en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

易壮鹏,E-mail:yizhuangpeng@163.com

中图分类号:TV36;TU311.3

文献标识码:A

文章编号:1672-6553-2023-21(4)-103-011

DOI:10.6052/1672-6553-2023-049

参考文献 1
邹鹏旭,刘孟源,陈良志.波浪作用下悬浮隧道管体-锚索耦合系统水动力特性研究 [J].现代隧道技术,2021,58(3):154-162.ZOU P X,LIU M Y,CHEN L Z.Study on hydrodynamic characteristics of suspension tunnel tube and anchor cable coupling system under wave action [J].Modern Tunnel Technology,2021,58(3):154-162.(in Chinese)
参考文献 2
阳志文,张华庆,李金钊,等.波流作用下悬浮隧道运动响应纵向截断模型试验研究 [J].海洋工程,2021,39(2):44-52.YANG Z W,ZHANG H Q,LI J Z,et al.Experimental study on longitudinal truncation model of suspension tunnel motion response under wave-current action [J].Ocean Engineering,2021,39(2):44-52.(in Chinese)
参考文献 3
丁浩,程亮,李科.悬浮隧道结构动力响应研究进展与展望 [J].隧道建设(中英文),2019,39(6):901-912.DING H,CHENG L,LI K.Research progress and prospect of dynamic response of suspension tunnel structures [J].Tunnel Construction(English and Chinese),2019,39(6):901-912.(in Chinese)
参考文献 4
FOGAZZI P,PEROTTI F.The dynamic response of seabed anchored floating tunnels under seismic excitation [J].Earthquake Engineering & Structural Dynamics,2000,29(3).
参考文献 5
童俊辉,彭剑,符翔,等.水下悬浮隧道张力腿的时滞减振控制研究 [J].振动与冲击,2021,40(15):48-53.TONG J H,PENG J,FU X,et al.Research on time-delay vibration control of tension leg in underwater suspension tunnel [J].Journal of Vibration and Shock,2021,40(15):48-53.(in Chinese)
参考文献 6
易壮鹏,李小超,曾有艺.张力腿悬浮隧道的动力学模型和自振特性 [J].中外公路,2019,39(1):180-184.YI Z P,LI X C,ZENG Y Y.Dynamic model and natural vibration characteristics of tension leg suspension tunnel [J].Chinese and Foreign Highways,2019,39(1):180-184.(in Chinese)
参考文献 7
刘迁苹.水下悬浮隧道断索、碰撞的分析模型及动态响应研究 [D].大连:大连理工大学,2021.LIU Q P.Analysis model and dynamic response Research of cable break and collision in underwater Suspension Tunnel [D].Dalian:Dalian University of Technology,2021.(in Chinese)
参考文献 8
蒋树屏,李勤熙.不同断面型式悬浮隧道管段波动特性实验研究 [J].地下空间与工程学报,2019,15(2):416-422.JIANG S P,LI Q X.Experimental study on fluctuation characteristics of suspension tunnels with different sections [J].Chinese Journal of Underground Space and Engineering,2019,15(2):416-422.(in Chinese)
参考文献 9
阳帅,颜晨宇,巫志文.随机地震作用下悬浮隧道锚索的动力响应分析 [J].防灾减灾工程学报,2021,41(2):304-310.YANG S,YAN C Y,WU Z W.Dynamic response analysis of suspension tunnel anchor cable under random earthquake [J].Journal of Disaster Prevention and Mitigation Engineering,2021,41(2):304-310.(in Chinese)
参考文献 10
罗刚,郭正儒,张玉龙,等.水下爆炸-波浪联合作用下悬浮隧道响应分析 [J].振动与冲击,2022,41(6):256-264,288.LUO G,GUO Z R,ZHANG Y L,et al.Response analysis of suspension tunnel under the combined action of underwater explosion and wave [J].Journal of Vibration and Shock,202,41(6):256-264,288.(in Chinese)
参考文献 11
SATO M,KANIE S,MIKAMI T.Mathematical analogy of a beam on elastic supports as a beam on elastic foundation[J].Applied Mathematical Modelling,2008,32(5):688-699.
参考文献 12
项贻强,林亨,陈政阳.移动荷载作用下悬浮隧道动力响应分析 [J].振动与冲击,2018,37(4):82-87.XIANG Y Q,LIN H,CHEN Z Y.Dynamic response analysis of suspension tunnel under moving load [J].Journal of Vibration and Shock,2018,37(4):82-87.(in Chinese)
参考文献 13
董满生,张嫄,唐飞,等.等间距移动荷载作用下水中悬浮隧道管体的位移响应 [J].应用力学学报,2016,33(5):760-765,931.DONG M S,ZHANG Y,TANG F,et al.Displacement response of suspended tunnel under equidistant moving loads [J].Chinese Journal of Applied Mechanics,2016,33(5):760-765,931.(in Chinese)
参考文献 14
TARIVERDILO S,MIRZAPOUR J,SHAHMARDANI M,et al.Vibration of submerged floating tunnels due to moving loads[J].Applied Mathematical Modelling,2011,35(11):5413-5425.
参考文献 15
田雪飞,董满生,逄焕平,等.海洋内波和洋流联合作用下水中悬浮隧道的动力响应 [J].应用数学和力学,2014,35(1):71-80.TIAN X F,DONG M S,PANG H P,et al.Dynamic response of floating tunnel in water under combined action of internal waves and ocean currents [J].Applied Mathematics and Mechanics,2014,35(1):71-80.(in Chinese)
参考文献 16
张嫄,董满生,唐飞.冲击荷载作用下水中悬浮隧道的位移响应 [J].应用数学和力学,2016,37(5):483-491.ZHANG Y,DONG M S,TANG F.Displacement response of suspension tunnel in water under impact load [J].Applied Mathematics and Mechanics,2016,37(5):483-491.(in Chinese)
参考文献 17
项贻强,高超奇,杨云深.两端任意约束的弹性支撑梁在移动荷载下的动力响应 [J].哈尔滨工业大学学报,2022,54(3):12-19.XIANG Y Q,GAO Q,YANG Y S.Dynamic response of elastic supported beams with arbitrary constraints at both ends under moving loads [J].Journal of Harbin Institute of Technology,2022,54(3):12-19.(in Chinese)
参考文献 18
LUONGO A,REGA G,VESTRONI F.Planar non-linear free vibrations of an elastic cable [J].International Journal of Non-Linear Mechanics,1984,19(1):39-52.
参考文献 19
REGA G,BENEDETTINI F.Planar non-linear oscillations of elastic cables under subharmonic resonance conditions [J].Journal of Sound and Vibration,1989,132(3):367-381.
参考文献 20
XIE J M,CHEN J Y.Dynamic response analysis of submerged floating tunnel-canyon water system under earthquakes [J].Applied Mathematical Modelling,2021,94:757-779.
参考文献 21
张莹.400km/h高速动车组车体载荷谱研究 [D].北京:北京交通大学,2019.ZHANG Y.Research on load spectrum of 400km/h high speed EMU [D].Beijing:Beijing Jiaotong University,2019.(in Chinese)
目录contents

