en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

孙测世,E-mail:suncs@hnu.edu.cn

中图分类号:O322;TH113

文献标识码:A

文章编号:1672-6553-2023-21(4)-067-009

DOI:10.6052/1672-6553-2023-045

参考文献 1
丛云跃,康厚军,郭铁丁,等.CFRP索斜拉桥面内自由振动的多索梁模型及模态分析 [J].动力学与控制学报,2017,15(6):494-504.CONG Y Y,KANG H J,GUO T D,et al.A multiple cable-beam model and modal analysis on in-plane free vibration of cable-styed bridge with CFRP cables [J].Journal of Dynamics and Control,2017,15(6):494-504.(in Chinese)
参考文献 2
康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动 [J].中南大学学报(自然科学版),2011,42(8):2439-2445.KANG H J,ZHAO Y Y,JIANG L Z.In-plane nonlinear vibration of super long stay cables under parametric and forced excitations [J].Journal of Central South University(Science and Technology),2011,42(8):2439-2445.(in Chinese)
参考文献 3
陈杰夫,康厚军,苏潇阳,等.谐波激励下斜拉桥面内非线性振动试验研究 [J].固体力学学报,2019,40(3):248-259.CHEN J F,KANG H J,SHU X Y,et al.Nonlinear dynamics of a parametrically and externally excited thin plate [J].Chinese Journal of Solid Mechanics,2019,40(3):248-259.(in Chinese)
参考文献 4
吴娟,钱有华.一类弦-梁耦合非线性振动系统的动力学数值模拟研究 [J].动力学与控制学报,2018,16(5):403-410.WU J,QIAN Y H.Numerical simulation research on dynamics of a string-beam coupled nonlinear vibration system [J].Journal of Dynamics and Control,2018,16(5):403-410.(in Chinese)
参考文献 5
赵跃宇,李永鼎,王连华,等.悬索的超谐波共振与1∶3内共振分析 [J].动力学与控制学报,2007,5(2):112-117.ZHAO Y Y,LI Y D,WANG L H,et al.On one-to-three internal resonances and superharmonic resonances of suspended cables [J].Journal of Dynamics and Control,2007,5(2):112-117.(in Chinese)
参考文献 6
赵跃宇,王涛,康厚军.斜拉索主参数共振的稳定性分析 [J].动力学与控制学报,2008,6(2):112-117.ZHAO Y Y,WANG T,KANG H J.Analysis of the stability of principal parametric resonance of stayed cable [J].Journal of Dynamics and Control,2008,6(2):112-117.(in Chinese)
参考文献 7
张鹏,卢文胜,吕西林.附加弹簧保护装置的悬索主共振响应分析 [J].振动工程学报,2020,33(3):550-558.ZHANG P,LU W S,LÜ X L.Primary resonance responses study of suspended cables with supplemental spring-protection devices [J].Journal of Vibration Engineering,2020,33(3):550-558.(in Chinese)
参考文献 8
SUN C S,ZHOU X K,ZHOU S X.Nonlinear responses of suspended cable under phase-differed multiple support excitations [J].Nonlinear Dynamics,2021,104(2):1097-1116.
参考文献 9
唐金琪,孙测世.端部激励相位差下斜拉索的非线性振动 [J].力学季刊,2019,40(3):469-477.TANG J Q,SUN C S.Nonlinear vibrations of a stay cable under support excitation with phase differences [J].Chinese Quarterly of Mechanics,2019,40(3):469-477.(in Chinese)
参考文献 10
EL-ATTAR M,GHOBARAH A,AZIZ T S.Non-linear cable response to multiple support periodic excitation [J].Engineering Structures,2000,22(10):1301-1312.
参考文献 11
ZAGHARI B,RUSTIGHI E,TEHRANI M G.Dynamic response of a nonlinear parametrically excited system subject to harmonic base excitation [J].Journal of Physics:Conference Series,2016,744(1):012125.
参考文献 12
ZAGHARI B,RUSTIGHI E,TEHRANI M G.Phase dependent nonlinear parametrically excited systems [J].Journal of Vibration and Control,2019,25(3),497-505.
参考文献 13
GATTULLI V,ALAGGIO R,POTENZA F.Analytical prediction and experimental validation for longitudinal control of cable oscillations [J].lnternational Journal of Non-Linear Mechanics,2008,43(1),36-52.
参考文献 14
Peng J,Xiang M,Wang L,et al.Non-linear primary resonance in vibration control of cable-stayed beam with time delay feedback [J].Mechanical Systems and Signal Processing,2020,137:106488.
参考文献 15
WANG L H,ZHAO Y Y.Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions [J].Journal of Sound and Vibration,2009,327(1-2):121-133.
参考文献 16
赵珧冰,林恒辉,黄超辉,等.温度场中悬索受多频激励组合联合共振响应研究 [J].振动与冲击,2019,38(3):207-213.ZHAO Y B,LIN H H,HUANG C H,et al.Combined joint resonance responses of suspended cable subject to multi-frequency excitation in thermal environment [J].Journal of Vibration and Shock,2019,38(3):207-213.(in Chinese)
目录contents

