en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

罗凯,E-mail:kailuo@bit.edu.cn

中图分类号:O327

文献标识码:A

文章编号:1672-6553-2023-21(5)-001-015

DOI:10.6052/1672-6553-2022-020

参考文献 1
BLANDINO J,JOHNSTON J,DHARAMSI U.Corner wrinkling of a square membrane due to symmetric mechanical loads [J].Journal of Spacecraft and Rockets,2002,39(5):717-724.
参考文献 2
HAFTKA R,ADELMAN H.An analytical investigation of shape control of large space structures by applied temperatures [J].AIAA Journal,1985,23(1):450-457.
参考文献 3
LINDLER J,FLINT E.Boundary actuation shape control strategies for thin film single surface shells.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,2004,5(3):3360-3370.
参考文献 4
JENKINS C,MARKER D.Surface precision of inflatable membrane reflectors [J].ASME Journal of Solar Energy Engineering,1998,120(6):298-305.
参考文献 5
JENKINS C,SHCUR W.Gore/seam architectures for gossamer structures [J].Journal of Spacecraft and Rockets,2002,39(5):298-305.
参考文献 6
COLEMAN T,LI Y.A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables [J].SIAM Journal of Optimization,1994,6(1):1040-1058.
参考文献 7
FANG H,QUIJANO U,BACH V.Experimental study of a membrane antenna surface adaptive control system [C]:Anthony.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,52th AIAA Structures Structural Dynamics & Materials Conference,Colorado,2011.USA:AIAA Journal,2011:1869-1878.
参考文献 8
RENNO J,INMAN D.Modeling and control of a membrane strip using a single piezoelectric bimorph [J].Journal of Vibration and Control,2009,15(3):391-414.
参考文献 9
RENNO J,INMAN D,CHEVVA K.Nonlinear control of a membrane mirror strip actuated axially and in bending [J].AIAA Journal,2009,47(3):484-493.
参考文献 10
RUGGIERO E,INMAN D.Modeling and control of a 1-D membrane strip with an integrated PZT bimorph [C].ASME 2005 International Mechanical Engineering Congress and Exposition.American Society of Mechanical Engineers,2005,11:259-268.
参考文献 11
RUGGIERO E,INMAN D.Modeling and vibration control of an active membrane mirror [J].Smart Materials & Structures,2009,18(9):7-10.
参考文献 12
FERHAT I,SULTAN C.LQG control and robustness study for a prestressed membrane with bimorph actuators [C]:Buffalo.ASME,International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York,2014.USA:American Society of Mechanical Engineers Journal,2014:8-83.
参考文献 13
FERHAT I,SULTAN C.LQR using second order vector form for a membrane with bimorph actuators [J].AIAA Journal,2015,3(1):12-25.
参考文献 14
FERHAT I,SULTAN C.System analysis and control design for a membrane with bimorph actuators [J].AIAA Journal,2015,53(8):10-20.
参考文献 15
YIPAER F,SULTAN C.Modern control design for a membrane with bimorph actuators [C]:Anthony.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,54th AIAA Structures Structural Dynamic and Materials Conference,Boston,2013.USA:AIAA Journal,2013:138-148.
参考文献 16
HALLORAN A,MALLEY F,MCHUGH P.A review on dielectric elastomer actuators,technology,applications,and challenges [J].Journal of Applied Physics,2008,104(7):1-10.
参考文献 17
LOVERICH J,KANNO I,KOTERA H.Concepts for a new class of all-polymer micropumps [J].Lab on A Chip,2006,6(9):1147-1154.
参考文献 18
CARPI F,MENON C,ROSSI D.Electroactive elastomeric actuator for all-polymer linear peristaltic pumps [J].IEEE/ASME Transactions on Mechatronics,2010,15(3):460-470.
参考文献 19
GIOUSOUF M,KOVACS G.Dielectric elastomer actuators used for pneumatic valve technology [J].Smart Materials & Structures,2013,22(10):1-6.
参考文献 20
陈宝鸿,周进雄.离子导体驱动的介电弹性体软机器研究进展 [J].固体力学学报,2015,36(6):12 CHEN B H,ZHOU J X.Research progress of dielectric elastomer soft machine driven by ionic conductor [J].Acta Mechanica Solida Sinica,2015,36(6):12.(in Chinese)
参考文献 21
CHEN Y,ZHA,H,MAO J.Controlled flight of a microrobot powered by soft artificial muscles [J].Nature,2019,575(7782):324-329.
参考文献 22
PELRINE R,KORNBLUH R,PEI Q.Dielectric elastomer artificial muscle actuators:toward biomimetic motion [C].Proceedings of Spie the International Society for Optical Engineering,2002,4695:126-137.
参考文献 23
CHIBA S,WAKI M,KORNBLUH R,et al.Extending applications of dielectric elastomer artificial muscle [C].Proceedings of Spie the International Society for Optical Engineering,2007,6524(24):1-5.
参考文献 24
SUBRAMANI K,CAKMAK E,SPONTAK R.Enhanced electroactive response of unidirectional elastomeric composites with high-dielectric-constant fibers [J].Advanced Materials,2014,26(18):2949-2953.
参考文献 25
DUDUTA M,WOOD R,CLARKE D.Multilayer dielectric elastomers for fast,programmable actuation without prestretch [J].Advanced Materials,2016,28(36):8058-8063.
参考文献 26
YURCHENKO D,LAI H,THOMSON G.Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer [J].Applied Energy,2017,208(15):456-470.
参考文献 27
PELRINE R,KORNBLUH R,KOFOD G.High-strain actuator materials based on dielectric elastomers [J].Advanced Materials,2000,12(16):1223-1225.
参考文献 28
KINOSHITA Y,TSUCHITAN S,KIKUCHI K.Development of flexible rubber electrode for dielectric elastomer actuator [J].IEEE,2010:282-286.
参考文献 29
MCCARTHY J,HANLEY C,LAMBERTINI V.Fabrication of highly transparent and conductive PEDOT [C]:PSS thin films for flexible electrode applications,Nanocon,2013,10(1):16-18.
参考文献 30
CARPI F,ROSSI D,KORNBLUH R.Dielectric elastomers as electromechanical transducers [J].USA:Elsevier Science,2008:103-116.
参考文献 31
JUNG K,KIM K,CHOI H.A self-sensing dielectric elastomer actuator [J].Sensors & Actuators A Physical,2008,143(2):343-351.
参考文献 32
CHUC N,THUY D,PARK J.A dielectric elastomer actuator with self-sensing capability [C].Proceeding of Spie,2008,6927(1):1-8.
参考文献 33
HUNT A,CHEN Z,TAN X,et al.An integrated electroactive polymer sensor-actuator:design,model-based control,and performance characterization [J].Smart Materials & Structures,2016,25(3):16-35.
参考文献 34
SUO Z.Theory of dielectric elastomers [J].Acta Mechanica Solida Sinica,2010,23(6):549-578.
参考文献 35
刘立武,孙寿华,刘彦菊,等.具有线性介电常数的Ogden型介电弹性体的本构关系和机电稳定性 [J].固体力学学报,2010,31(2):181-192.LIU L W,SUN S H,LIU Y J,et al.Constitutive relations and electromechanical stability of Ogden type dielectric elastomers with linear permittivity [J].Acta Mechanica Solida Sinica,2010,31(2):181-192.(in Chinese)
参考文献 36
锁志刚,曲绍兴.介电高弹聚合物理论 [J].力学进展,2011,41(6):730-750.SUO Z G,QU S X.Dielectric high elastic polymer theory [J].Advances in Mechanics,2011,41(6):730-750.(in Chinese)
参考文献 37
LU T,MA C,WANG T.Mechanics of dielectric elastomer structures:a review [J].Extreme Mechanics Letters,2020,38(6):10-52.
参考文献 38
HUANG P,WU J,ZHANG P.Dynamic modeling and tracking control for dielectric elastomer actuator with model predictive controller [J].IEEE Transactions on Industrial Electronics,2021,69(2):1819-1828.
参考文献 39
DUDUTA M,WOOD R,CLARKE D.Multilayer dielectric elastomers for fast,programmable actuation without prestretch [J].Advanced Materials,2016,28(36):8058-8063.
参考文献 40
XING Z,ZHANG J,MCCOUL D,et al.A super-lightweight and soft manipulator driven by dielectric elastomers [J].Soft Robotics,2020,7(4):512-520.
参考文献 41
金肖玲,王永,黄志龙.气压扰动下介电弹性体球膜的随机响应分析 [J].动力学与控制学报,2017,15(3):250-255.JIN X L,WANG Y,HUANG Z L.Random response analysis of dielectric elastomer ball film under pressure disturbance [J].Journal of Dynamics and Control,2017,15(3):250-255.(in Chinese)
参考文献 42
陈辉强.具介电弹性体作动器的机械系统的随机振动控制 [D].杭州:浙江大学,2020 CHEN H Q.Random vibration control of mechanical systems with dielectric elastomer Actuators [D].Hangzhou:Zhejiang University,2020.(in Chinese).
参考文献 43
RIZZELLO G,NASO D,YORK A.Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback [J].Smart Materials & Structures,2016,25(3):30-35.
参考文献 44
HODGINS M,RIZZELLO G.High-frequency dynamic model of a pre-loaded circular dielectric electro-active polymer actuator [J].Smart Materials & Structure,2013,12(6):1-10.
参考文献 45
BAILEY J.Properties and behavior of polymers [J].Wiley:2011,10-35.
参考文献 46
VUCONG T,JEANMISTRAL C,SYLVESTRE A.Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers [J].Smart Materials & Structures,2012,21(10):536-536.
目录contents

