en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

汪志昊,E-mail:wangzhihao@ncwu.edu.cn

中图分类号:TU311.3;TU333

文献标识码:A

文章编号:1672-6553-2023-21(4)-082-009

DOI:10.6052/1672-6553-2023-047

参考文献 1
邱雅柔,唐迪,包士毅,等.风诱导塔振动对塔气动特性影响研究 [J].机械工程学报,2018,54(20):106-114.QIU Y R,TANG D,BAO S Y,et al.Study of the wind-induced tower vibrations affect on aerodynamic characteristics [J].Journal of Mechanical Engineering,2018,54(20):106-114.(in Chinese)
参考文献 2
马文勇,汪冠亚,袁欣欣,等.圆柱结构涡激共振耦合效应及其抗风设计参数 [J].中国公路学报,2018,31(5):74-83,105.MA W Y,WANG G Y,YUAN X X,et al.Coupling effect of vortex induced vibration on circular cylinder and its parameters on wind resistance design [J].China Journal of Highway and Transport,2018,31(5):74-83,105.(in Chinese)
参考文献 3
陈鑫,李爱群,王泳,等.自立式高耸结构风振控制方法研究 [J].振动与冲击,2015,34(7):149-155,177.CHEN X,LI A Q,WANG Y,et al.Investigation on techniques for wind-inducedvibration control of self-standing high-rise structures [J].Journal of Vibration and Shock,2015,34(7):149-155,177.(in Chinese)
参考文献 4
傅继阳,吴玖荣,徐安.高层建筑抗风优化设计和风振控制相关问题研究 [J].工程力学,2022,39(5):13-33,43.FU J Y,WU J R,XU A.Some issues on wind resistant optimization design and on wind-induced vibration control of tall buildings [J].Engineering Mechanics,2022,39(5):13-33,43.(in Chinese)
参考文献 5
KAVYASHREE B G,PATIL S,RAO V S.Review on vibration control in tall buildings:from the perspective of devices and applications [J].International Journal of Dynamics and Control,2021,9(4):1-16.
参考文献 6
汪志昊,郜辉,张新中,等.单摆式电涡流TMD装置优化设计与模型试验研究 [J].振动与冲击,2018,37(9):1-7.WANG Z H,GAO H,ZHANG X Z,et al.Optimization design and model tests for a pendulum eddy-current tuned mass damper [J].Journal of Vibration and Shock,2018,37(9):1-7.(in Chinese)
参考文献 7
陈磊,宋波,王希慧,等.脱排一体式钢塔设置TMD对减轻风致振动的控制研究 [J].建筑结构学报,2020,41(S1):25-35.CHEN L,SONG B,WANG X H,et al.Study on control of reducing wind-induced vibration by TMD in integrated steel tower [J].Journal of Buildings Structures,2020,41(S1):25-35.(in Chinese)
参考文献 8
陈鑫,李爱群,张志强,等.自立式高耸结构悬吊式TMD减振动力试验与分析 [J].振动工程学报,2016,29(2):193-200.CHEN X,LI A Q,ZHANG Z Q,et al.Dynamic experiment and analysis of self-standing high-rise structures with pendulum TMD [J].Journal of Vibration Engineering,2016,29(2):193-200.(in Chinese)
参考文献 9
张瑞甫,曹嫣如,潘超.惯容减震(振)系统及其研究进展 [J].工程力学,2019,36(10):8-27.ZHANG R F,CAO Y R,PAN C.Inerter system and its state-of-the-art [J].Engineering Mechanics,2019,36(10):8-27.(in Chinese)
参考文献 10
MA R S,BI K M,HAO H.Inerter-based structural vibration control:a state-of-the-art review [J].Engineering Structures,2021,243:112655.
参考文献 11
叶昆,舒率.基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究 [J].动力学与控制学报,2020,18(5):57-62.YE K,SHU L.Optimal design of base-isolated structure withsupplemental tuned inerter damper based onperformance requirement [J].Journal of Dynamics and Control,2020,18(5):57-62.(in Chinese)
参考文献 12
苏宁,彭士涛,洪宁宁.高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究 [J].工程力学,2022,39(11):143-156.SU N,PENG S T,HONG N N.The wind-induced vibration control of high-rise chimneys by a tuned mass damper inerter(TMDI)[J].Engineering Structures,2022,39(11):143-156.(in Chinese)
参考文献 13
IKAGO K,SUGIMURA Y,SAITO K,et al.Modal response characteristics of a multiple degree-of-freedom structure incorporated with tuned viscous mass dampers [J].Journal of Asian Architecture and Building Engineering,2012,11(2):375-382.
参考文献 14
GARRIDO H,CURADELLI O,AMBROSINI D.Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper [J].Engineering Structures,2013,56(6):2149-2153.
参考文献 15
李亚峰,李寿英,陈政清.旋转惯质双调谐质量阻尼器的优化与风振控制研究 [J].振动工程学报,2020,33(2):295-303.LI Y F,LI S Y,CHEN Z Q.Optimization and wind-induced vibration suppression of rotational inertia doubled tuned mass damper [J].Journal of Vibration Engineering,2020,33(2):295-303.(in Chinese)
参考文献 16
张瑞甫,曹嫣如,潘超.典型激励下调谐质量惯容系统TMIS的轻量化结构控制 [J].工程力学,2022,39(9):58-71.ZHANG R F,CAO Y R,PAN C.Lightweight structural control based on tuned mass inerter system(TMIS)under typical excitation [J].Engineering Mechanics,2022,39(9):58-71.(in Chinese)
参考文献 17
ZHANG R F,CAO Y R,DAI K S.Response control of wind turbines with ungrounded tuned mass inerter system(TMIS)under wind loads [J].Wind Structures,2021,32(6):573-586.
参考文献 18
陈鑫,李爱群,王泳,等.国内外规范自立式高耸结构等效风荷载及响应比较 [J].建筑结构学报,2014,35(4):304-311.CHEN X,LI A Q,WANG Y,et al.Comparative study on equivalent wind loads and dynamic responses of self-standing high-rise structures in different codes [J].Journal of Buildings Structures,2014,35(4):304-311.(in Chinese)
参考文献 19
林家浩,张亚辉,赵岩.虚拟激励法在国内外工程界的应用回顾与展望 [J].应用数学和力学,2017,38(1):1-32.LIN J H,ZHANG Y H,ZHAO Y.The pseudo-excitation method and its industrial applications in China and abroad [J].Applied Mathematics and Mechanics,2017,38(1):1-32.(in Chinese)
参考文献 20
同长虹,张小栋.调谐质量阻尼器参数优化及其应用 [J].振动、测试与诊断,2007,27(2):146-149,173.TONG C H,ZHANG X D.Parameter optimization of toned mass dampers and its application to bridge vibration [J].Journal of Vibration.Measure & Diagnosis,2007,27(2):146-149,173.(in Chinese)
参考文献 21
蒋友宝,刘志,贺广零,等.考虑脉动风场的3MW风机钢塔筒基础底板脱开失效概率 [J].工程力学,2021,38(5):199-208.JIANG Y B,LIU Z,HE G L,et al.Failure probability of foundation slab void for 3 MW wind turbine steel tower considering turbulent wind field [J].Engineering Mechanics,2021,38(5):199-208.(in Chinese)
参考文献 22
顾明,叶丰.高层建筑风致响应和等效静力风荷载的特征 [J].工程力学,2006,23(7):93-98.GU M,YE F.Characteristics of wind induced responses and equivalent static wind loads of tall buildings [J].Engineering Mechanics,2006,23(7):93-98.(in Chinese)
参考文献 23
GB 50009-2012 建筑结构荷载规范 [S].北京:中国建筑工业出版社,2012.GB 50009-2012 Load code for design of building structures [S].Beijing:China Architecture Building Press,2012.(in Chinese)
参考文献 24
朱晓升,丁振宇,高增梁.烟气脱硫塔风诱导振动的TMD控制研究 [J].压力容器,2013,30(12):8-14.ZHU X S,DING Z Y,GAO Z L.Research on TMD control for flue gas desulfurization towers under wind-induced vibration [J].Pressure Vessel Technology,2013,30(12):8-14.(in Chinese)
目录contents