    摘要

    悬浮隧道是一种创新型的水中交通结构,这种悬浮于水中的结构在考虑复杂边界条件下的力学建模及交通荷载引起的结构响应值得深入研究.本文将跨度范围内由多段锚索支撑的悬浮隧道视为弹性支撑梁,同时将两端的复杂边界条件考虑为具有不同约束刚度的竖向和转动弹性支撑,流体荷载由Morison方程考虑,建立了悬浮隧道在任意荷载作用下的动力学模型及考虑自振特性的特征方程.研究了跨内支撑刚度与边界约束参数多种组合条件下的频率、模态分布特征,得到了相应的敏感区间.同时,以某型号高铁列车为背景并将其考虑为一列移动集中力,研究了悬浮隧道结构关键位置的荷载响应与弹性支撑刚度之间的关系,结果表明跨内支撑刚度、边界约束刚度均对竖向位移存在显著影响,整体上约束刚度越大,相应的位移越小.

    Abstract

    The submerged floating tunnel (SFT) is an innovative underwater traffic structure. The mechanical modeling and the structural response caused by traffic loads for this kind of underwater floating structure under complex boundary conditions deserve further study. In this paper, the SFT supported by multiple intermediate anchor cables is considered as an elastic supporting beam, and the complex boundary conditions at both ends are considered as vertical and rotational elastic supports with different constraint stiffness. The fluid load is considered by the Morison equation. The dynamic model of the SFT under arbitrary load is built, and the corresponding characteristic equation is established to consider the natural vibration characteristics. The frequencies and modes for multiple combinations of intermediate supporting stiffness and boundary constraint parameters are studied, and the corresponding sensitive intervals are obtained. At the same time, a high-speed train is taken as background and it is considered as a series of moving concentrated force. The relationship between the load response at the key position of the SFT structure and the stiffness of the elastic support is studied. The results show that the stiffness of the intermediate supports and boundary constraints all has significant effects on the vertical displacement. The larger the constraint stiffness is, the smaller the vertical displacement is.

  • 引言

  • 悬浮隧道是一种跨越超长海峡的创新型水中交通结构.近年来,研究者对其在波浪[1]、波流组合[2]、交通荷载[3]、地震[4]等荷载作用下的动力响应进行了广泛研究,同时张力腿形式[5-6]、断索[7]、断面形式[8]、管体与锚索相互作用等也是关注的焦点.

  • 将悬浮隧道简化为梁模型进行分析是一种被广泛采用的研究方法,其简洁性、有效性已得到了验证.阳帅等[9]通过将悬浮隧道锚索等效为欧拉梁,建立悬浮隧道锚索受到水动力和地震共同作用振动的方程.罗刚等[10]建立了考虑悬浮隧道水平、垂直振动的动力学模型,对爆炸和移动荷载参数进行分析.Sato等[11]利用等跨弹性支撑梁和弹性地基梁模型研究不同模型对于悬浮隧道的适用性,认为当张力腿沿着悬浮隧道长度离散分布,且考虑张力腿的伸缩性时,可将悬浮隧道看作非连续弹性支撑梁.项贻强等[12]将悬浮隧道考虑为一个等间距弹性支撑梁,研究了移动荷载下流体效应、模态阶数等对动力响应的影响.董满生等[13]将管体简化为一个两端带有弹簧、阻尼的刚性梁与一个简直弹性梁的叠加,建立等间距移动荷载作用下的力学模型,讨论了移动荷载对跨中位移的影响.Tariverdilo等[14]和田雪飞等[15]利用理论分析和数值模拟相结合的方法,将悬浮隧道简化为梁结构,分别研究了移动荷载、波流联合作用力下的动力响应.张嫄等[16]将悬浮隧道简化为一个等距离弹性支撑梁,建立冲击荷载作用下的动力学模型,讨论了结构的冲击响应.