    摘要

    本文提出了一种传感与作动一体化的介电弹性体(DE)软执行器,可用于薄膜结构形面变形的同步测量和控制.首先,建立DE软执行器电致驱动过程的动力学模型,描述其力电耦合行为.其次,通过开展动态作动实验,辨识该动力学模型的参数.第三,分析不同参数对作动器动态响应的影响,以理解其基本动力学特性.第四,建立DE软执行器自传感过程的简化电路模型,并对其电学参数与位移之间的关系进行实验标定.最后,开展平面薄膜结构的形面位移自适应调整实验,并设计相应的控制策略.实验结果表明,该DE软执行器在作动和传感方面均具有较高精度.因此,其在构建高精度空间薄膜天线方面具有较好的应用前景.

    Abstract

    This paper proposes a dielectric elastomer (DE) soft actuator with sensing function, which can achieve synchronous measurement and control of membrane structures surfaces. Firstly, the dynamic model of electric driven process of the DE actuator is established, which can describe its electro-mechanical coupling behavior. Then, the parameters of the dynamic model are identified by a series of experiments. Moreover, the influence of some model parameters on dynamic responses of the DE actuator are analyzed to understand its basic dynamic characteristics. Next, the simplified circuit model for self-sensing process of the DE actuator is established, and the relationship between the electrical parameters and displacement of the DE actuator was calibrated experimentally. Finally, experiments of adaptive control of membrane surface are carried out, and the corresponding control strategy is designed. Experimental results indicate that the DE actuator has high precision in both actuation and sensing. Therefore, the DE soft actuator is highly promising in construction of high-precision space membrane antennas.

  • 引言

  • 随着航天科技与工业的发展,迫切需要在轨展开高精度大型空间结构,以完成深空探测、对地侦测、大通量通信等复杂空间任务.其中,可展开卫星反射器是大型空间天线的核心组成部分,其形面精度对于高分辨率的对地观测至关重要.然而,目前反射器形面在轨控制和测量均面临巨大挑战,特别是对于薄膜空间结构[1].一方面,国内外学者已开展了较多的薄膜形面控制研究,主要方法包括温度梯度控制[2]、边界控制[34]、绳索控制[56]、电压控制[7]等.其中,采用电致活性聚合物PVDF(聚偏二氟乙烯)制备的压电作动器,常被用于以施加电压的方式控制薄膜结构变形,即通过对黏附在薄膜表面的分布式PVDF作动器施加电压,利用材料逆压电效应实现对薄膜的主动控制.Inman等研究了含压电作动器薄膜反射镜的振动控制,并设计了相应的控制策略[8-11].Sultan等设计了一种带有四个压电双晶片驱动器的方形膜结构,并针对该结构提出了基于现代控制方法的控制策略[12-15].而另一方面,大型薄膜空间结构在轨形面观测技术面临较大挑战,实施难度较高,国内外相关研究鲜有报道.因此,研究一体化传感与作动的薄膜执行器,有望为薄膜空间结构的在轨主动控制提供新的解决方案.

  • 活性聚合物是可在电、磁、化学等信号刺激下产生主动变形的智能高分子材料.其中,介电弹性体(DE)具有变形大、功耗低、重量轻、能量密度高、响应快等优点[16],成为最具发展前景的软作动器之一,可应用于众多领域,如柔性泵[1718]、软阀[19]、软体机器人[20-22]及人工肌肉[2324].DE作动器是在介电软材料(如硅橡胶、丙烯酸等)表面覆盖柔性电极而构成的三明治薄膜结构.柔性电极可通过导电颗粒或软物质制备,如石墨[25]、碳纳米管[2627]、碳脂[28]、导电聚合物[29-30].当在DE作动器表面电极上施加电压时,分布在上下电极上的异性电荷使得DE薄膜在Maxwell应力作用下产生厚度压缩和面积扩张,从而实现电压控制下的主动大变形.撤去电压后,DE薄膜在弹性应力作用下恢复到初始形状和体积.变形过程中,由于DE薄膜面积和厚度发生变化,导致其电容或阻抗也随之变化.因此,DE执行器可用作作动器、传感器或换能器[31],也可实现一体化的作动与传感[32-34].

  • 针对DE作动器,目前已发展了较为完善的理论建模方法和实验技术.例如,哈佛大学教授锁志刚提出了理想DE材料的力学建模理论[35-37].西安交通大学卢同庆等全面综述了当前DE作动器的理论和应用发展[38].Huang等在考虑DE材料迟滞和蠕变行为的基础上,建立了DE作动器的动力学模型,并基于模型预测控制提出了DE作动器的跟踪控制策略[39].Duduta等提出了一种多层DE作动器的制备方法,通过减小DE薄膜和电极的厚度,以降低驱动电压至1~2kV[40].Xing等提出了一种由DE作动器驱动的超轻软机械臂,实现了机械臂的超轻量化和大范围连续变形[41].金肖玲等研究了随机扰动压力和恒常电压联合作用下的介电弹性体球膜响应,进行随机响应分析并总结其规律[42].陈辉强等探究了圆锥型与平板型介电弹性体作动器的对随机振动的最优控制问题,实验结果表明该作动器和提出的控制方法具有较好的控制效果和控制效率[43].在薄膜形面高精度控制方面,DE作动器可发挥较大的应用潜力.与前述形面控制方法相比,采用DE进行控制的优势在于将传感和作动功能集成于同一器件,特别是对于柔性结构的分布式传感与作动,可以大幅减少贴附器件的数量.此外,DE执行器驱动力小且灵敏度高,可获得较高的传感和作动精度,因此适用于轻柔薄膜结构的形面控制.然而,DE材料具有黏性、疲劳和蠕变等特性,甚至有与速率相关的迟滞行为,需深入分析其动力学特性,从而实现较为精确的动力学响应预测和控制规律设计.

  • 本文研究DE执行器作动与传感的动态特性,并提出一种薄膜形面自适应调整的动力学设计和实验测试方法.以下各节内容为:第1节建立DE作动器的动力学模型; 第2节通过实验辨识动力学模型的参数; 第3节分析不同参数对DE作动器动力学响应的影响; 第4节建立DE传感器模型,并进行实验验证; 第5节设计薄膜结构形面控制策略和开展实验研究,验证模型正确性; 最后,给出本文的总结和展望.

  • 1 DE作动器动力学建模

  • 1.1 DE作动器构型描述

  • 本文采用Rizzello等设计的弹簧-DE作动器[44-45]进行形面控制.如图1所示,黄色部分是3D打印的硬质塑料外框和内圆板,黑色部分是印有碳纳米管电极的环形DE薄膜.如图2所示,为提升DE薄膜的作动性能,在作动器制作过程中可通过压缩弹簧实现对薄膜的预拉伸; 在内圆板顶部配置质量块,通过选择不同的质量,可对弹簧初始压缩量和薄膜初始伸长进行调整; 当对DE薄膜电极施加电压时,薄膜会产生厚度压缩且面积扩张,从而使整个作动器发生竖向主动位移.