    摘要

    高耸脱硫塔属于圆截面薄壁钢结构,具有柔度大、阻尼小、上部截面突变等特征,在风荷载作用下易发生较为强烈的顺风向和横风向振动.为实现脱硫塔风致振动的有效与轻量化控制,引入调谐质量惯容系统(TMIS),基于推导的脱硫塔-TMIS耦合系统频响函数,分别建立了TMIS对脱硫塔的顺风向和横风向减振参数优化设计方法,并对比分析了TMIS、传统调谐质量阻尼器(TMD)、调谐质量惯容阻尼器(TMDI)对脱硫塔的减振效果.结果表明:以脱硫塔频域响应和H范数为目标优化设计的TMIS对脱硫塔顺风向和横风向风致振动均有较好的控制效果;与顺风向减振相比,TMIS横风向减振具有更好的轻量化效应;与TMD、TMDI相比,TMIS表现出较好的减振优势.

    Abstract

    The tall desulphurization tower belongs to the thin-wall steel structure with round section, which has the characteristics of large flexibility, small damping and abrupt change of upper section. Under wind load, the tower is prone to severe vibration in along-wind and across-wind directions. In order to realize efficient and lightweight control of the wind-induced vibration of the tower, a tuned mass inerter system (TMIS) is adopted in this study. Based on the derived frequency response function formula of the desulfurization tower-TMIS coupling system, theoptimal design method of the TMIS for both along-wind and across-wind induced vibration control of the toweris established. Finally, the vibration control performance of TMIS on the tower is compared with that of traditional tuned mass damper (TMD) and tuned mass damper inerter (TMDI). The results show that the TMIS optimized with the frequency domain response and H norm as targets has excellent control performance on vibration mitigation of the tower in both along-wind and across-wind directions.Moreover, the TMIS demonstrates better lightweight effect on vibration control in across-wind direction than that in along-wind direction, and its control performance is superior over that of the TMD and TMDI.

  • 引言

  • 大型烟气脱硫塔是石油化工企业的重要设备,属于自立式高耸薄壁钢结构,对风荷载作用较为敏感[1].脱硫塔底部进行工业废气的脱硫处理,上段设置高耸钢烟囱以提升排烟高度,截面突变进一步削弱了结构上部的刚度和承载力.除常见的顺风向抖振外,脱硫塔在特定风速下易发生更剧烈的横风向涡激共振[2].鉴于塔顶空间有限,为保证脱硫塔安全稳定运行,降低风致振动对结构安全与疲劳损伤影响,有必要对脱硫塔开展轻量化减振研究[3-4].