  • 边界条件的选择对悬浮隧道管体的动力响应至关重要,上述研究侧重于研究悬浮隧道管体与锚索之间的相互作用,而较少涉及复杂的边界条件.项贻强等[17]以两端具有竖向弹簧支撑及平面内转动弹性支撑的多跨弹性支撑梁为研究对象,通过理论推导与模型验证,研究了其在移动荷载作用下的动力响应.这些研究突显了弹性边界条件在悬浮隧道结构响应研究中的重要性,同时为进一步研究实际交通荷载作用下悬浮隧道的响应奠定了基础.

  • 本文将悬浮隧道管体等效为Euler-Bernoulli梁,将锚索的作用等效为跨度范围内的竖向均匀刚度,建立任意荷载下的动力学模型.在研究结构自振特性的基础上,同时从实际运营的角度出发以复兴号CR400AF型高铁基本参数为背景,研究竖向、转向两种边界弹性支撑与跨内支撑刚度组合下悬浮隧道管体关键位置的响应分布规律.

  • 1 问题描述

  • 1.1 力学模型

  • 为描述跨越水深不断变化水域的悬浮隧道并研究其自振特性与动力荷载响应,将悬浮隧道管体与锚索间的相互作用等效为跨度范围内的竖向均匀刚度Kf[11],本文以弹性支撑边界下的结构为对象建立如图1所示的力学模型,其中O-xy是以管体左端点为中心的直角坐标系,xy与分别为轴向和横向,L为管体长度,为探索一般性规律以及便于推导,对力学模型的假定和简化进行了补充说明:1)管体为Euler-Bernoulli梁; 2)只考虑管体横向振动,忽略管体的纵向变形; 3)管体材料特性、截面刚度和几何特性沿跨度为常数; 4)流体荷载由Morison方程[12]考虑; 5)边界为弹性支撑,其中S1S2为两端竖向支撑刚度,S3S4为两端转动支撑刚度.基于上述假定,悬浮隧道在[0,L]的动力学方程[18-19]写为

  • 图1 弹性支撑边界悬浮隧道结构示意图

  • Fig.1 Structural diagram of SFT with elastic boundary conditions

  • mt2Vt2+cVt+EI4Vx4+KfV-EA2L0L Vx2dx2Vx2=P(x,t)+Fd(x,t)
    (1)
  • 其中,V为横向位移,mt为单位长度质量,c为阻尼,E为弹性模量,IA为截面惯性矩和面积,Pxt)为任意时刻t作用于管体上的荷载.Fdxt)为运动状态下的流体荷载,由假定4)其表达式为

  • Fd(x,t)=π4CmρwD42Vt2+12CdρwDVtVt
    (2)
  • 式中,ρw为流体密度,CmCd为水动力系数,D为直径。在考虑S1~S4影响的一般性弹性支撑边界(EC)中,为方便探讨,本文考虑竖直弹性支撑EC1(即S1S2变化而S3→∞,S4→∞)和转动弹性支撑EC2(即S3S4变化而S1→∞,S2→∞)两种特殊情形,与之对应的有滑动(SC)、铰支(HC)和固支(FC)三种理想的边界条件,将这些与悬浮隧道管体控制方程对应的边界汇总,如表1所示.

  • 表1 弹性支撑连续梁边界表

  • Table1 Boundaries of the elastically supported continuous beam for SFT

  • 引入下列无量纲变量

  • v=VL;x-=xL;kf=KfL4EI;s1=S1L3EI;s2=S1L3EI;s3=S3LEI;s4=S4LEI;p=PL3EI;fd=FdL3EIτ=tEImsL4;c-=cL4EIms;cd=EIρwD2msL2Cd
    (3)
  • 其中ms=mt+0.25πCmρwD4为考虑流体附加质量管体单位长度质量,于是式(1)可写为如下无量纲形式

  • v¨+-c˙+v''''+kfv-12λ201 v'2dx-v''=p(x-,τ)+cdv˙|v˙|
    (4)
  • 式中上标“点”和“撇”分别表示对τx-的微分,λ=I/AL2表征管体长细比,与表1对应的无量纲边界如表2所示.

  • 1.2 模型的自振特性

  • 与式(1)对应的模型自由振动控制方程为

  • v¨+v''''+kfv=0
    (5)
  • j阶解可以表示为vj=φjxexpiωjτ,其中ωjφjx)分别表示第j阶频率和模态,将其代入式(5)可得到如下特征方程

  • φ''''j-ωj2-kfφj=0
    (6)
  • 上式中模态φjx)仅在ωj2-kf>0时存在合理解,且可以表示为

  • φj(x-)=Aj1cosηjx-+Aj2sinηjx-+Aj3coshηjx-+Aj4sinhηjx-
    (7)
  • 式中,ηj=ωj2-kf4Aj1Aj4表示模态系数,结合表2可得各种弹性支撑边界下求解频率ωj的特征方程