  • 图1 DE作动器实物图:(a)俯视图;(b)侧视图

  • Fig.1 DE actuator pictures: (a) top view; (b) side view

  • 图2 DE作动器驱动示意图:(a)弹簧未压缩;(b)弹簧预压缩

  • Fig.2 Driven diagrams of a DE actuator: (a) spring with free length; (b) spring under pre-compression

  • 1.2 DE作动器动力学方程

  • 本小节建立DE作动器在电压U输入下关于竖向位移d的动力学方程.图3所示为DE作动器的受力情况,m为荷载质量,g为重力加速度,为DE薄膜产生的非线性内力,为DE薄膜的偏转角度,为弹簧对圆片的支持力,为圆片对弹簧的反作用力.

  • 图3 DE作动器简化模型受力分析

  • Fig.3 Force analysis of the simplified DE actuator model

  • 在薄膜均匀变形假设下,作动器竖向动力学平衡方程为:

  • md¨+mg+FDEsinθ-FS=0
    (1)
  • 考虑非理想弹簧作用力,即考虑弹簧的阻尼特性,则弹簧内力Fs可表达为:

  • FS=kSdS-d-ηsd˙
    (2)
  • 其中,kS是弹簧刚度系数,dS是弹簧的初始预压量,ηS为弹簧黏性阻尼系数.

  • 由式(1)可看出,DE作动器的主动位移取决于DE薄膜面内主动应力产生内力FDE,可表达为:

  • FDE=Aσr=2πrzσr
    (3)
  • 其中,A为DE薄膜与黄色内圆板连接处的横截面积,σr为DE薄膜沿作动器径向的应力,r为如图2所示环形DE薄膜的内径,z为DE薄膜的当前厚度.DE薄膜所采用的超弹性材料(如丙烯酸),其体积模量一般远大于剪切模量,因此可近似认为体积不可压缩,则当前厚度z可表达为:

  • z=z0ll0=z0l0d/sinθ=z0l0l02+d2
    (4)
  • 其中,z0为薄膜初始厚度,l0为薄膜初始径向宽度(即外径与内径之差),l为薄膜变形后的当前径向宽度,l在竖直方向投影为作动器竖直位移d且在水平方向投影保持为l0不变.

  • 联立式(1)~(4),可将DE作动器的动力学方程改写为:

  • d¨+ηSmd˙+kSm+2πrz0l0l02+d2σrmd=kSmdS-g
    (5)
  • 由此,动力学方程中唯一还需确定的变量为DE薄膜径向应力σ,将通过下节DE本构模型给出.

  • 1.3 DE材料本构模型

  • 本小节在考虑DE材料黏弹性的情况下,给出DE薄膜径向应力σr与输入电压U、输出位移d之间的关系.由于柔性电极采用超薄碳纳米管电极[40],厚度极薄(约为40nm),因此可忽略电极厚度对薄膜力学特性的影响.

  • 对于圆环状几何结构,薄膜的变形状态可用径向、周向和厚度三个方向的拉伸比来描述,即λ-rλ-cλ-z [35].考虑到作动器在制作过程中会对DE薄膜进行预拉伸,则拉伸比可表达为[36]:

  • λ-r=λrλr,pre,λ-c=λcλc,pre,λ-z=λzλz,pre
    (6)
  • 其中λ-rλ-cλ-z是薄膜当前变形状态相对于无应力参考状态的拉伸比,λrpreλcpreλzpre是薄膜初始状态相对于无应力参考状态的预拉伸比,λrλcλz是薄膜当前状态相对于初始状态的拉伸比.由体积不可压缩假定,有:

  • λ-rλ-cλ-z=λrλcλz=λr,preλc,preλz,pre=1
    (7)
  • 如图2所示,已知变形过程中DE薄膜几何形状保持为截锥形,则:

  • λr=ll0=l02+d2l0,λc=1,λz=zz0
    (8)
  • DE薄膜材料的Helmholtz自由能密度函数可定义为[37]:

  • W=i=1N μiαiλ-rαi+λ-cαi+λ-zαi-3+D22ε=i=1N μiαiλ-rαi+λ-cαi+λ-r-αiλ-c-αi-3+D22ε
    (9)
  • 式中自由能密度W采用Ogden超弹性模型[36]D为电位移,αiμi为材料本构参数,ε为DE材料的介电常数,可由真空介电常数ε0与DE材料相对介电常数εr相乘得到.此外,为了准确拟合DE材料的力学特性,设定模型阶数N为3,αi为三个最小的偶数2、4和6.

  • 对于理想DE材料,当前状态的真实径向应力σr和真实电场强度E可分别表达为:

  • σr=λ-rWλ-r,λ-c,Dλ-r-ED
    (10)
  • E=Wλ-r,λ-c,DD=Dε
    (11)
  • 联立式(9)、(10)和(11)可得:

  • σr=i=13 μiλr,pre2iλr2i-λz,pre2iλr-2i-εE2
    (12)
  • 其中E可通过电压U和薄膜当前厚度z计算,即

  • E=Uz=Uz0λz=Uλrz0
    (13)
  • 于是,薄膜径向应力σr的表达式可写为:

  • σr=i=13 μiλr,pre2iλr2i-λz,pre2iλr-2i-εUλrz02
    (14)
  • 式(14)描述了DE薄膜在准静态情况下的本构关系,而为准确预测作动器的动力学响应,还需考虑DE材料的黏性效应.首先,径向总应力σr分解为电压导致的主动Maxwell应力σrelec与薄膜材料变形导致的应力σrstr之和,可分别表达为:

  • σr,elec=-εUλrz02
    (15)
  • σr,str=i=13 μiλr,pre2iλr2i-λz,pre2iλr-2i
    (16)
  • 图4 黏弹性材料模型

  • Fig.4 Elastic-damping material model

  • 其次,考虑如图4所示黏弹性模型[46],在原准静态材料应力基础上并联一个黏弹性部分得到新的材料应力σrstr.该模型中,黏性应变率ε˙v和黏性应力σv可表达为:

  • ε˙v=kvλr-1-εv/ηvσv=ε˙vηv=kvλr-1-εv
    (17)
  • 其中,ηv是黏性阻尼系数,kv是弹簧刚度系数,λr-1是DE薄膜的径向应变,可由式(8)得到:

  • λr-1=ll0-1=Δll0=εr
    (18)
  • 最后,DE薄膜径向动态材料应力σrstr可表达为:

  • σr,str=i=13 μiλr,pre2iλr2i-λz,pre2iλr-2i+kvλr-1-εv
    (19)
  • 联立式(5)、(14)、(17)、(18)和(19),可得DE作动器动力学方程最终表达含内变量εv的常微分方程:

  • d¨+ηsmd˙+ksm+2πrz0l0l02+d2σrεv,tmd=ksmdS-gε˙v=kvλr-1-εv/ηv
    (20)
  • 其中:

  • σr=i=13 μiλr,pre2iλr2i-λz,pre2iλr-2i+kvλr-1-εv-εUλrz02
    (21)
  • 得到DE作动器动力学方程后,将其在时间域上离散,表示为:

  • d¨i+1+ηSmd˙i+1+kSm+2πrz0l0l02+di+12σrεvi+1,tmdi+1=kSmdS-gε˙vi+1=kvλri+1-1-εvi+1/ηv
    (22)
  • 最后使用Newmark-β积分算法求解该非线性微分方程组

  • d¨i+1=1βΔt2di+1-di-1βΔtd˙i+1-12βd¨id˙i+1=γβΔtdi+1-di+1-γβd˙i+1-γ2βd¨iΔt
    (23)
  • 式中积分参数γ=0.5,β=0.3.