  • 调谐质量阻尼器(TMD)作为一种常见的吸能减振装置,已被广泛用于高耸结构和高层建筑的风振控制[56].陈磊等[7]对比了某脱排一体式钢塔风振响应的数值模拟和现场实测结果,并设计了TMD减振装置,结果表明TMD可以降低结构的位移和加速度响应,但会增大上部结构的应力.针对某高耸钢烟囱,陈鑫等[8]开展了基于悬吊式TMD的结构模型减振试验与数值仿真分析,结果表明悬吊式TMD能够增加结构的等效阻尼比,显著降低结构动力响应.为保证减振效果,传统TMD往往需要较大的运动质量,既增加了结构受力负担,又增加了工程成本.惯容(Inerter)具有质量放大效应[9],与传统阻尼装置组合使用可实现耗能增效[10].叶昆等[11]将调谐惯容阻尼器(TID)附加在基础隔震结构的隔震层,研究表明,最优TID能够明显降低隔震层水平位移和上部结构加速度.苏宁等[12]推导了安装调谐质量惯容阻尼器(TMDI)的高耸烟囱结构的风振响应解析解,分析了惯容器的连接位置对阻尼器减振效果的影响,提出了TMDI参数设计公式.

  • 与惯容需要接地或连接到结构较低位置的TMDI相比,单端连接主结构的惯容减振系统有望在实现惯容元件耗能增效的同时,解决惯容元件连接难题.借鉴Ikago等[13]研发的调谐黏滞质量阻尼器(TVMD),Garrido等[14]提出了旋转双调谐质量阻尼器(RIDTMD).李亚峰等[15]研究了RIDTMD对某吸热塔的的风致振动控制效果,结果表明,相对传统TMD具有明显增效作用.为实现结构的轻量化减振,张瑞甫等[1617]提出了由调谐质量、调谐弹簧和惯容子系统组成的调谐质量惯容减振系统(TMIS),其中惯容子系统包括并联连接的惯容元件与阻尼元件,以及与它们串联的刚度元件.

  • 鉴于TMIS的轻量化减振优点,本文以某变截面高耸脱硫塔为研究对象,引入TMIS开展风致振动控制,推导得到脱硫塔-TMIS耦合系统的频响函数表达式; 结合脱硫塔顺风向、横风向风振特性,分别以结构频域响应和H范数为优化目标,建立基于遗传算法的减振参数优化设计方法,并系统对比TMD、TMDI和TMIS对脱硫塔的减振效果.

  • 1 脱硫塔-阻尼器系统

  • 1.1 脱硫塔有限元模型

  • 某圆形脱硫塔高85m,主体采用Q235钢结构,自下而上按截面尺寸分为五段,其中第2段和第4段为变径段,分段结构尺寸见表1.

  • 表1 脱硫塔各分段内径与厚度

  • Table1 Inner diameter and thickness for each section of the tower

  • 将该脱硫塔视为支座底面全约束的悬臂梁结构,基于ANSYS软件采用梁单元(Beam 188)建立结构有限元模型,见图1(a).计算得到的脱硫塔前2阶模态振动频率分别为0.908Hz、4.192Hz,其中第1阶振型见图1(b),表现为结构上段的弯曲振动.出于保守考虑,设定脱硫塔前2阶模态阻尼比为0.5%[18],采用超单元法提取结构质量矩阵M、刚度矩阵K和阻尼矩阵C,构建脱硫塔数值模型进行后续分析.

  • 图1 脱硫塔有限元模型及其第1阶振型

  • Fig.1 FE model and of the first mode shape of the desulfurization tower

  • 1.2 脱硫塔-阻尼器系统运动方程

  • 图2给出了安装于塔顶的传统TMD、并联惯容器的双端TMDI和TMIS系统构型及安装位置示意,其中mtctkt分别表示阻尼器运动质量、阻尼系数和刚度系数,min表示惯容的虚质量,cinkin分别表示惯容子系统的阻尼系数和刚度系数.

  • 图2 脱硫塔-阻尼器系统模型示意

  • Fig.2 Desulfurization tower-damper system model

  • 将脱硫塔简化为广义单自由度体系:

  • m=ΦTMΦ,c=ΦTCΦk=ΦTKΦ
    (1)
  • 式中,mck分别表示脱硫塔的广义质量、广义刚度和广义阻尼; MCK分别表示脱硫塔的质量、阻尼和刚度矩阵; Φ为脱硫塔的振型函数,对本文风振响应控制直接取脱硫塔第1阶模态.

  • 脱硫塔-TMD系统、脱硫塔-TMDI系统和脱硫塔-TMIS系统的运动方程分别表示为式(2)、式(3)和式(4):

  • mx¨+cx˙+ctx˙-x˙t+kx+ktx-xt=f(t)mtx¨t+ctx˙t-x˙+ktxt-x=0
    (2)
  • mx¨+min φ(φ-1)x¨-x¨t+cx˙-ct+cin x˙t+kx-kt+kin xt=f(t)mtx¨+x¨t+min (1-φ)x¨-x¨t+ct+cin x˙t+kt+kinxt=0
    (3)
  • mx¨+cx˙+kx+ktx-xt+kin x-xin =f(t)mtx¨t+min x¨t-x¨in +cin x˙t-x˙in+ktxt-x=0min x¨in -x¨t+cin x˙in -x˙t+kin xin -x=0
    (4)
  • 式中,xxtxin分别表示脱硫塔、阻尼器实际质量和惯容元件的位移响应; ft)表示归一化的广义风荷载; φ表示TMDI的惯容器连接位置.

  • 鉴于TMD和TMDI减振研究已较为成熟,下面仅对脱硫塔-TMIS系统运动方程及其风振响应开展公式推导与数值分析.