    摘要

    悬索受多个端部激励后可能产生复杂的非线性动力学现象.为研究端部激励相位差对悬索亚谐波响应的影响,建立两端受激励的悬索模型,得到无限维离散运动方程,采用多尺度法研究面内亚谐波共振,并通过数值积分加以验证.文中给出了多激励系统等效激励幅值和响应相位的一般表达式,定性定量分析了面内两两激励的不同组合对响应幅值和相位的影响.结果表明:端部激励相位差对悬索响应幅值的影响以2π为周期变化,关于π对称.端部激励间的相位差可以使响应相位在一个名义单激励系统的响应相位基础上发生移动,当激励相位差逐渐由0转变为π的同时,相频曲线也非同步地位移了π.激励相位差不改变系统的软硬性质,但会影响响应幅值和共振区宽度,且其共振区宽度关于σ=0对称.

    Abstract

    Complex nonlinear dynamic phenomena will occur when the suspended cable is subjected to multiple parametric excitations. In order to study the effects of parametric excitation under different phases on the harmonic response of suspended cable, the model of suspended cable with parametric excitation at both ends is established, and the infinite-dimensional discrete equations of motion are obtained. The subharmonic resonance in plane is studied by using the multiple scales method verified by numerical integration. The general expressions of equivalent excitation amplitude and response phase of multi-excitation system is given, and the effects of different combinations of in-plane two excitations on the response amplitude and phase are qualitatively analyzed. The results show that the effect of multi-point excitations phase difference on the suspended cable response amplitude varies with 2π as a periodic variation and is symmetric about π. These excitations make the response phase of the system shift based on the response phase of the suspended cable. When the phase difference excitation between them gradually changes from 0 to π, the phase-frequency curves also shift by π. The excitation phase difference does not change the soft and hard properties of the system, but affects the response amplitude and the width of the resonance region, and the width of the resonance region is symmetrical about σ=0.

  • 引言

  • 悬索受到的激励形式主要是风、雨激励等外激励和桥塔竖向的位移、车辆引起主梁的振动导致索的端部激励.实际上在悬索桥的使用中,悬索必然受到多点多激励,它的非线性响应与激励的幅值、频率、相位和激励方向有关.

  • 从索的非线性运动方程出发,悬索两端的端部激励虽不改变其二次和三次非线性项系数,但是会出现在参数激励和强迫振动项中,从而影响索的振动响应性质.悬索在多点多激励作用下可能产生大幅振动和非线性动力特性[1-4],较为常见的有超谐波共振[5]、主参数共振[6]和主共振[7].由于多个端部激励可能具有不同的初始状况,如激励幅值、相位等,所以有必要确定激励相位差对响应的影响.已有相关研究表明:激励相位差不仅能改变悬索的振动模态和幅频响应特性[8],而且能加剧与激励频率相近的面内、外模态振动.在任意端部激励组合下,激励相位差不仅可使斜拉索非线性振动出现定量变化,还可改变内共振的表现形式[9].El-Attar等[10]分析了考虑初始相位差的悬索在两种垂直/横向支承激励下的非线性响应,发现相位差对幅频曲线有显著影响.Zaghari[1112]等发现最大/最小响应振幅取决于不同激励源之间的相位差.

  • 本文研究不同激励组合下的激励相位差对悬索稳态响应幅值和相位的影响.激励与响应的相位关系有助于进一步研究振动控制或能量收集器策略[1314].在悬索非线性动力学模型中引入上下端两向激励的幅值和相位,通过数值分析,绘制各工况下的幅频曲线和相频曲线,分析在不同端部激励两两组合下的悬索非线性振动特性.