  • 2 参数辨识与模型验证

  • 搭建如图5所示的DE作动器实验测试平台,通过开展作动试验,对建立的作动器动力学模型中的参数进行辨识,并进行实验验证.实验中,一台AFG31102任意函数发生器用来提供初始电压波形,一台Aigtek ATA-67110电压放大器(电压范围为±5kV,最大电流为10mA)用于放大电压信号,一台KEYENCE CL-P070激光位移传感器(精度为0.25μm)用于测量DE执行器的竖向位移,一台泰克DAQ6510(电流精度为10pA)数据采集和记录万用表系统用来记录电流信息.

  • 表1 已知的DE作动器参数

  • Table1 Known parameters for the DE actuator

  • 为得到可精确预测DE作动器动力学响应的模型,其参数辨识过程可分为三步.首先,辨识作动器静态平衡相关的参数,如kSεrμi·λrpre2iμi·λzpre2i.其次,辨识作动器动力学平衡相关的参数,如ηvηSkv.最后,在不同电压加载条件下对已建立的DE作动器模型进行验证.此外,表1给出了部分已知的DE作动器参数.

  • 图5 作动实验测试平台

  • Fig.5 Test platform for actuation experiments

  • 图6 准静态拉伸下弹簧的力-位移曲线

  • Fig.6 Force-displacement curve of the spring under the quasi-static tensile test

  • 2.1 静态和动态参数的识别

  • 静态参数可用MTS E44电子万能试验机(含0.1mN分辨率的力传感器)来辨识.对于弹簧刚度测量,可通过准静态拉伸(速度1mm/min),测得的作动器中弹簧的力-位移曲线如图6所示,而后通过一次多项式拟和确定弹簧刚度系数kS.从图6中可以观察到拟合出的直线未经过原点,这是由实际弹簧上下端面不完全水平导致的.

  • 此外,影响DE作动器准静态行为的参数只有材料相对介电常数εr与材料本构模型参数μi·λzpre2ii=1,2,3).首先,对DE材料参数辨识,直接将DE薄膜与线性直驱电机相连,在无电压加载条件下缓慢拉伸薄膜(速度0.01mm/min),在准静态拉伸条件下得到DE薄膜的力-位移曲线,如图7所示.根据式(5)与式(16),可通过多项式拟合算法建立DE薄膜的应力-应变数值模型,识别参数μi·λzpre2ii=1,2,3).

  • 图7 准静态拉伸下DE薄膜的力-位移曲线

  • Fig.7 Force-displacement curve of the DE membrane under the quasi-static tensile test

  • 其次,对DE材料(VHB9473)相对介电常数εr辨识,使用线性直驱电机与DE薄膜相连并驱动薄膜产生面外变形(d=3.5mm),记录此时线性直驱电机位置与基座力传感器数据.保持线性直驱电机位置不变,对DE薄膜加载 0~2500V电压,记录施加不同电压时基座力传感器的支反力.对比基座支反力变化,可以得到不同电压加载下的DE薄膜电场力产生的竖直方向力,在面外变形量已知的条件下(d=3.5mm),可以通过式(5)与式(14)计算得到DE材料相对介电常数εr.为检验相对介电常数εr的真实性与本文DE作动器模型的准确性,将DE薄膜与弹簧相连构成完整的DE作动器,使用线性直驱电机驱动DE作动器薄膜产生面外变形(d=3.5mm),对DE作动器加载不同电压并对比其竖直位移变化的仿真结果与实验数据,对比结果如图8所示.本文测得的VHB4914在室温下的介电常数与Vu-Cong等[47]的结论基本一致.

  • 图8 不同电压加载下DE作动器的竖直位移变化

  • Fig.8 Vertical displacements of the DE actuator with different applied voltages

  • 图9 黏弹性参数拟合:(a)DE薄膜拉伸实验和仿真拟合模型的黏弹性力-位移曲线对比;(b)力-位移曲线的局部放大图

  • Fig.9 Viscoelastic parameter fitting: (a) comparison of the force-displacement curves of the DE membrane in the tensile test and fitting model; (b) local magnification of the force-displacement curves

  • 对于DE作动器的黏弹性参数辨识,采用线性直驱电机与DE作薄膜直接相连,进行不同速率(0.08mm/min、1mm/min、2mm/min及6mm/min)的拉伸测试.其中,以低速0.08mm/min拉伸时,力-位移曲线可忽略拉伸速率带来的黏性影响.对比其余拉伸速率(1mm/min、2mm/min及6mm/min)与0.08mm/min拉伸速率下的薄膜拉伸力-位移曲线,可以得到不同拉伸速率下黏弹性力-位移曲线,通过式(17)进行非线性拟合得到黏弹性参数辨识结果.如图9(a)和图9(b)所示,拟合后的力-位移曲线与实验测试结果基本吻合.

  • 最后,表2给出本节对DE作动器各项参数的辨识结果.

  • 表2 通过实验辨识的DE作动器参数

  • Table2 Identified parameters for the DE actuator via experiments

  • 2.2 参数验证

  • 为验证上节得到的动力学模型参数正确性,可对DE作动器施加不同波形的电压,并将实验结果与仿真结果进行对比.

  • 2.2.1 简谐波输入电压

  • 在输入电压u=600+600sin(2πt)V作用下,得到作动器竖向位移随时间变化曲线如图10(a)所示,实验与仿真结果吻合较好.

  • 在输入较高正弦电压u=1200+1200sin(0.8πt)V时,作动器竖向位移随时间变化曲线如图10(b)所示,作动器初始瞬态响应的实验和仿真结果存在较大偏差,而当运动趋于稳定后二者偏差降低,出现这一现象的原因推测是黏弹性参数拟合或线性黏性模型的假定有待进一步修正和改进.

  • 2.2.2 阶跃输入电压

  • 在DE作动器上施加1 kV的阶跃电压,采用激光位移传感器记录DE作动器位移随时间变化曲线,得到实验与仿真结果如图11(a)所示.二者终态位移一致,但施加电压的瞬态过程存在偏差,分析误差原因为实验中电压放大器无法输出准确的阶跃函数,而需在一定时间内达到峰值,这一点可由本小节第二个实验验证.在DE作动器上初始施加2 kV的恒定电压,突然撤去该电压,位移随时间变化曲线如图11(b)所示,仿真与实验结果吻合度较高,这是由于实验中卸载电压过程可瞬时完成,不存在类似加载电压时无法瞬时达到峰值的问题.

  • 图10 输入正弦电压下DE作动器位移-时间曲线:(a)输入电压u=600+600sin(2πt)(V);(b)输入电压u=1200+1200sin(0.8πt)V

  • Fig.10 Displacement evolution of the DE actuator under sinusoidal voltages: (a) input voltage u=600+600sin (0.8πt) V; (b) input voltage u=1200+1200sin (0.8πt) V

  • 2.2.3 扫频测试

  • 对DE作动器进行1500 V电压下的0~11 Hz扫频测试,得到位移随时间变化曲线如图12所示.由图12可知,当电压频率大于10.5 Hz时,作动器振幅减小至0.01 mm以下,故该DE作动器的带宽约为0 Hz~10.5 Hz.

  • 图11 输入阶跃电压下DE作动器位移-时间曲线:(a)1 kV电压阶跃加载;(b)2 kV直流电压瞬时卸载

  • Fig.11 Displacement evolution of the DE actuator under step voltages: (a) step loading of 1 kV voltage; (b) instantaneous unloading of 2000kV DC

  • 图12 幅值为1500 V且0~11 Hz扫频(扫描速率为0.83 Hz/s)的电压作用下的DE作动器位移-时间曲线

  • Fig.12 Displacement evolution of the DE actuator under the voltage with a sweep of 1500 V from 0 to 11 Hz (the scanning rate is 0.83 Hz/s)

  • 3 参数分析

  • 本节利用已有的动力学模型,通过仿真分析不同参数对DE作动器动力学响应的影响.

  • 3.1 无黏性项

  • 当不考虑DE材料黏性时,首先分析弹簧预压缩量对作动器动态响应的影响.如图13所示,预压缩量越大,作动器振幅越大(为方便比较振幅,将仿真初始平衡位置均统一到d=0),此时传感器更容易检测到DE薄膜的位移.然而,若预压缩量过大,会导致DE薄膜初始厚度过薄,容易被电压击穿.