  • 1.3 脱硫塔-TMIS系统风振响应分析

  • 首先定义以下无量纲参数:

  • μt=mt/m,μin=min /mtξin =cin /2mtktut=ωt/ω0,uin=kin /kt
    (5)
  • 式中,μtμin分别为TMIS系统的实际质量和惯容的虚质量与主结构广义质量之比; ξin为惯容子系统的名义阻尼比; υt表示TMIS和主结构的频率比; ω0表示脱硫塔第1阶圆频率; υin表示惯容子系统弹簧和调谐弹簧的刚度比.

  • 据此可对式(4)中的质量、刚度和阻尼参数作变量代换:

  • mt=μtm,min =μin μtmc=2mω0ξ0,cin =2mξin μtvtω0k=mω02,kt=μtmω0Ut2kin =vin μtmω0Ut2
    (6)
  • 式中,ξ0表示脱硫塔固有阻尼比.

  • 在顺风向或横风向风荷载下,脱硫塔-TMIS系统的运动方程可表示为:

  • M1X¨+C1X˙+K1X=F(t)
    (7)
  • 式中,X=xxtxin TFt=[ft/m0,0]T; 质量、阻尼、刚度矩阵M1C1K1分别为:

  • (8)
  • (9)
  • (10)
  • ft)=eiωt,则X=H(iω)·eiωt,其中H(iω)=[H0(iω),Ht(iω),Hin(iω)]TH0(iω)、Ht(iω)和Hin(iω)分别表示脱硫塔-TMIS系统主结构、TMIS质量块和惯容单元的频响函数.代入式(7)可得:

  • H(iω)=1m-ω2M1+iωC1+K1-1[1,0,0]T=A11A12A13A21A22A23A31A32A33-1100
    (11)
  • A11=-ω2+i2ωω0ξ0+ω021+μtvt2+vin μtvt2A12=-μtω0vt2,A21=A12A13=-vin μtω0vt2,A31=A13A22=-ω2μin +μtμin+i2ωξin μtvtω0+μtω0vt2A23=ω2μtμin -i2ωξin μtvtω0,A32=A23A33=-ω2μtμin +i2ωξin μtvtω0+vin μtω0vt2
    (12)
  • 在风荷载作用下,脱硫塔-TMIS系统主结构的均方位移响应可表示为:

  • σx=ω1ω2 Sx(iω)dω=ω1ω2 H0(iω)2SF(iω)dω
    (13)
  • 式中,ω1ω2表示积分频率范围,在结构1阶频率附近进行积分求解; Sx(iω)为结构响应谱,采用计算效率较高的虚拟激励法[19]求解; SF(iω)为结构外荷载谱,可由风速谱得到.

  • 2 阻尼器参数设计

  • 2.1 TMD与TMDI参数取值

  • TMD最优频率比和最优阻尼比,采用Den Hartog[20]给出的经典不动点法公式计算:

  • β=11+μt
    (14)
  • ξt=3μt/81+μt
    (15)
  • 式中,β=ωt/ω0表示TMD与主结构的频率之比; ξt=ct/(2mtωt)表示TMD阻尼比.

  • TMDI采用文献经验公式[12]进行参数设计:

  • β=11+μt+μs(1-φ)211+μt+μs(1-φ)2
    (16)
  • ξt=14μt+μs(1-φ)21+μt+μs(1-φ)2μt+μs(1-φ)21+μt+μs(1-φ)2
    (17)
  • 其中,TMDI惯容具体连接位置φ根据惯容起增强作用的判定条件[12]确定:

  • μs(1-φ)2/μt1
    (18)
  • 式中,μs=min/m,设定惯容惯性质量比μs=20%.以连接处的振型值表示惯容器连接位置,即φ=Φz).结合脱硫塔模型参数,确定安装于脱硫塔第27号单元,即距塔顶约12m处,此时Φz)=0.7064.

  • 2.2 TMIS顺风向减振参数优化

  • 对于脱硫塔顺风向减振,以脉动风荷载作用下结构顶部频域位移响应σx最小为振动控制优化目标,首先确定TMIS的实际模态质量比μt,lim,然后采用遗传算法对μinξinυtυin 4个参数进行寻优,分析频域减振率随TMIS质量比的变化规律,最后以确定的频域位移响应σx,lim为目标,寻求满足该减振效果的TMIS最小质量比及其余4个参数,以开展与TMD、TMDI的时域减振效果对比.

  • 其中,遗传算法的控制参数设置如下:最大进化代数设置为150代,种群规模900,交叉概率0.8,变异概率0.05,新生成种群比例为0.25,计算精度为1×10-9.

  • 2.3 TMIS横风向减振参数优化

  • 对于脱硫塔横风向减振,结合式(11)脱硫塔-TMIS系统的频响函数,基于H优化指标,同样采用遗传算法对TMIS进行参数优化:

  • G(iω)=supω τmaxH0(iω)
    (19)
  • 式中,G(iω)表示脱硫塔-TMIS系统的H范数,τmax表示最大奇异值.

  • 综上,总结得到的TMIS对脱硫塔顺风向、横风向减振参数优化流程见图3.

  • 图3 TMIS对脱硫塔减振参数优化流程

  • Fig.3 Parameter optimization of the TMIS for thedesulfurization tower

  • 3 风振控制效果分析

  • 3.1 顺风向减振分析

  • 脱硫塔顺风向风振响应分析采用Davenport风速谱[21]进行荷载谱的构建和脉动风速时程的模拟:

  • nSu(n)σu2=23y1+y24/3
    (20)
  • 式中,Sun)为脉动风功率谱; n为频率; u为顺风向脉动风速; y=1200n/u-10为无量纲频率,u-10=24.9m/s为脱硫塔10m高度处的平均风速,由基本风压换算得到; σu为脉动风速均方根.