  • EC1:s1s21-cosηjcoshηj+s1+s2ηj3sinηjcoshηj+cosηjsinhηj-2ηj6sinηjsinhηj=0EC2:s3s41-cosηjcoshηj+s3+s4ηjsinηjcoshηj-cosηjsinhηj+2ηj2sinηjsinhηj=0HC-HC:sinηjsinhηj=0SC-SC:sinηjsinhηj=0FC-FC:1-cosηjcoshηj=0HC-FC:sinηjcoshηj-cosηjsinhηj=0SC-FC:sinηjcoshηj+cosηjsinhηj=0
    (8)
  • 同时可得到满足如下正交规范化条件的模态:

  • 01 φj(x-)φk(x-)dx-=δjk01 φj(x-)φk''''(x-)dx-=ωj2-kfδjk
    (9)
  • 表2 弹性支撑连续梁无量纲边界表

  • Table2 Dimensionless boundaries of the elastically supported continuous beam for SFT

  • 1.3 外荷载作用下的动力响应

  • 式(4)中外荷载pxt)作用下结构的响应可以写为如下形式:

  • v(x-,τ)=j=1 φj(x-)qj(τ)
    (10)
  • 其中qjτ)是j阶模态的广义坐标,将式(10)代入式(4)并结合式(9)中的正交条件可以得到关于qjτ)的二阶常微分方程,

  • q¨(τ)+c-q˙(τ)+ωj2q(τ)=fjQ(τ)+fjM(τ)+fjH(τ),j=1,2,,
    (11)
  • 式中fjQτfjPτfjHτ分别为非线性项、外移动荷载项和波流荷载项,其表达式为

  • fjQ(τ)=12λ2k=1 g=1 h=1 01 φg'φh'dx-di-1di φk''φjdx-qgqhqkfjP(τ)=01 pφjdx-fjH(τ)=cdg=1 h=1 01 signk=1 φkqk'φgφhφjdx-φg'φh'
    (12)
  • sign(x)为符号函数.截取前N项,可以得到管体模型在外荷载作用下矩阵形式的响应控制方程

  • Mq¨(τ)+Cq˙(τ)+Kq(τ)=FQ(τ)+FP(τ)+FH(τ)
    (13)
  • 其中qτ=q1τq2τqNτT为广义坐标向量,质量矩阵M、阻尼矩阵C、刚度矩阵K的元素为Mjk=δjkCjk=c-δjkKjk=ωj2δjk; 向量FQτFPτFHτ的元素分别由fjQτfjPτfjHτ组成,且式(12)求和符号中的变为N.

  • 2 数值分析

  • 对结构的基本参数引用了参考文献[20],选取如下基本结构参数作为算例:L=1000m,D=11m,ρw=1000kg/m3mt=86400kg/m,E=34.5GPa,I=427.649m4A=34.56m2Cm=Cd=1.0.此外,以铁路车厢为背景的移动荷载基本参数见2.3小节.对于两类弹性边界,为讨论方便,在竖直弹性边界EC1中引入s建立s1s2的联系,在转动弹性边界EC2中引入s建立s3s4的联系,通过s的变化研究不同kf取值时两种边界条件下结构的自振特性和移动荷载响应,并建立与滑动(SC)、铰支(HC)和固支(FC)三类理想边界条件的联系.

  • 2.1 弹性支撑边界下的频率

  • 图2和图3分别给出了EC1、EC2两种边界条件下各阶无量纲频率ωs变化的频率图,为了获取频率分布的一般规律,跨内竖向均匀刚度kf取103,104,105三种情况,两端约束刚度取相等、10倍关系和一端趋于无穷大三种情况.频率图中横坐标s采用指数坐标表述,用以描述更大范围之内两端约束刚度对频率的影响规律; 点画线和虚线分别表示奇数和偶数阶次的频率; 此外,采用方形、菱形、三角形、圆形和星形分别给出两端为SC-SC、FC-FC、SC-FC、HC-HC、HC-FC边界条件下的各阶频率值.

  • 图2 两端竖向弹性支撑时悬浮隧道模型的频谱图

  • Fig.2 Frequency spectrum of SFT model constrained by vertical elastic supports at both ends

  • 图3 两端转动弹性支撑时悬浮隧道模型的频谱图

  • Fig.3 Frequency spectrum of SFT model constrained by rotational elastic supports at both ends

  • 图4 两端竖向和转动弹性支撑时悬浮隧道模型的前8阶模态图

  • Fig.4 The first eight modes of the SFT model with vertical and rotational elastic supports at both ends

  • 在图2给出的EC1边界条件下的频率图中,不同kf取值及两端约束刚度s1s2取值相等、10倍关系和一端趋于无穷大三种情况下各阶频率均随s的增大而增大,s∈[102,104]为其敏感区间,在此区间内频率增长显著,而在s增至某一值时达到峰值ω基本不再增大.同时,在两端竖向刚度值s1=ss2=ss1=ss2=10s两种情况下,s→0和s→∞两个极端对应的各阶频率值分别与SC-SC和FC-FC边界条件下的频率值一致.而在两端竖向刚度取值为s1=ss2→∞时,s→0和s→∞两个极端对应的各阶频率值分别与SC-FC和FC-FC边界条件下的频率值一致.其中,SC-SC边界条件下第1阶频率ω1非常接近kf的平方根.

