Chinese)

    • [8] 吴其林,华旭刚,胡腾飞.基于能量方法的拉索尾流驰振风洞试验研究 [J].振动与冲击,2017,36(4):218-225.WU Q L,HUA X G,HU T F.Investigation on wake galloping of parallel cables by wind tunnel test based on an energy method [J].Journal of Vibration and Shock,2017,36(4):218-225.(in Chinese)

    • [9] 胡腾飞.斜拉桥并列超长拉索尾流驰振理论分析与风洞试验研究 [D].长沙:湖南大学,2015.HU T F.Wind tunnel and analytical investigations into the wake galloping of parallel twin cables [D].Changsha:Hunan University,2015.(in Chinese)

    • [10] 傅亨仁,王灵芝,晏致涛,等.错列布置下游圆柱尾流驰振特性的数值模拟与荷载分析[J].重庆大学学报,2022,45(9):73-82.FU H R,WANG L Z,YAN Z T,et al.Numerical simulation on wake galloping of a downstream circular cylinder and aerodynamic forces analysis in staggered arrangement [J].Journal of Chongqing University,2022,45(9):73-82.(in Chinese)

    • [11] 马如进,倪美娟.中间索面斜拉桥并列拉索尾流驰振数值研究 [J].振动与冲击,2013,32(10):91-94.MA R J,NI M J.Numerical simulation on wake galloping of parallel cables of cable stayed bridge with central cable planes [J].Journal of Vibration and Shock,2013,32(10):91-94.(in Chinese)

    • [12] 胡建华,赵跃宇,刘慕广等.串列双索气弹模型的风洞试验研究 [J].动力学与控制学报,2006(2):179-186.HU J H,ZHAO Y Y,LIU M G,et al.Wind tunnel studies on the behavior of aeroelastic twin cable model [J].Journal of Dynamics and Control,2006(2):179-186.(in Chinese)

    • [13] Sumner D.Two circular cylinders in cross-flow:a review [J].Journal of Fluids and Structures,2010,26:849-899.

    • [14] 顾志福,孙天风,林荣生.高雷诺数时串列双圆柱平均压力的实验研究 [J].空气动力学学报,1997,15(3):393-399.GU Z F,SUN T F,LIN R S.Time-mean pressure on the surface of two circular cylinders in tandem arrangements at high Reynolds numbers [J].Acta Aerodynamica Sinica,1997,15(3):393-399.(in Chinese)

    • [15] 李加武.桥梁断面雷诺数效应及其控制研究 [D].上海:同济大学,2003.LI J W.The study on Reynolds number effects of bridge decks and its control [D].Shanghai:Tongji University,2003.(in Chinese)

  • 参考文献

    • [1] 陈政清.桥梁风工程 [M].北京:人民交通出版社,2005.CHEN Z Q.Bridge wind engineering [M].Beijing:China Communications Press,2005.(in Chinese)

    • [2] 郭蹦.斜拉桥设计中拉索抗风问题研究综述 [J].城市道桥与防洪,2008(8):161-168.GUO B.Summarization on study of stay cable wind resistant problem in design of cable-stayed bridge [J].Urban Roads Bridges & Flood Control,2008(8):161-168.(in Chinese)

    • [3] 蔡畅,何旭辉,敬海泉,等.错列斜拉索尾流驰振及其抑振措施研究 [J].振动与冲击,2020(6):37-43.CAI C,HE X H,JING H Q,et al.Wake galloping of staggered cables and its suppression measures [J].Journal of Vibration and Shock,2020(6):37-43.(in Chinese)

    • [4] 李永乐,王涛,廖海黎.斜拉桥并列拉索尾流驰振风洞试验研究 [J].工程力学,2010(S1):216-221.LI Y L,WANG T,LIAO H L.Investigation on wake galloping of parallel cables in cable-stayed bridge by wind tunnel test [J].Engineering Mechanics,2010(S1):216-221.(in Chinese)

    • [5] FUJINO Y,KIMURA K,TANAKA H.Wind resistant design of bridges in japan [M].New York:Developments and practices,2011,197-229.

    • [6] TANAKA H.Aerodynamics of cables [C].Fifth International Symposium on Cable Dynamics.Italy,2003:11-21.

    • [7] 陈强,华旭刚,冯丛,等.大跨度三塔斜拉桥超长加劲平行斜拉索气弹模型风洞试验研究 [J].中国铁路,2021(9):110-117.CHEN Q,HUA X G,FENG C,et al.Wind tunnel test of aeroelastic model of super-long stiffening parallel stay cables of long-span three-pylon cable-stayed bridge [J].China Railway,2021(9):110-117.(in Chinese)

    • [8] 吴其林,华旭刚,胡腾飞.基于能量方法的拉索尾流驰振风洞试验研究 [J].振动与冲击,2017,36(4):218-225.WU Q L,HUA X G,HU T F.Investigation on wake galloping of parallel cables by wind tunnel test based on an energy method [J].Journal of Vibration and Shock,2017,36(4):218-225.(in Chinese)

    • [9] 胡腾飞.斜拉桥并列超长拉索尾流驰振理论分析与风洞试验研究 [D].长沙:湖南大学,2015.HU T F.Wind tunnel and analytical investigations into the wake galloping of parallel twin cables [D].Changsha:Hunan University,2015.(in Chinese)

    • [10] 傅亨仁,王灵芝,晏致涛,等.错列布置下游圆柱尾流驰振特性的数值模拟与荷载分析[J].重庆大学学报,2022,45(9):73-82.FU H R,WANG L Z,YAN Z T,et al.Numerical simulation on wake galloping of a downstream circular cylinder and aerodynamic forces analysis in staggered arrangement [J].Journal of Chongqing University,2022,45(9):73-82.(in Chinese)

    • [11] 马如进,倪美娟.中间索面斜拉桥并列拉索尾流驰振数值研究 [J].振动与冲击,2013,32(10):91-94.MA R J,NI M J.Numerical simulation on wake galloping of parallel cables of cable stayed bridge with central cable planes [J].Journal of Vibration and Shock,2013,32(10):91-94.(in Chinese)

    • [12] 胡建华,赵跃宇,刘慕广等.串列双索气弹模型的风洞试验研究 [J].动力学与控制学报,2006(2):179-186.HU J H,ZHAO Y Y,LIU M G,et al.Wind tunnel studies on the behavior of aeroelastic twin cable model [J].Journal of Dynamics and Control,2006(2):179-186.(in Chinese)

    • [13] Sumner D.Two circular cylinders in cross-flow:a review [J].Journal of Fluids and Structures,2010,26:849-899.

    • [14] 顾志福,孙天风,林荣生.高雷诺数时串列双圆柱平均压力的实验研究 [J].空气动力学学报,1997,15(3):393-399.GU Z F,SUN T F,LIN R S.Time-mean pressure on the surface of two circular cylinders in tandem arrangements at high Reynolds numbers [J].Acta Aerodynamica Sinica,1997,15(3):393-399.(in Chinese)

    • [15] 李加武.桥梁断面雷诺数效应及其控制研究 [D].上海:同济大学,2003.LI J W.The study on Reynolds number effects of bridge decks and its control [D].Shanghai:Tongji University,2003.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码