  • 根据式(14)~式(17)计算得到11组不同质量比的TMD和TMDI设计参数,同时采用遗传算法寻优获得相应的TMIS最优参数.表2给出了0.5%、2%、5%、10%实际质量比下对应的4组TMIS最优参数结果及频域位移减振率.

  • 表2 结构顺风向频域响应最优TMIS参数

  • Table2 Optimal parameters of TMIS for along-wind response in frequency domain

  • 注: γ=1-σx1/σx

  • 图4 结构频域减振率对比

  • Fig.4 Comparison of vibration reduction rates in frequency domain

  • 图4对比了TMD、TMDI、TMIS的频域减振率γ随质量比的变化规律.由图可知:三种阻尼器的减振率均随实际质量比μt的增大而提高,当μt取5%时,TMIS和TMDI的均方位移减振率与TMD相比分别提升2.3%和2.9%; 当μt大于5%之后,减振率增速放缓.因此,后续时域减振分析各阻尼器质量比μt均限制在5%以内.此外,同质量比下,TMDI和TMIS相较于传统TMD均具有明显优势,且质量比越大,其轻量化效应越明显.

  • 图5 阻尼器最优阻尼系数取值对比

  • Fig.5 Comparison of optimal damping coefficients of different dampers

  • 图5进一步对比了不同质量比下三种阻尼器的阻尼系数取值,可以看出TMDI的最优阻尼系数取值远高于TMD和TMIS.分析可知:TMDI通过提高双端惯容元件的虚质量以及更大的阻尼来限制结构两端的相对位移,而TMIS将惯容子系统与TMD刚度元件并联,通过较小的阻尼即可实现对主结构能量的有效耗散.

  • 由上面减振结果可以看出,TMDI也表现出明显的减振增效作用,且同等质量比下减振率超过TMIS.但TMDI较大的阻尼取值、20%的惯性质量比以及大于12m的惯容连接长度,使得工程应用难度较大; 而TMIS的单端连接方式以及更小的惯性质量更适用于脱硫塔减振,因此时域减振效果对比分析仅在传统TMD和TMIS之间展开.

  • 以5%质量比TMD减振后的脱硫塔频域位移响应(σx)为目标,控制TMIS的质量比最小,采用遗传算法对TMIS设计参数寻优,得到TMIS的优化参数为μt,min=3.3%、μin=0.0717、ξin=0.0150、υt=0.9426、υin=0.0805.

  • 图6和图7分别给出了TMIS(μt=3.3%)和TMD(μt=3.3%、μt=5%)对脱硫塔顶部位移与加速度响应控制效果,其中TMIS对位移和加速度RMS均方根值减振率分别为40.7%和65.0%,与TMD(μt=5%)减振效果基本一致.可见:对应相同的控制目标,与TMD相比,TMIS可实现34%的轻量化.

  • 图6 结构顺风向位移响应对比

  • Fig.6 Comparison of along-wind displacement response of the tower

  • 图7 结构顺风向加速度响应对比

  • Fig.7 Comparison of along-wind acceleration response of the tower

  • 3.2 横风向减振分析

  • 高耸建筑的横风向荷载主要由涡激励和横风向湍流构成,当发生涡激共振时,湍流对结构振动的影响可以忽略不计[22],因此本文以涡激力作为横风向计算荷载.首先结合雷诺数和临界风速,对脱硫塔进行涡激共振校核[1823]可知:结构可能发生第1阶模态涡激共振,且共振锁定区为结构上段,即第5段.涡激共振发生时,10m高度处的风速为v10=11.7m/s,在脱硫塔上段施加卢曼正弦力[24]:

  • Fv(t)=12ρv-2AμLsin2πnst
    (21)
  • 式中:Fvt)为单元所受涡激力; v-为该单元平均风速; ns为漩涡脱落频率,此处取为结构第1阶振动频率; μL为升力系数,对于圆截面结构取0.25.

  • 为直观体现TMIS的控制效果,将无控结构的H范数归一化[G(iω)=1],给出0.5%、2%、5%、10%实际质量比下对应的4组TMIS横风向最优控制参数结果及其最小H范数,如表3所示.

  • 表3 H范数优化下TMIS参数

  • Table3 TMIS parameters with H optimization

  • 图8 结构横风向位移响应对比

  • Fig.8 Comparison of across-wind displacement response

  • 进行脱硫塔TMD(μt=5%)横风向时域减振分析,得到塔顶位移响应振幅为0.035m.以μt=5%为初始值,间隔0.1%逐步减小TMIS的实际质量比μt,进行H优化并验证时域减振效果.当限制TMIS质量比至2.3%,其横风向减振效果与5%质量比TMD基本等效(减振率误差小于0.2%).TMD(μt=2.3%、μt=5%)及TMIS(μt=2.3%)对结构减振时域对比分析结果见图8,可见等效TMIS对脱硫塔的横风向控制效果与TMD一致,位移响应RMS均方根值减振率高达93.5%.这表明当脱硫塔发生横风向涡激共振时,基于H优化得到的TMIS具有优越的减振效果; 与顺风向风振控制相比,TMIS横风向风振减振率及轻量化效应进一步提升.

  • 4 结论

  • (1)针对高耸脱硫塔顺风向和横风向风致振动的具体特点,以结构顶部均方根位移响应最小和H范数最小为优化目标,基于遗传算法建立的TMIS参数优化设计方法具有很强的有效性,对脱硫塔顺风向和横风向风振控制均具有较好的效果.