  • 在图3给出的EC2边界条件下的频率图中,三种kf值与三组s3s4取值(即s3=ss4=s; s3=ss4=10s; s3=ss4→∞)情形下各阶频率ω均随s的增大而增大,s∈[100,102]为其敏感区间,在此区间内频率增长显著,在s增至某一值时达到峰值,ω的变化值可忽略.此时,在两端转动刚度值s3=ss4=ss3=ss4=10s两种情况下,s→0和s→∞两个极端对应的各阶频率值分别与HC-HC和FC-FC边界条件下的频率值一致.而对于s3=ss4→∞的取值情形,s→0和s→∞两个极端对应的各阶频率值分别与HC-FC和FC-FC边界条件下的频率值一致.与SC-SC边界条件相同,HC-HC边界条件下第1阶频率ω1也非常接近kf的平方根,其原因在于两种边界条件下的特征方程完全一样(见式(8)).

  • 2.2 弹性支撑边界下的模态

  • 对于竖向弹性支撑的EC1边界,不同kfs1s2取值时标准化正交振动模态总的分布规律为:端部位移不为零,且随着s的增大其端部竖向值减小,当s→∞时端部竖向值趋于零,此时模态的振动形状接近FC-FC边界时的情形.为进一步阐述,图4(a)与图4(b)分别给出了kf取105s1s2相等(s1=ss2=s)和不相等(s1=ss2=10s)时两种情况的标准化正交模态图.由图4(a)可知,s1=s2时各阶模态随阶次增加交替呈现正对称与反对称分布,模态两端竖向位移的绝对值相等.当s2=10s1时,对称性相对于s1=s2时减弱; 模态两个端部竖向位移的绝对值不再相等,但随着s的增大,二者均趋于零.

  • 对于转动弹性支撑的EC2边界,kfs3s4的不同参数组合对应的标准化正交振动模态的分布规律为:端部竖向位移为零,而端部的转角随着s的增大而减小,s→0和s→∞时两个极端对应的振动模态形状分别接近于HC-HC和FC-FC边界时的情形,其中s→0时振动模态形状为正弦谐波.由图4(c)与图4(d)中kf取105s3=ss4=ss3=ss4=10s时两种情况的标准化正交模态图可知,s3s4相等和不相等两种取值情况下各阶标准化正交模态整体上均随阶次的增加交替基本呈现正对称与反对称分布,振动模态形状与正弦谐波类似.

  • 2.3 移动列车荷载下的响应

  • 为研究结构的移动荷载响应,以4M4T编组的CR400AF复兴号列车为工程背景,为便于探讨一般性的规律,将列车荷载等效为如图5所示的一列移动集中力[21],其中列车全长208.95m,标准车厢长25.65m,移动荷载的集中力P1~P32均取170kN.

  • 图5 高铁列车编组及等效荷载示意图

  • Fig.5 Schematic view of the high-speed railway train carriage and equivalent loads

  • 于是,式(4)中外荷载px-τ可以表示为

  • p(x-,τ)=h=132 phδx--x-h
    (14)
  • 其中,ph=PhL3/EI为第h个(h=1~32)集中力,δ为Dirac-Delta函数,x-h=v-pτ-L-h为任意时刻ph的位置,v-p=vpmsL2/EI1/2为无量纲速度,L-h=Lh/LLhPhP1之间的距离)。与之对应,式(11)中fjPτ

  • fjP(τ)=h=132 01 phδx--x-hφjdx-
    (15)
  • 此外,在移动荷载响应计算中,vp=300km/h,c-=0.1.

  • 图6给出了在移动列车荷载作用下两端竖向和转动弹性支撑边界在典型参数组合下悬浮隧道关键位置的vx-τ-τ时程响应曲线,在计算时发现所截取的模态阶数为10时响应值已经基本收敛,因此最终选择N=15时的响应结果.由图6可知,跨内关键点竖向位移的较大值出现在移动荷载行驶于跨内时刻,即τ处于[0,0.2]区间,同时最大值均出现在移动荷载列经过该关键点位置时刻.各种边界条件下kf的大小对各关键位置的响应曲线存在显著影响,一般而言,kf越大,位移响应值也越大.此外,在图6(a)和图6(b)所示的EC1边界条件下,s1s2对端部竖向响应值存在影响,因为其存在响应值不为0.

  • 图6 移动荷载作用下两端竖向与转动弹性支撑时悬浮隧道模型的响应曲线

  • Fig.6 Response curves by moving loads for the SFT model with vertical and rotational elastic supports at ends

  • 图7 两端竖向弹性支撑悬浮隧道的移动荷载响应包络图

  • Fig.7 Envelope diagram of responses by moving loads for the SFT with vertical elastic supports at both ends

  • 位移响应的极值是研究者关注的重点,同时为了更充分地描述移动荷载响应的规律,图7和图8分别绘出了各种结构参数组合下悬浮隧道结构采用EC1和EC2两种边界条件的移动荷载响应包络图.由图7可知:kf取相同值而s1s2取不同值时跨中附近位置的竖向最大位移值基本一致; 在kf取103、104和105三种情况下,s的大小对两端竖向最大位移值有显著的影响,随着s的增大,两端最大位移值逐渐变小,最终变为0.总的说来,悬浮隧道结构跨内部分的最大位移值基本上由kf决定,而端部位移与s1s2取值有关,端部约束刚度的增加有抑制端部竖向振动的作用.在图7(c),7(f),7(i)中s2→∞时右端竖向位移为0,更是说明了这一点,因此在实际工程中,s的取值需大至一定程度,用以抑制端部位移.