  • 图13 在不同弹簧预压缩量下DE作动器的动力学响应(kS=73N/m,u=1000+1000sinπt V)

  • Fig.13 Dynamic responses of the DE actuator under different pre-compressions of the spring (kS=73N/m, u=1000+1000sinπt V)

  • 图14 在不同弹簧刚度下DE作动器的动力学响应(dS=3 mm,u=1000+1000sinπt V)

  • Fig.14 Dynamic responses of the DE actuator with different spring stiffnesses (dS=3 mm, u=1000+1000sinπt V)

  • 其次,分析弹簧刚度对DE作动器响应的影响.如图14所示,在相同电压加载下,DE作动器振幅随弹簧刚度增加,出现先增大后减小的现象,因此,合理调整弹簧刚度和预压缩量,可达到增大作动器响应幅值,避免DE薄膜被击穿的效果.

  • 最后,如图13和图14所示,DE作动器除了发生由输入电压导致的大范围振动,还发生了一定频率下的局部微振动,下面研究这一现象产生的原因.分别在导数连续和不连续的输入电压作用下,得到DE作动器的动力学响应,具体输入电压函数如下:

  • u1=1000,t0.5s1000+1000sin[π(t-0.5)],t>0.5su2=2000,t0.5s1000+1000cos[π(t-0.5)],t>0.5s
    (24)
  • 图15 DE作动器在导数连续或不连续输入电压下的动力学响应

  • Fig.15 Dynamic responses of the DE actuator under the input voltages with their time derivatives being continuous or discontinuous

  • 如图15所示,可知局部微振动是由导数不连续的输入电压函数造成的,激发了DE薄膜自身的固有振动.

  • 3.2 有黏性项

  • 当考虑DE材料黏性时,分别以低黏性的PDMS材料和高黏性的VHB材料为例,分析黏弹性对DE作动器动力学响应的影响.首先,通过参数拟合得到本构模型中PDMS和VHB的黏弹性参数为:

  • 其次,当加入黏弹性项后,得到作动器位移随时间变化曲线如图16所示,作动器局部微振动现象减弱甚至消失,这是由于DE薄膜的黏性耗散掉了微振动的能量.此外,黏性对DE作动器的振动有较大的影响,当黏性较大时,振幅会减小,且振动最低点无法达到静止时的平衡位置,这体现了黏性对DE作动器振动的黏滞作用.

  • 图16 考虑黏弹性后DE作动器的动力学响应(u=1500sinπt V)

  • Fig.16 Dynamic responses of the DE actuator considering viscoelasticity (u=1500sinπt V)

  • 3.3 简单的实验验证

  • 如图17所示,在对低黏性DE材料PDMS进行测试后,可以发现在使用低黏性材料时,DE作动器在加载电压后存在局部微振动现象.此外,与图10对比可知,黏性较大的VHB材料仿真与实验结果偏差较大,而振幅较大; 黏弹性较小的PDMS材料仿真与实验结果偏差较小,而振幅较小.

  • 图17 PDMS作动器在不同电压下的动力学响应:(a)导数不连续的电压:u=1500+1000sinπtV;(b)导数连续的电压:u=1500+1000cos2tV

  • Fig.17 Dynamic responses of PDMS actuator under different voltages: (a) Input voltage with discontinuous derivative: u=1500+1000sinπtV; (b) Input voltage with discontinuous derivative: u=1500+1000cos2tV

  • 4 自传感

  • 4.1 自传感电路模型

  • DE执行器用于传感时的简化电路模型,如图18(a)所示.其中C为DE薄膜的电容,其量级为nF; RP是与DE电容并联的泄漏电阻,其量级为GΩ; RS是与DE电容串联的所有电阻,包括柔性电极电阻、外部串联电路电阻等,其量级为MΩ.当对DE执行器系统加载高频电压(~百赫兹)时,RP的阻抗值远远大于电容C的阻抗值(约为千倍).如图18(b)所示,在高频电压加载下,泄露电阻RP可近似考虑为断路状态,大部分电流经由电容C通过.

  • 图18(a)DE传感器的简化电路模型;(b)DE传感器的无泄漏电阻模型

  • Fig.18 (a) simplified equivalent circuit of the DE sensor; (b) the leakage-free model of the DE sensor

  • 在建立DE执行器的等效电路模型后,该电路中的阻抗以及相位角可表示为:

  • Z=R-jωCθ=arctan-jωCR
    (25)
  • 将电压U和电流I的测量值作为式(25)的输入来计算阻抗Z和电容C,然后利用电学参数与DE执行器几何形状的关系实现对位移d的感应.由于阻抗Z和电容C都与位移d呈一一对应关系,故C-d曲线和Z-d曲线都可以实现对位移d的感应.如图19所示,本文选择阻抗Z作为识别参数感知位移d的变化,并进行了多次重复试验进行标定.

  • 由于实际应用中DE执行器所传感的信号一般在1 Hz以内或是静态信号,其加载电压频率不能满足图18(b)无泄露电阻模型的使用条件,并且在低频交流电压或直流电压加载下,DE薄膜的阻抗无法被精确测量.因此,采用如图20所示驱动电压信号,在原有低频或静态驱动电压基础上叠加一个小幅高频电压成分(本文采用125 V,65 Hz)以实现执行器传感功能,该小幅高频电压对执行器作动的影响可忽略不计.

  • 图19 DE传感器阻抗Z随位移d变化的标定曲线

  • Fig.19 Calibration curve of impedance Z versus displacement d of the DE sensor

  • 图20 可实现同步作动和传感的输入电压信号

  • Fig.20 Input voltage signal for simultaneous actuation and sensing

  • 4.2 自传感参数标定

  • 如图21所示,通过实验标定了DE执行器上电流I、电压U与位移d之间的关系.使用传感功能时,可将输入电压U与测量的输出电流I代入到图21的拟合曲面模型,得到此刻的位置信息d.

  • 此外,还研究了DE执行器传感的精度和分辨率.由图22可知,电流I可反映出位移d的最小变化约为5 μm,说明DE执行器具有微米量级的较高传感分辨率.

  • 如图19所示,每次标定DE执行器的Z-d曲线都会有细微差别,因此推测DE执行器的传感精度无法达到其分辨率的量级.如图23所示为DE执行器在不同平衡位置时加载传感电压(125V,65Hz)后的电流变化.在一段时间内持续加载电压,可以发现其输出电流值会有缓慢飘变的现象,即DE执行器在持续加载电压时,阻抗在逐渐减小.推测原因为碳纳米管电极在长时间加载电压高压后,改变了其内部的性质,导致DE执行器阻抗值降低.为了应对此种情况,提高DE执行器传感的精度,在此后的所有实验中均选用加电压后的第15s电流值,并设定该值为测量值.

  • 图21 DE传感器的电流-电压-位移拟合曲面图

  • Fig.21 The current-voltage-displacement fitting surface of the DE sensor

  • 图22 DE执行器在不同平衡位置时加载传感电压(125V,65Hz)后的电流变化

  • Fig.22 The change of current when the DE actuator moves 5 μm in the vertical direction

  • 图23 DE传感器的电流-电压-位移拟合曲面图

  • Fig.23 The current change of the DE actuator after applying the sensing voltage (125V, 65Hz) at different equilibrium positions

  • 最后,该作动传感一体化DE执行器的性能参数在表3中总结给出.

  • 表3 DE传感与作动性能参数

  • Table3 Parameters for the DE sensing and actuating performances

  • 5 薄膜结构形面自适应调整实验

  • 5.1 实验平台

  • 本文搭建了如图24所示的薄膜结构形面调控的实验测试平台,实验装置包括电子万能试验机(MTS E44,包含100 N量程和0.1 mN分辨率的力传感器)、激光位移传感器(Keyence CL-P070,精度±250 nm)、电压放大器(Aigtek ATA-67110)、函数发生器(AFG3100)、数据采集和记录万用表(泰克DAQ6510),自行研制了小型聚酰亚胺薄膜结构和DE执行器.此外,在采集电压、电流和位移信号时,均以远高于负载的高频电压频率采样记录,因此可保证实验数据的可靠性.