  • (2)脱硫塔在顺风向脉动风荷载作用下,3.3%实际质量比的TMIS控制效果可实现与5%质量比的TMD完全等效,此时结构顶部位移减振率和加速度减振率分别为40.7%和65.0%.

  • (3)脱硫塔在横风向涡激力作用下,TMIS对脱硫塔的减振效果及其轻量化效应更为明显,2.3%实际质量比的TMIS控制效果与5%质量比的TMD等效,此时结构顶部位移减振率高达93.5%.

  • (4)与TMDI相比,TMIS对脱硫塔减振效果略差,但TMDI需要更大的阻尼系数,且其惯容器两端需要较长的安装距离,工程应用面临困难.综合考虑,仅单端连接于主结构的TMIS更适用于脱硫塔风振控制.

  • 参考文献

    • [1] 邱雅柔,唐迪,包士毅,等.风诱导塔振动对塔气动特性影响研究 [J].机械工程学报,2018,54(20):106-114.QIU Y R,TANG D,BAO S Y,et al.Study of the wind-induced tower vibrations affect on aerodynamic characteristics [J].Journal of Mechanical Engineering,2018,54(20):106-114.(in Chinese)

    • [2] 马文勇,汪冠亚,袁欣欣,等.圆柱结构涡激共振耦合效应及其抗风设计参数 [J].中国公路学报,2018,31(5):74-83,105.MA W Y,WANG G Y,YUAN X X,et al.Coupling effect of vortex induced vibration on circular cylinder and its parameters on wind resistance design [J].China Journal of Highway and Transport,2018,31(5):74-83,105.(in Chinese)

    • [3] 陈鑫,李爱群,王泳,等.自立式高耸结构风振控制方法研究 [J].振动与冲击,2015,34(7):149-155,177.CHEN X,LI A Q,WANG Y,et al.Investigation on techniques for wind-inducedvibration control of self-standing high-rise structures [J].Journal of Vibration and Shock,2015,34(7):149-155,177.(in Chinese)

    • [4] 傅继阳,吴玖荣,徐安.高层建筑抗风优化设计和风振控制相关问题研究 [J].工程力学,2022,39(5):13-33,43.FU J Y,WU J R,XU A.Some issues on wind resistant optimization design and on wind-induced vibration control of tall buildings [J].Engineering Mechanics,2022,39(5):13-33,43.(in Chinese)

    • [5] KAVYASHREE B G,PATIL S,RAO V S.Review on vibration control in tall buildings:from the perspective of devices and applications [J].International Journal of Dynamics and Control,2021,9(4):1-16.

    • [6] 汪志昊,郜辉,张新中,等.单摆式电涡流TMD装置优化设计与模型试验研究 [J].振动与冲击,2018,37(9):1-7.WANG Z H,GAO H,ZHANG X Z,et al.Optimization design and model tests for a pendulum eddy-current tuned mass damper [J].Journal of Vibration and Shock,2018,37(9):1-7.(in Chinese)

    • [7] 陈磊,宋波,王希慧,等.脱排一体式钢塔设置TMD对减轻风致振动的控制研究 [J].建筑结构学报,2020,41(S1):25-35.CHEN L,SONG B,WANG X H,et al.Study on control of reducing wind-induced vibration by TMD in integrated steel tower [J].Journal of Buildings Structures,2020,41(S1):25-35.(in Chinese)

    • [8] 陈鑫,李爱群,张志强,等.自立式高耸结构悬吊式TMD减振动力试验与分析 [J].振动工程学报,2016,29(2):193-200.CHEN X,LI A Q,ZHANG Z Q,et al.Dynamic experiment and analysis of self-standing high-rise structures with pendulum TMD [J].Journal of Vibration Engineering,2016,29(2):193-200.(in Chinese)

    • [9] 张瑞甫,曹嫣如,潘超.惯容减震(振)系统及其研究进展 [J].工程力学,2019,36(10):8-27.ZHANG R F,CAO Y R,PAN C.Inerter system and its state-of-the-art [J].Engineering Mechanics,2019,36(10):8-27.(in Chinese)

    • [10] MA R S,BI K M,HAO H.Inerter-based structural vibration control:a state-of-the-art review [J].Engineering Structures,2021,243:112655.

    • [11] 叶昆,舒率.基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究 [J].动力学与控制学报,2020,18(5):57-62.YE K,SHU L.Optimal design of base-isolated structure withsupplemental tuned inerter damper based onperformance requirement [J].Journal of Dynamics and Control,2020,18(5):57-62.(in Chinese)

    • [12] 苏宁,彭士涛,洪宁宁.高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究 [J].工程力学,2022,39(11):143-156.SU N,PENG S T,HONG N N.The wind-induced vibration control of high-rise chimneys by a tuned mass damper inerter(TMDI)[J].Engineering Structures,2022,39(11):143-156.(in Chinese)

    • [13] IKAGO K,SUGIMURA Y,SAITO K,et al.Modal response characteristics of a multiple degree-of-freedom structure incorporated with tuned viscous mass dampers [J].Journal of Asian Architecture and Building Engineering,2012,11(2):375-382.

    • [14] GARRIDO H,CURADELLI O,AMBROSINI D.Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper [J].Engineering Structures,2013,56(6):2149-2153.