  • 在图8所示的多组参数组合下EC2两端转动弹性约束时悬浮隧道的移动荷载响应包络图,其中kf选取103、104和105三组值,s3s4的关系考虑三种情形(即s3=ss4=s; s3=ss4=10s; s3=ss4→∞),s的取值为s=0,100,102,103s→∞五种情况.由图8可知,跨中部分的竖向最大位移取决于kf值的大小,由103、104和105三组值对应的无量纲竖向位移可知,kf越大,跨中部分最大竖向位移越小.不论s3s4取值多少,两端的竖向位移均为0,这与EC2边界条件下两端竖向位移已经约束有关; 靠近端部区域的竖向最大位移则与s3s4的大小密切相关,整体上该区域的竖向最大位移随着s的增大而变小.此外还可发现,无论kf的取值与s3s4的关系如何,当s增至103时,其位移包络图已与s→∞时非常接近.

  • 图8 两端转动弹性支撑悬浮隧道的移动荷载响应包络图

  • Fig.8 Envelope diagram of responses by moving loads for the SFT with rotational elastic supports at both ends

  • 3 结论

  • 1)在采用无量纲刚度s建立悬浮隧道两端各类竖向或转动弹性约束刚度联系的前提下,通过动力学建模与自振特性研究,发现结构两端采用竖向弹性约束边界EC1时频率的敏感区间为s∈[102,104],采用转动弹性约束边界EC2时频率的敏感区间为s∈[100,102].s→0和s→∞时,弹性约束边界对应的各阶频率值均接近于相应理想边界的频率值.

  • 2)竖向弹性支撑EC1边界对应的标准化正交模态的端部值不为零,且其值随着s的增大而减小,最终趋近于零,s1s2相等与否决定各阶模态是否在跨度范围内具有对称性.竖向弹性支撑EC2边界对应的标准化正交模态端部竖向位移为零,端部转角随着s的增大而减小,整体上振动模态形状与正弦谐波类似,随阶次的增加交替基本呈现正对称与反对称分布.

  • 3)EC1和EC2两种弹性边界条件下,列车移动荷载引起的位移最大值出现在荷载经过该位置时刻.跨中部分竖向最大位移值取决于kf的大小; 靠近两端位置的竖向位移与边界竖向或弹性支撑刚度值相关,s的增大对该区域的竖向位移有抑制作用.

  • 综上所述,本文建立了一种求解水中悬浮隧道结构自振特性与移动荷载响应的方法,实现跨内支撑刚度、边界竖向或转动约束刚度与结构的振动行为的关联,为悬浮隧道动力性能的分析提供了思路.

  • 参考文献

    • [1] 邹鹏旭,刘孟源,陈良志.波浪作用下悬浮隧道管体-锚索耦合系统水动力特性研究 [J].现代隧道技术,2021,58(3):154-162.ZOU P X,LIU M Y,CHEN L Z.Study on hydrodynamic characteristics of suspension tunnel tube and anchor cable coupling system under wave action [J].Modern Tunnel Technology,2021,58(3):154-162.(in Chinese)

    • [2] 阳志文,张华庆,李金钊,等.波流作用下悬浮隧道运动响应纵向截断模型试验研究 [J].海洋工程,2021,39(2):44-52.YANG Z W,ZHANG H Q,LI J Z,et al.Experimental study on longitudinal truncation model of suspension tunnel motion response under wave-current action [J].Ocean Engineering,2021,39(2):44-52.(in Chinese)

    • [3] 丁浩,程亮,李科.悬浮隧道结构动力响应研究进展与展望 [J].隧道建设(中英文),2019,39(6):901-912.DING H,CHENG L,LI K.Research progress and prospect of dynamic response of suspension tunnel structures [J].Tunnel Construction(English and Chinese),2019,39(6):901-912.(in Chinese)

    • [4] FOGAZZI P,PEROTTI F.The dynamic response of seabed anchored floating tunnels under seismic excitation [J].Earthquake Engineering & Structural Dynamics,2000,29(3).

    • [5] 童俊辉,彭剑,符翔,等.水下悬浮隧道张力腿的时滞减振控制研究 [J].振动与冲击,2021,40(15):48-53.TONG J H,PENG J,FU X,et al.Research on time-delay vibration control of tension leg in underwater suspension tunnel [J].Journal of Vibration and Shock,2021,40(15):48-53.(in Chinese)

    • [6] 易壮鹏,李小超,曾有艺.张力腿悬浮隧道的动力学模型和自振特性 [J].中外公路,2019,39(1):180-184.YI Z P,LI X C,ZENG Y Y.Dynamic model and natural vibration characteristics of tension leg suspension tunnel [J].Chinese and Foreign Highways,2019,39(1):180-184.(in Chinese)

    • [7] 刘迁苹.水下悬浮隧道断索、碰撞的分析模型及动态响应研究 [D].大连:大连理工大学,2021.LIU Q P.Analysis model and dynamic response Research of cable break and collision in underwater Suspension Tunnel [D].Dalian:Dalian University of Technology,2021.(in Chinese)

    • [8] 蒋树屏,李勤熙.不同断面型式悬浮隧道管段波动特性实验研究 [J].地下空间与工程学报,2019,15(2):416-422.JIANG S P,LI Q X.Experimental study on fluctuation characteristics of suspension tunnels with different sections [J].Chinese Journal of Underground Space and Engineering,2019,15(2):416-422.(in Chinese)