  • 图24 薄膜结构形面调控实验平台

  • Fig.24 Experimental platform for shape control of a membrane structure

  • 5.2 控制方法设计

  • 如图25所示,实验中使用一根细绳连接空间薄膜与DE执行器(绳子初始有预应力).在薄膜正上方加载重物后,DE执行器会与薄膜一起发生变形,利用上文传感和作动技术,对薄膜形面进行主动控制.

  • 图25(a)薄膜结构实物图;(b)含DE作动器薄膜结构的示意图

  • Fig.25 (a) Picture of the membrane structure; (b) Schematic diagram of the membrane structure with the DE actuator

  • 自适应调控薄膜结构形面的实验设计如下:首先,制作出DE执行器并由前文方法测得其各项参数; 其次,将DE执行器与空间薄膜连接固定,加载电压,定位DE执行器此刻的新平衡位置; 再次,对空间薄膜施加载荷,利用DE驱动器传感功能定位此刻的平衡位置; 然后,计算出DE执行器所需要的驱动电压并加载; 最后,利用传感功能检验薄膜位置是否恢复原状,并根据结果进行进一步修复调整.

  • 下面通过分析薄膜结构和DE执行器在不同状态下的受力情况,设计薄膜形面调整的控制方法.DE执行器与聚酰亚胺薄膜连接后的初始平衡位置如图26(a)所示.其中,mg是质量块的重力,FS是弹簧的弹力,FDE是DE薄膜径向内力合力在竖直方向上的投影,T是绳子内部的张力,α为聚酰亚胺薄膜与水平面的夹角,F为聚酰亚胺薄膜面内内力合力在竖直方向上的投影.因此,初始状态下DE执行器-薄膜结构系统的平衡方程为 :

  • F=TT+FS=mg+FDE
    (26)
  • 记录此时DE执行器的阻抗值为Z1,平衡位置为d1(通过Z-d曲线得到).得到位置信息后,FDEFS可分别由图7和图6得到.

  • 如图26(b)所示,在聚酰亚胺薄膜中心点施加集中载荷f(所加重物的等效载荷),则DE执行器-薄膜结构系统的平衡方程变为:

  • F1=T1+fT1+FS1=mg+FDE1
    (27)
  • 记录此时DE执行器的阻抗值为Z2,平衡位置为d2.得到位置信息后,可以计算得到FDE1FS1,并由式(27)计算得到T1.

  • 如图26(c)所示,若DE薄膜加载电压后使得薄膜结构恢复到初始状态,则DE执行器-空间结构系统的平衡方程为:

  • F=T2+fT2+FS+Fe=mg+FDE
    (28)
  • 式中Fe为电压作用下DE薄膜Maxwell应力导致的内力在竖直方向上的投影.此时DE执行器的预期平衡位置为d2,阻抗为Z3.

  • 图26 薄膜结构在不同状态下的受力分析图:(a)DE执行器与薄膜连接后的平衡状态;(b)加载重物后的平衡状态;(c)加载电压后所期望的平衡状态

  • Fig.26 Force analysis of the membrane structure at different states: (a) the equilibrium state of DE actuator after connection to space membrane; (b) the equilibrium state after applying load; (c) the desired equilibrium state after voltage is applied

  • 由于聚酰亚胺薄膜的弹性模量较高,为了简化计算,可假定薄膜中面应力始终保持不变,则薄膜内力在竖直方向投影存在如下关系:

  • F1=cosαcosαF
    (29)
  • 此外,偏转角αα1可通过几何分析或Abaqus有限元仿真分析得到.联立式(26)~(29),可得所需电场力大小为:

  • Fe=f=FS1+cosα1cosαF-mg+FDE1
    (30)
  • 由式(15),可得所需输入电压U1为:

  • U1=Fez0l02πd1εrε0
    (31)
  • 加载电压U1后,可得到DE执行器此时的位置d3,而d3与目标位置d1存在误差,故下一步可以d3为初始位移,d1为目标位移,重复(26)~(31)的步骤,得到修正电压U2.若仍存在误差,继续对电压值进行迭代更新,直至最终位置与目标位置的偏差满足要求.

  • 5.3 实验结果

  • 如图27所示,薄膜上方的激光位移传感器记录了薄膜变形后主动控制的过程.从图中可以看出,薄膜的中心位置经过两个循环后基本恢复到初始位置,实现了DE执行器对薄膜形面的自传感和主动控制功能.

  • 图27 薄膜在不同状态下的中心点位移,包括初始状态、加载重量后状态、施加电压后状态和加载校正电压后状态(由单个DE执行器控制)

  • Fig.27 Displacement of the center of the membrane structure at different states: initial state, state after loading weight, state after applying voltage and state after applying the corrected voltage (control by a single DE actuator)

  • 另外,考虑到可对DE执行器进行阵列化实现对薄膜形面的整体传感和控制.因此,对同时连接三个DE执行器[位置如图25(a)所示]的薄膜形面调控进行了简单的实验验证.如图28所示,通过手动调节驱动电压实现了薄膜形面一定程度的恢复,证明了DE执行器阵列控制的可能性.

  • 图28 三个DE执行器调控下薄膜中心点位移变形

  • Fig.28 Displacement of the center of the membrane structure under control of three DE actuators

  • 6 总结与展望

  • 本文研制了基于DE环型薄膜的传感-作动一体化执行器,并建立了其动力学模型.通过开展动态作动实验,实现了动力学模型的参数辨识与验证.分析了不同参数对作动器动力学响应的影响,为理解DE执行器的基本动力学特性和今后优化其性能奠定了基础.建立了DE自传感过程的理论模型,实现了微小位移的传感过程验证.为了验证本文理论模型的正确性,搭建了薄膜结构形面自适应调整的实验平台,并设计了相应的形面控制方法.实验结果表明,DE执行器能有效识别薄膜表面的微变形,并能通过调节输入电压实现对薄膜形面的控制修复.

  • 今后研究中,一方面可进一步提升DE执行器的传感与作动性能,实现薄膜动态变形的自适应调整; 另一方面深入研究阵列化DE执行器对薄膜形面的最优控制方法.

  • 参考文献

    • [1] BLANDINO J,JOHNSTON J,DHARAMSI U.Corner wrinkling of a square membrane due to symmetric mechanical loads [J].Journal of Spacecraft and Rockets,2002,39(5):717-724.

    • [2] HAFTKA R,ADELMAN H.An analytical investigation of shape control of large space structures by applied temperatures [J].AIAA Journal,1985,23(1):450-457.

    • [3] LINDLER J,FLINT E.Boundary actuation shape control strategies for thin film single surface shells.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,2004,5(3):3360-3370.

    • [4] JENKINS C,MARKER D.Surface precision of inflatable membrane reflectors [J].ASME Journal of Solar Energy Engineering,1998,120(6):298-305.

    • [5] JENKINS C,SHCUR W.Gore/seam architectures for gossamer structures [J].Journal of Spacecraft and Rockets,2002,39(5):298-305.

    • [6] COLEMAN T,LI Y.A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables [J].SIAM Journal of Optimization,1994,6(1):1040-1058.

    • [7] FANG H,QUIJANO U,BACH V.Experimental study of a membrane antenna surface adaptive control system [C]:Anthony.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,52th AIAA Structures Structural Dynamics & Materials Conference,Colorado,2011.USA:AIAA Journal,2011:1869-1878.

    • [8] RENNO J,INMAN D.Modeling and control of a membrane strip using a single piezoelectric bimorph [J].Journal of Vibration and Control,2009,15(3):391-414.

    • [9] RENNO J,INMAN D,CHEVVA K.Nonlinear control of a membrane mirror strip actuated axially and in bending [J].AIAA Journal,2009,47(3):484-493.

    • [10] RUGGIERO E,INMAN D.Modeling and control of a 1-D membrane strip with an integrated PZT bimorph [C].ASME 2005 International Mechanical Engineering Congress and Exposition.American Society of Mechanical Engineers,2005,11:259-268.

    • [11] RUGGIERO E,INMAN D.Modeling and vibration control of an active membrane mirror [J].Smart Materials & Structures,2009,18(9):7-10.

    • [12] FERHAT I,SULTAN C.LQG control and robustness study for a prestressed membrane with bimorph actuators [C]:Buffalo.ASME,International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York,2014.USA:American Society of Mechanical Engineers Journal,2014:8-83.