    • [15] 李亚峰,李寿英,陈政清.旋转惯质双调谐质量阻尼器的优化与风振控制研究 [J].振动工程学报,2020,33(2):295-303.LI Y F,LI S Y,CHEN Z Q.Optimization and wind-induced vibration suppression of rotational inertia doubled tuned mass damper [J].Journal of Vibration Engineering,2020,33(2):295-303.(in Chinese)

    • [16] 张瑞甫,曹嫣如,潘超.典型激励下调谐质量惯容系统TMIS的轻量化结构控制 [J].工程力学,2022,39(9):58-71.ZHANG R F,CAO Y R,PAN C.Lightweight structural control based on tuned mass inerter system(TMIS)under typical excitation [J].Engineering Mechanics,2022,39(9):58-71.(in Chinese)

    • [17] ZHANG R F,CAO Y R,DAI K S.Response control of wind turbines with ungrounded tuned mass inerter system(TMIS)under wind loads [J].Wind Structures,2021,32(6):573-586.

    • [18] 陈鑫,李爱群,王泳,等.国内外规范自立式高耸结构等效风荷载及响应比较 [J].建筑结构学报,2014,35(4):304-311.CHEN X,LI A Q,WANG Y,et al.Comparative study on equivalent wind loads and dynamic responses of self-standing high-rise structures in different codes [J].Journal of Buildings Structures,2014,35(4):304-311.(in Chinese)

    • [19] 林家浩,张亚辉,赵岩.虚拟激励法在国内外工程界的应用回顾与展望 [J].应用数学和力学,2017,38(1):1-32.LIN J H,ZHANG Y H,ZHAO Y.The pseudo-excitation method and its industrial applications in China and abroad [J].Applied Mathematics and Mechanics,2017,38(1):1-32.(in Chinese)

    • [20] 同长虹,张小栋.调谐质量阻尼器参数优化及其应用 [J].振动、测试与诊断,2007,27(2):146-149,173.TONG C H,ZHANG X D.Parameter optimization of toned mass dampers and its application to bridge vibration [J].Journal of Vibration.Measure & Diagnosis,2007,27(2):146-149,173.(in Chinese)

    • [21] 蒋友宝,刘志,贺广零,等.考虑脉动风场的3MW风机钢塔筒基础底板脱开失效概率 [J].工程力学,2021,38(5):199-208.JIANG Y B,LIU Z,HE G L,et al.Failure probability of foundation slab void for 3 MW wind turbine steel tower considering turbulent wind field [J].Engineering Mechanics,2021,38(5):199-208.(in Chinese)

    • [22] 顾明,叶丰.高层建筑风致响应和等效静力风荷载的特征 [J].工程力学,2006,23(7):93-98.GU M,YE F.Characteristics of wind induced responses and equivalent static wind loads of tall buildings [J].Engineering Mechanics,2006,23(7):93-98.(in Chinese)

    • [23] GB 50009-2012 建筑结构荷载规范 [S].北京:中国建筑工业出版社,2012.GB 50009-2012 Load code for design of building structures [S].Beijing:China Architecture Building Press,2012.(in Chinese)

    • [24] 朱晓升,丁振宇,高增梁.烟气脱硫塔风诱导振动的TMD控制研究 [J].压力容器,2013,30(12):8-14.ZHU X S,DING Z Y,GAO Z L.Research on TMD control for flue gas desulfurization towers under wind-induced vibration [J].Pressure Vessel Technology,2013,30(12):8-14.(in Chinese)

  • 参考文献

    • [1] 邱雅柔,唐迪,包士毅,等.风诱导塔振动对塔气动特性影响研究 [J].机械工程学报,2018,54(20):106-114.QIU Y R,TANG D,BAO S Y,et al.Study of the wind-induced tower vibrations affect on aerodynamic characteristics [J].Journal of Mechanical Engineering,2018,54(20):106-114.(in Chinese)

    • [2] 马文勇,汪冠亚,袁欣欣,等.圆柱结构涡激共振耦合效应及其抗风设计参数 [J].中国公路学报,2018,31(5):74-83,105.MA W Y,WANG G Y,YUAN X X,et al.Coupling effect of vortex induced vibration on circular cylinder and its parameters on wind resistance design [J].China Journal of Highway and Transport,2018,31(5):74-83,105.(in Chinese)

    • [3] 陈鑫,李爱群,王泳,等.自立式高耸结构风振控制方法研究 [J].振动与冲击,2015,34(7):149-155,177.CHEN X,LI A Q,WANG Y,et al.Investigation on techniques for wind-inducedvibration control of self-standing high-rise structures [J].Journal of Vibration and Shock,2015,34(7):149-155,177.(in Chinese)

    • [4] 傅继阳,吴玖荣,徐安.高层建筑抗风优化设计和风振控制相关问题研究 [J].工程力学,2022,39(5):13-33,43.FU J Y,WU J R,XU A.Some issues on wind resistant optimization design and on wind-induced vibration control of tall buildings [J].Engineering Mechanics,2022,39(5):13-33,43.(in Chinese)

    • [5] KAVYASHREE B G,PATIL S,RAO V S.Review on vibration control in tall buildings:from the perspective of devices and applications [J].International Journal of Dynamics and Control,2021,9(4):1-16.