    • [9] 阳帅,颜晨宇,巫志文.随机地震作用下悬浮隧道锚索的动力响应分析 [J].防灾减灾工程学报,2021,41(2):304-310.YANG S,YAN C Y,WU Z W.Dynamic response analysis of suspension tunnel anchor cable under random earthquake [J].Journal of Disaster Prevention and Mitigation Engineering,2021,41(2):304-310.(in Chinese)

    • [10] 罗刚,郭正儒,张玉龙,等.水下爆炸-波浪联合作用下悬浮隧道响应分析 [J].振动与冲击,2022,41(6):256-264,288.LUO G,GUO Z R,ZHANG Y L,et al.Response analysis of suspension tunnel under the combined action of underwater explosion and wave [J].Journal of Vibration and Shock,202,41(6):256-264,288.(in Chinese)

    • [11] SATO M,KANIE S,MIKAMI T.Mathematical analogy of a beam on elastic supports as a beam on elastic foundation[J].Applied Mathematical Modelling,2008,32(5):688-699.

    • [12] 项贻强,林亨,陈政阳.移动荷载作用下悬浮隧道动力响应分析 [J].振动与冲击,2018,37(4):82-87.XIANG Y Q,LIN H,CHEN Z Y.Dynamic response analysis of suspension tunnel under moving load [J].Journal of Vibration and Shock,2018,37(4):82-87.(in Chinese)

    • [13] 董满生,张嫄,唐飞,等.等间距移动荷载作用下水中悬浮隧道管体的位移响应 [J].应用力学学报,2016,33(5):760-765,931.DONG M S,ZHANG Y,TANG F,et al.Displacement response of suspended tunnel under equidistant moving loads [J].Chinese Journal of Applied Mechanics,2016,33(5):760-765,931.(in Chinese)

    • [14] TARIVERDILO S,MIRZAPOUR J,SHAHMARDANI M,et al.Vibration of submerged floating tunnels due to moving loads[J].Applied Mathematical Modelling,2011,35(11):5413-5425.

    • [15] 田雪飞,董满生,逄焕平,等.海洋内波和洋流联合作用下水中悬浮隧道的动力响应 [J].应用数学和力学,2014,35(1):71-80.TIAN X F,DONG M S,PANG H P,et al.Dynamic response of floating tunnel in water under combined action of internal waves and ocean currents [J].Applied Mathematics and Mechanics,2014,35(1):71-80.(in Chinese)

    • [16] 张嫄,董满生,唐飞.冲击荷载作用下水中悬浮隧道的位移响应 [J].应用数学和力学,2016,37(5):483-491.ZHANG Y,DONG M S,TANG F.Displacement response of suspension tunnel in water under impact load [J].Applied Mathematics and Mechanics,2016,37(5):483-491.(in Chinese)

    • [17] 项贻强,高超奇,杨云深.两端任意约束的弹性支撑梁在移动荷载下的动力响应 [J].哈尔滨工业大学学报,2022,54(3):12-19.XIANG Y Q,GAO Q,YANG Y S.Dynamic response of elastic supported beams with arbitrary constraints at both ends under moving loads [J].Journal of Harbin Institute of Technology,2022,54(3):12-19.(in Chinese)

    • [18] LUONGO A,REGA G,VESTRONI F.Planar non-linear free vibrations of an elastic cable [J].International Journal of Non-Linear Mechanics,1984,19(1):39-52.

    • [19] REGA G,BENEDETTINI F.Planar non-linear oscillations of elastic cables under subharmonic resonance conditions [J].Journal of Sound and Vibration,1989,132(3):367-381.

    • [20] XIE J M,CHEN J Y.Dynamic response analysis of submerged floating tunnel-canyon water system under earthquakes [J].Applied Mathematical Modelling,2021,94:757-779.

    • [21] 张莹.400km/h高速动车组车体载荷谱研究 [D].北京:北京交通大学,2019.ZHANG Y.Research on load spectrum of 400km/h high speed EMU [D].Beijing:Beijing Jiaotong University,2019.(in Chinese)

  • 参考文献

    • [1] 邹鹏旭,刘孟源,陈良志.波浪作用下悬浮隧道管体-锚索耦合系统水动力特性研究 [J].现代隧道技术,2021,58(3):154-162.ZOU P X,LIU M Y,CHEN L Z.Study on hydrodynamic characteristics of suspension tunnel tube and anchor cable coupling system under wave action [J].Modern Tunnel Technology,2021,58(3):154-162.(in Chinese)

    • [2] 阳志文,张华庆,李金钊,等.波流作用下悬浮隧道运动响应纵向截断模型试验研究 [J].海洋工程,2021,39(2):44-52.YANG Z W,ZHANG H Q,LI J Z,et al.Experimental study on longitudinal truncation model of suspension tunnel motion response under wave-current action [J].Ocean Engineering,2021,39(2):44-52.(in Chinese)

    • [3] 丁浩,程亮,李科.悬浮隧道结构动力响应研究进展与展望 [J].隧道建设(中英文),2019,39(6):901-912.DING H,CHENG L,LI K.Research progress and prospect of dynamic response of suspension tunnel structures [J].Tunnel Construction(English and Chinese),2019,39(6):901-912.(in Chinese)

    • [4] FOGAZZI P,PEROTTI F.The dynamic response of seabed anchored floating tunnels under seismic excitation [J].Earthquake Engineering & Structural Dynamics,2000,29(3).