    • [13] FERHAT I,SULTAN C.LQR using second order vector form for a membrane with bimorph actuators [J].AIAA Journal,2015,3(1):12-25.

    • [14] FERHAT I,SULTAN C.System analysis and control design for a membrane with bimorph actuators [J].AIAA Journal,2015,53(8):10-20.

    • [15] YIPAER F,SULTAN C.Modern control design for a membrane with bimorph actuators [C]:Anthony.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,54th AIAA Structures Structural Dynamic and Materials Conference,Boston,2013.USA:AIAA Journal,2013:138-148.

    • [16] HALLORAN A,MALLEY F,MCHUGH P.A review on dielectric elastomer actuators,technology,applications,and challenges [J].Journal of Applied Physics,2008,104(7):1-10.

    • [17] LOVERICH J,KANNO I,KOTERA H.Concepts for a new class of all-polymer micropumps [J].Lab on A Chip,2006,6(9):1147-1154.

    • [18] CARPI F,MENON C,ROSSI D.Electroactive elastomeric actuator for all-polymer linear peristaltic pumps [J].IEEE/ASME Transactions on Mechatronics,2010,15(3):460-470.

    • [19] GIOUSOUF M,KOVACS G.Dielectric elastomer actuators used for pneumatic valve technology [J].Smart Materials & Structures,2013,22(10):1-6.

    • [20] 陈宝鸿,周进雄.离子导体驱动的介电弹性体软机器研究进展 [J].固体力学学报,2015,36(6):12 CHEN B H,ZHOU J X.Research progress of dielectric elastomer soft machine driven by ionic conductor [J].Acta Mechanica Solida Sinica,2015,36(6):12.(in Chinese)

    • [21] CHEN Y,ZHA,H,MAO J.Controlled flight of a microrobot powered by soft artificial muscles [J].Nature,2019,575(7782):324-329.

    • [22] PELRINE R,KORNBLUH R,PEI Q.Dielectric elastomer artificial muscle actuators:toward biomimetic motion [C].Proceedings of Spie the International Society for Optical Engineering,2002,4695:126-137.

    • [23] CHIBA S,WAKI M,KORNBLUH R,et al.Extending applications of dielectric elastomer artificial muscle [C].Proceedings of Spie the International Society for Optical Engineering,2007,6524(24):1-5.

    • [24] SUBRAMANI K,CAKMAK E,SPONTAK R.Enhanced electroactive response of unidirectional elastomeric composites with high-dielectric-constant fibers [J].Advanced Materials,2014,26(18):2949-2953.

    • [25] DUDUTA M,WOOD R,CLARKE D.Multilayer dielectric elastomers for fast,programmable actuation without prestretch [J].Advanced Materials,2016,28(36):8058-8063.

    • [26] YURCHENKO D,LAI H,THOMSON G.Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer [J].Applied Energy,2017,208(15):456-470.

    • [27] PELRINE R,KORNBLUH R,KOFOD G.High-strain actuator materials based on dielectric elastomers [J].Advanced Materials,2000,12(16):1223-1225.

    • [28] KINOSHITA Y,TSUCHITAN S,KIKUCHI K.Development of flexible rubber electrode for dielectric elastomer actuator [J].IEEE,2010:282-286.

    • [29] MCCARTHY J,HANLEY C,LAMBERTINI V.Fabrication of highly transparent and conductive PEDOT [C]:PSS thin films for flexible electrode applications,Nanocon,2013,10(1):16-18.

    • [30] CARPI F,ROSSI D,KORNBLUH R.Dielectric elastomers as electromechanical transducers [J].USA:Elsevier Science,2008:103-116.

    • [31] JUNG K,KIM K,CHOI H.A self-sensing dielectric elastomer actuator [J].Sensors & Actuators A Physical,2008,143(2):343-351.

    • [32] CHUC N,THUY D,PARK J.A dielectric elastomer actuator with self-sensing capability [C].Proceeding of Spie,2008,6927(1):1-8.

    • [33] HUNT A,CHEN Z,TAN X,et al.An integrated electroactive polymer sensor-actuator:design,model-based control,and performance characterization [J].Smart Materials & Structures,2016,25(3):16-35.

    • [34] SUO Z.Theory of dielectric elastomers [J].Acta Mechanica Solida Sinica,2010,23(6):549-578.

    • [35] 刘立武,孙寿华,刘彦菊,等.具有线性介电常数的Ogden型介电弹性体的本构关系和机电稳定性 [J].固体力学学报,2010,31(2):181-192.LIU L W,SUN S H,LIU Y J,et al.Constitutive relations and electromechanical stability of Ogden type dielectric elastomers with linear permittivity [J].Acta Mechanica Solida Sinica,2010,31(2):181-192.(in Chinese)

    • [36] 锁志刚,曲绍兴.介电高弹聚合物理论 [J].力学进展,2011,41(6):730-750.SUO Z G,QU S X.Dielectric high elastic polymer theory [J].Advances in Mechanics,2011,41(6):730-750.(in Chinese)

    • [37] LU T,MA C,WANG T.Mechanics of dielectric elastomer structures:a review [J].Extreme Mechanics Letters,2020,38(6):10-52.

    • [38] HUANG P,WU J,ZHANG P.Dynamic modeling and tracking control for dielectric elastomer actuator with model predictive controller [J].IEEE Transactions on Industrial Electronics,2021,69(2):1819-1828.

    • [39] DUDUTA M,WOOD R,CLARKE D.Multilayer dielectric elastomers for fast,programmable actuation without prestretch [J].Advanced Materials,2016,28(36):8058-8063.

    • [40] XING Z,ZHANG J,MCCOUL D,et al.A super-lightweight and soft manipulator driven by dielectric elastomers [J].Soft Robotics,2020,7(4):512-520.

    • [41] 金肖玲,王永,黄志龙.气压扰动下介电弹性体球膜的随机响应分析 [J].动力学与控制学报,2017,15(3):250-255.JIN X L,WANG Y,HUANG Z L.Random response analysis of dielectric elastomer ball film under pressure disturbance [J].Journal of Dynamics and Control,2017,15(3):250-255.(in Chinese)

    • [42] 陈辉强.具介电弹性体作动器的机械系统的随机振动控制 [D].杭州:浙江大学,2020 CHEN H Q.Random vibration control of mechanical systems with dielectric elastomer Actuators [D].Hangzhou:Zhejiang University,2020.(in Chinese).

    • [43] RIZZELLO G,NASO D,YORK A.Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback [J].Smart Materials & Structures,2016,25(3):30-35.

    • [44] HODGINS M,RIZZELLO G.High-frequency dynamic model of a pre-loaded circular dielectric electro-active polymer actuator [J].Smart Materials & Structure,2013,12(6):1-10.

    • [45] BAILEY J.Properties and behavior of polymers [J].Wiley:2011,10-35.

    • [46] VUCONG T,JEANMISTRAL C,SYLVESTRE A.Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers [J].Smart Materials & Structures,2012,21(10):536-536.

  • 参考文献

    • [1] BLANDINO J,JOHNSTON J,DHARAMSI U.Corner wrinkling of a square membrane due to symmetric mechanical loads [J].Journal of Spacecraft and Rockets,2002,39(5):717-724.

    • [2] HAFTKA R,ADELMAN H.An analytical investigation of shape control of large space structures by applied temperatures [J].AIAA Journal,1985,23(1):450-457.

    • [3] LINDLER J,FLINT E.Boundary actuation shape control strategies for thin film single surface shells.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,2004,5(3):3360-3370.

    • [4] JENKINS C,MARKER D.Surface precision of inflatable membrane reflectors [J].ASME Journal of Solar Energy Engineering,1998,120(6):298-305.

    • [5] JENKINS C,SHCUR W.Gore/seam architectures for gossamer structures [J].Journal of Spacecraft and Rockets,2002,39(5):298-305.

    • [6] COLEMAN T,LI Y.A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables [J].SIAM Journal of Optimization,1994,6(1):1040-1058.

    • [7] FANG H,QUIJANO U,BACH V.Experimental study of a membrane antenna surface adaptive control system [C]:Anthony.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,52th AIAA Structures Structural Dynamics & Materials Conference,Colorado,2011.USA:AIAA Journal,2011:1869-1878.