    • [6] 汪志昊,郜辉,张新中,等.单摆式电涡流TMD装置优化设计与模型试验研究 [J].振动与冲击,2018,37(9):1-7.WANG Z H,GAO H,ZHANG X Z,et al.Optimization design and model tests for a pendulum eddy-current tuned mass damper [J].Journal of Vibration and Shock,2018,37(9):1-7.(in Chinese)

    • [7] 陈磊,宋波,王希慧,等.脱排一体式钢塔设置TMD对减轻风致振动的控制研究 [J].建筑结构学报,2020,41(S1):25-35.CHEN L,SONG B,WANG X H,et al.Study on control of reducing wind-induced vibration by TMD in integrated steel tower [J].Journal of Buildings Structures,2020,41(S1):25-35.(in Chinese)

    • [8] 陈鑫,李爱群,张志强,等.自立式高耸结构悬吊式TMD减振动力试验与分析 [J].振动工程学报,2016,29(2):193-200.CHEN X,LI A Q,ZHANG Z Q,et al.Dynamic experiment and analysis of self-standing high-rise structures with pendulum TMD [J].Journal of Vibration Engineering,2016,29(2):193-200.(in Chinese)

    • [9] 张瑞甫,曹嫣如,潘超.惯容减震(振)系统及其研究进展 [J].工程力学,2019,36(10):8-27.ZHANG R F,CAO Y R,PAN C.Inerter system and its state-of-the-art [J].Engineering Mechanics,2019,36(10):8-27.(in Chinese)

    • [10] MA R S,BI K M,HAO H.Inerter-based structural vibration control:a state-of-the-art review [J].Engineering Structures,2021,243:112655.

    • [11] 叶昆,舒率.基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究 [J].动力学与控制学报,2020,18(5):57-62.YE K,SHU L.Optimal design of base-isolated structure withsupplemental tuned inerter damper based onperformance requirement [J].Journal of Dynamics and Control,2020,18(5):57-62.(in Chinese)

    • [12] 苏宁,彭士涛,洪宁宁.高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究 [J].工程力学,2022,39(11):143-156.SU N,PENG S T,HONG N N.The wind-induced vibration control of high-rise chimneys by a tuned mass damper inerter(TMDI)[J].Engineering Structures,2022,39(11):143-156.(in Chinese)

    • [13] IKAGO K,SUGIMURA Y,SAITO K,et al.Modal response characteristics of a multiple degree-of-freedom structure incorporated with tuned viscous mass dampers [J].Journal of Asian Architecture and Building Engineering,2012,11(2):375-382.

    • [14] GARRIDO H,CURADELLI O,AMBROSINI D.Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper [J].Engineering Structures,2013,56(6):2149-2153.

    • [15] 李亚峰,李寿英,陈政清.旋转惯质双调谐质量阻尼器的优化与风振控制研究 [J].振动工程学报,2020,33(2):295-303.LI Y F,LI S Y,CHEN Z Q.Optimization and wind-induced vibration suppression of rotational inertia doubled tuned mass damper [J].Journal of Vibration Engineering,2020,33(2):295-303.(in Chinese)

    • [16] 张瑞甫,曹嫣如,潘超.典型激励下调谐质量惯容系统TMIS的轻量化结构控制 [J].工程力学,2022,39(9):58-71.ZHANG R F,CAO Y R,PAN C.Lightweight structural control based on tuned mass inerter system(TMIS)under typical excitation [J].Engineering Mechanics,2022,39(9):58-71.(in Chinese)

    • [17] ZHANG R F,CAO Y R,DAI K S.Response control of wind turbines with ungrounded tuned mass inerter system(TMIS)under wind loads [J].Wind Structures,2021,32(6):573-586.

    • [18] 陈鑫,李爱群,王泳,等.国内外规范自立式高耸结构等效风荷载及响应比较 [J].建筑结构学报,2014,35(4):304-311.CHEN X,LI A Q,WANG Y,et al.Comparative study on equivalent wind loads and dynamic responses of self-standing high-rise structures in different codes [J].Journal of Buildings Structures,2014,35(4):304-311.(in Chinese)

    • [19] 林家浩,张亚辉,赵岩.虚拟激励法在国内外工程界的应用回顾与展望 [J].应用数学和力学,2017,38(1):1-32.LIN J H,ZHANG Y H,ZHAO Y.The pseudo-excitation method and its industrial applications in China and abroad [J].Applied Mathematics and Mechanics,2017,38(1):1-32.(in Chinese)

    • [20] 同长虹,张小栋.调谐质量阻尼器参数优化及其应用 [J].振动、测试与诊断,2007,27(2):146-149,173.TONG C H,ZHANG X D.Parameter optimization of toned mass dampers and its application to bridge vibration [J].Journal of Vibration.Measure & Diagnosis,2007,27(2):146-149,173.(in Chinese)

    • [21] 蒋友宝,刘志,贺广零,等.考虑脉动风场的3MW风机钢塔筒基础底板脱开失效概率 [J].工程力学,2021,38(5):199-208.JIANG Y B,LIU Z,HE G L,et al.Failure probability of foundation slab void for 3 MW wind turbine steel tower considering turbulent wind field [J].Engineering Mechanics,2021,38(5):199-208.(in Chinese)

    • [22] 顾明,叶丰.高层建筑风致响应和等效静力风荷载的特征 [J].工程力学,2006,23(7):93-98.GU M,YE F.Characteristics of wind induced responses and equivalent static wind loads of tall buildings [J].Engineering Mechanics,2006,23(7):93-98.(in Chinese)

    • [23] GB 50009-2012 建筑结构荷载规范 [S].北京:中国建筑工业出版社,2012.GB 50009-2012 Load code for design of building structures [S].Beijing:China Architecture Building Press,2012.(in Chinese)

    • [24] 朱晓升,丁振宇,高增梁.烟气脱硫塔风诱导振动的TMD控制研究 [J].压力容器,2013,30(12):8-14.ZHU X S,DING Z Y,GAO Z L.Research on TMD control for flue gas desulfurization towers under wind-induced vibration [J].Pressure Vessel Technology,2013,30(12):8-14.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码