    • [5] 童俊辉,彭剑,符翔,等.水下悬浮隧道张力腿的时滞减振控制研究 [J].振动与冲击,2021,40(15):48-53.TONG J H,PENG J,FU X,et al.Research on time-delay vibration control of tension leg in underwater suspension tunnel [J].Journal of Vibration and Shock,2021,40(15):48-53.(in Chinese)

    • [6] 易壮鹏,李小超,曾有艺.张力腿悬浮隧道的动力学模型和自振特性 [J].中外公路,2019,39(1):180-184.YI Z P,LI X C,ZENG Y Y.Dynamic model and natural vibration characteristics of tension leg suspension tunnel [J].Chinese and Foreign Highways,2019,39(1):180-184.(in Chinese)

    • [7] 刘迁苹.水下悬浮隧道断索、碰撞的分析模型及动态响应研究 [D].大连:大连理工大学,2021.LIU Q P.Analysis model and dynamic response Research of cable break and collision in underwater Suspension Tunnel [D].Dalian:Dalian University of Technology,2021.(in Chinese)

    • [8] 蒋树屏,李勤熙.不同断面型式悬浮隧道管段波动特性实验研究 [J].地下空间与工程学报,2019,15(2):416-422.JIANG S P,LI Q X.Experimental study on fluctuation characteristics of suspension tunnels with different sections [J].Chinese Journal of Underground Space and Engineering,2019,15(2):416-422.(in Chinese)

    • [9] 阳帅,颜晨宇,巫志文.随机地震作用下悬浮隧道锚索的动力响应分析 [J].防灾减灾工程学报,2021,41(2):304-310.YANG S,YAN C Y,WU Z W.Dynamic response analysis of suspension tunnel anchor cable under random earthquake [J].Journal of Disaster Prevention and Mitigation Engineering,2021,41(2):304-310.(in Chinese)

    • [10] 罗刚,郭正儒,张玉龙,等.水下爆炸-波浪联合作用下悬浮隧道响应分析 [J].振动与冲击,2022,41(6):256-264,288.LUO G,GUO Z R,ZHANG Y L,et al.Response analysis of suspension tunnel under the combined action of underwater explosion and wave [J].Journal of Vibration and Shock,202,41(6):256-264,288.(in Chinese)

    • [11] SATO M,KANIE S,MIKAMI T.Mathematical analogy of a beam on elastic supports as a beam on elastic foundation[J].Applied Mathematical Modelling,2008,32(5):688-699.

    • [12] 项贻强,林亨,陈政阳.移动荷载作用下悬浮隧道动力响应分析 [J].振动与冲击,2018,37(4):82-87.XIANG Y Q,LIN H,CHEN Z Y.Dynamic response analysis of suspension tunnel under moving load [J].Journal of Vibration and Shock,2018,37(4):82-87.(in Chinese)

    • [13] 董满生,张嫄,唐飞,等.等间距移动荷载作用下水中悬浮隧道管体的位移响应 [J].应用力学学报,2016,33(5):760-765,931.DONG M S,ZHANG Y,TANG F,et al.Displacement response of suspended tunnel under equidistant moving loads [J].Chinese Journal of Applied Mechanics,2016,33(5):760-765,931.(in Chinese)

    • [14] TARIVERDILO S,MIRZAPOUR J,SHAHMARDANI M,et al.Vibration of submerged floating tunnels due to moving loads[J].Applied Mathematical Modelling,2011,35(11):5413-5425.

    • [15] 田雪飞,董满生,逄焕平,等.海洋内波和洋流联合作用下水中悬浮隧道的动力响应 [J].应用数学和力学,2014,35(1):71-80.TIAN X F,DONG M S,PANG H P,et al.Dynamic response of floating tunnel in water under combined action of internal waves and ocean currents [J].Applied Mathematics and Mechanics,2014,35(1):71-80.(in Chinese)

    • [16] 张嫄,董满生,唐飞.冲击荷载作用下水中悬浮隧道的位移响应 [J].应用数学和力学,2016,37(5):483-491.ZHANG Y,DONG M S,TANG F.Displacement response of suspension tunnel in water under impact load [J].Applied Mathematics and Mechanics,2016,37(5):483-491.(in Chinese)

    • [17] 项贻强,高超奇,杨云深.两端任意约束的弹性支撑梁在移动荷载下的动力响应 [J].哈尔滨工业大学学报,2022,54(3):12-19.XIANG Y Q,GAO Q,YANG Y S.Dynamic response of elastic supported beams with arbitrary constraints at both ends under moving loads [J].Journal of Harbin Institute of Technology,2022,54(3):12-19.(in Chinese)

    • [18] LUONGO A,REGA G,VESTRONI F.Planar non-linear free vibrations of an elastic cable [J].International Journal of Non-Linear Mechanics,1984,19(1):39-52.

    • [19] REGA G,BENEDETTINI F.Planar non-linear oscillations of elastic cables under subharmonic resonance conditions [J].Journal of Sound and Vibration,1989,132(3):367-381.

    • [20] XIE J M,CHEN J Y.Dynamic response analysis of submerged floating tunnel-canyon water system under earthquakes [J].Applied Mathematical Modelling,2021,94:757-779.

    • [21] 张莹.400km/h高速动车组车体载荷谱研究 [D].北京:北京交通大学,2019.ZHANG Y.Research on load spectrum of 400km/h high speed EMU [D].Beijing:Beijing Jiaotong University,2019.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码