    • [8] RENNO J,INMAN D.Modeling and control of a membrane strip using a single piezoelectric bimorph [J].Journal of Vibration and Control,2009,15(3):391-414.

    • [9] RENNO J,INMAN D,CHEVVA K.Nonlinear control of a membrane mirror strip actuated axially and in bending [J].AIAA Journal,2009,47(3):484-493.

    • [10] RUGGIERO E,INMAN D.Modeling and control of a 1-D membrane strip with an integrated PZT bimorph [C].ASME 2005 International Mechanical Engineering Congress and Exposition.American Society of Mechanical Engineers,2005,11:259-268.

    • [11] RUGGIERO E,INMAN D.Modeling and vibration control of an active membrane mirror [J].Smart Materials & Structures,2009,18(9):7-10.

    • [12] FERHAT I,SULTAN C.LQG control and robustness study for a prestressed membrane with bimorph actuators [C]:Buffalo.ASME,International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,New York,2014.USA:American Society of Mechanical Engineers Journal,2014:8-83.

    • [13] FERHAT I,SULTAN C.LQR using second order vector form for a membrane with bimorph actuators [J].AIAA Journal,2015,3(1):12-25.

    • [14] FERHAT I,SULTAN C.System analysis and control design for a membrane with bimorph actuators [J].AIAA Journal,2015,53(8):10-20.

    • [15] YIPAER F,SULTAN C.Modern control design for a membrane with bimorph actuators [C]:Anthony.Collection of Technical Papers AIAA Structures,Structural Dynamics and Materials Conference,54th AIAA Structures Structural Dynamic and Materials Conference,Boston,2013.USA:AIAA Journal,2013:138-148.

    • [16] HALLORAN A,MALLEY F,MCHUGH P.A review on dielectric elastomer actuators,technology,applications,and challenges [J].Journal of Applied Physics,2008,104(7):1-10.

    • [17] LOVERICH J,KANNO I,KOTERA H.Concepts for a new class of all-polymer micropumps [J].Lab on A Chip,2006,6(9):1147-1154.

    • [18] CARPI F,MENON C,ROSSI D.Electroactive elastomeric actuator for all-polymer linear peristaltic pumps [J].IEEE/ASME Transactions on Mechatronics,2010,15(3):460-470.

    • [19] GIOUSOUF M,KOVACS G.Dielectric elastomer actuators used for pneumatic valve technology [J].Smart Materials & Structures,2013,22(10):1-6.

    • [20] 陈宝鸿,周进雄.离子导体驱动的介电弹性体软机器研究进展 [J].固体力学学报,2015,36(6):12 CHEN B H,ZHOU J X.Research progress of dielectric elastomer soft machine driven by ionic conductor [J].Acta Mechanica Solida Sinica,2015,36(6):12.(in Chinese)

    • [21] CHEN Y,ZHA,H,MAO J.Controlled flight of a microrobot powered by soft artificial muscles [J].Nature,2019,575(7782):324-329.

    • [22] PELRINE R,KORNBLUH R,PEI Q.Dielectric elastomer artificial muscle actuators:toward biomimetic motion [C].Proceedings of Spie the International Society for Optical Engineering,2002,4695:126-137.

    • [23] CHIBA S,WAKI M,KORNBLUH R,et al.Extending applications of dielectric elastomer artificial muscle [C].Proceedings of Spie the International Society for Optical Engineering,2007,6524(24):1-5.

    • [24] SUBRAMANI K,CAKMAK E,SPONTAK R.Enhanced electroactive response of unidirectional elastomeric composites with high-dielectric-constant fibers [J].Advanced Materials,2014,26(18):2949-2953.

    • [25] DUDUTA M,WOOD R,CLARKE D.Multilayer dielectric elastomers for fast,programmable actuation without prestretch [J].Advanced Materials,2016,28(36):8058-8063.

    • [26] YURCHENKO D,LAI H,THOMSON G.Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer [J].Applied Energy,2017,208(15):456-470.

    • [27] PELRINE R,KORNBLUH R,KOFOD G.High-strain actuator materials based on dielectric elastomers [J].Advanced Materials,2000,12(16):1223-1225.

    • [28] KINOSHITA Y,TSUCHITAN S,KIKUCHI K.Development of flexible rubber electrode for dielectric elastomer actuator [J].IEEE,2010:282-286.

    • [29] MCCARTHY J,HANLEY C,LAMBERTINI V.Fabrication of highly transparent and conductive PEDOT [C]:PSS thin films for flexible electrode applications,Nanocon,2013,10(1):16-18.

    • [30] CARPI F,ROSSI D,KORNBLUH R.Dielectric elastomers as electromechanical transducers [J].USA:Elsevier Science,2008:103-116.

    • [31] JUNG K,KIM K,CHOI H.A self-sensing dielectric elastomer actuator [J].Sensors & Actuators A Physical,2008,143(2):343-351.

    • [32] CHUC N,THUY D,PARK J.A dielectric elastomer actuator with self-sensing capability [C].Proceeding of Spie,2008,6927(1):1-8.

    • [33] HUNT A,CHEN Z,TAN X,et al.An integrated electroactive polymer sensor-actuator:design,model-based control,and performance characterization [J].Smart Materials & Structures,2016,25(3):16-35.

    • [34] SUO Z.Theory of dielectric elastomers [J].Acta Mechanica Solida Sinica,2010,23(6):549-578.

    • [35] 刘立武,孙寿华,刘彦菊,等.具有线性介电常数的Ogden型介电弹性体的本构关系和机电稳定性 [J].固体力学学报,2010,31(2):181-192.LIU L W,SUN S H,LIU Y J,et al.Constitutive relations and electromechanical stability of Ogden type dielectric elastomers with linear permittivity [J].Acta Mechanica Solida Sinica,2010,31(2):181-192.(in Chinese)

    • [36] 锁志刚,曲绍兴.介电高弹聚合物理论 [J].力学进展,2011,41(6):730-750.SUO Z G,QU S X.Dielectric high elastic polymer theory [J].Advances in Mechanics,2011,41(6):730-750.(in Chinese)

    • [37] LU T,MA C,WANG T.Mechanics of dielectric elastomer structures:a review [J].Extreme Mechanics Letters,2020,38(6):10-52.

    • [38] HUANG P,WU J,ZHANG P.Dynamic modeling and tracking control for dielectric elastomer actuator with model predictive controller [J].IEEE Transactions on Industrial Electronics,2021,69(2):1819-1828.

    • [39] DUDUTA M,WOOD R,CLARKE D.Multilayer dielectric elastomers for fast,programmable actuation without prestretch [J].Advanced Materials,2016,28(36):8058-8063.

    • [40] XING Z,ZHANG J,MCCOUL D,et al.A super-lightweight and soft manipulator driven by dielectric elastomers [J].Soft Robotics,2020,7(4):512-520.

    • [41] 金肖玲,王永,黄志龙.气压扰动下介电弹性体球膜的随机响应分析 [J].动力学与控制学报,2017,15(3):250-255.JIN X L,WANG Y,HUANG Z L.Random response analysis of dielectric elastomer ball film under pressure disturbance [J].Journal of Dynamics and Control,2017,15(3):250-255.(in Chinese)

    • [42] 陈辉强.具介电弹性体作动器的机械系统的随机振动控制 [D].杭州:浙江大学,2020 CHEN H Q.Random vibration control of mechanical systems with dielectric elastomer Actuators [D].Hangzhou:Zhejiang University,2020.(in Chinese).

    • [43] RIZZELLO G,NASO D,YORK A.Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback [J].Smart Materials & Structures,2016,25(3):30-35.

    • [44] HODGINS M,RIZZELLO G.High-frequency dynamic model of a pre-loaded circular dielectric electro-active polymer actuator [J].Smart Materials & Structure,2013,12(6):1-10.

    • [45] BAILEY J.Properties and behavior of polymers [J].Wiley:2011,10-35.

    • [46] VUCONG T,JEANMISTRAL C,SYLVESTRE A.Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers [J].Smart Materials & Structures,2012,21(10):536-536.

  • 微信公众号二维码

    手机版网站二维码