  • 1 力学模型

  • 1.1 基本假定

  • 本文研究了小垂跨比(f=b/l≤1/8)的悬索结构并建立如图1所示的两端面内激励下悬索的非线性振动模型.悬索的两端锚固都受到水平、竖向端部激励,分别用Ut)、Vt)表示,其中用下标ab表示左右锚点,激励幅值和相位分别为zsφss=1,2,3,4),数字1到4是各个方向激励的激发,假设端部激励的激励频率Ω大小一致,悬索长取l和悬索垂度取b.考虑到悬索振动方向与端部激励方向的一致性,此处需建立局部振动坐标系o-xy,其中坐标原点o为左端锚固点,x为悬索的索向坐标,y为索面内垂直索向下的坐标,另外,各方向对应位移分别用uxt)、vxt)表示.并且做如下假设:①悬索的抗弯刚度、扭转刚度和剪切刚度足够小以至于可以忽略不计; ②悬索只承受拉力; ③悬索在振动过程中的轴向应变足够小; ④只考虑几何非线性,不考虑其他非线性.

  • 图1 两端面内激励悬索模型

  • Fig.1 Suspended cable model with in-plane excitation at both ends

  • 1.2 动力平衡方程

  • 鉴于悬索的几何非线性和两端铰接,根据Hamilton能量守恒变分原理,可得到悬索拟静态面内非线性动力学平衡方程:

  • mu¨+cuu˙-EAu'+y'v'+v'2+w'22'=0
    (1)
  • mv¨+cvv˙-Hv''-EAy'+v'u'+y'v'+v'2+w'22'=0
    (2)
  • 式中:上标一点表示对时间t求导,右上一撇表示对x坐标求导; w为面外方向对应位移; m为悬索单位长度质量; cucv分别为悬索沿uv方向上的阻尼系数; H为悬索的水平张力; E为弹性模量; A为悬索横截面面积; yx=4fx1-x为悬索静态构型,其中f为垂跨比.

  • 假设悬索的轴向振动是准静态的,忽略高阶无穷小,整理简化悬索的无量纲控制方程得:

  • mv¨+cvv˙-v''π2-απ2y''+v''U+01 y'v'+v'2+w'22dx=0
    (3)
  • 式中:U=Ubt)-Uat).在无量纲过程中,为了简化方程的表达式,省略了“*”号,使用了以下变量.

  • x*=xl, y*=yl, v*=vl, w*=wl, α=EAH,

  • t*=πlHmt, U*=Ul, cv*=lπ1mHcv

  • 1.3 离散模型

  • 为了将系统从偏微分方程离散到常微分方程,将面内位移函数v看作是准静态运动和模态运动两部分的组合:

  • v(x,t)=n=1N ηn(t)Φn(x)+Vb(t)x+Va(t)(1-x)
    (4)
  • 其中,ηnt)是第n个广义时间坐标; Φnx)是第n个模态形状; N是平面内的模态数; Vbt)和Vat)分别表示左、右端的竖向激励(如图1); 等式(4)右边第一项为模态位移,后两项为端部激励产生的准静态位移.悬索的面内模态形状可以通过求解线性化的运动方程方程得到,即面内模态函数为:

  • Φn(x)=kncosωnπx-1+tanωnπ2sinωnπx,n=1,3,,Φn(x)=2sinωnπx,ωn=2,4,
    (5)
  • 式中:

  • kn=2ωnπcos2ωnπ22+cosωnπωnπ-3sinωnπtanωnπ2=ωnπ2-116ωnπ23

  • 将式(4)代入式(3)后通过Galerkin方法,采用模态离散得到端部激励下悬索面内的振动微分方程:

  • η¨k+2μvkη˙k+ωk2ηk=α2π2n=1N r=1N QkPnr+2QrPnkηnηr-α2π2n=1N PnkηnΔ-α2π2n=1N r=1N j=1N PnkPrjηnηrηj+α2π2QkΔ-R¨v-2μvkR˙v
    (6)
  • 式中:

  • 2μvk=01 cvΦk2dx, k=1, 2, ; Qn=01 Φny''dx, Prj=01 Φr'Φj'dxΔ=2Ub (t) -Ua (t) +Vb (t) -Va (t) 2Rv=01 Vb (t) x+Va (t) (1-x) Φkdx

  • 2 多尺度摄动

  • 基于多尺度法引入无量纲参数ε,假设方程(6)的广义时间坐标近似解展开前三阶为:

  • ηk(t;ε)εηk1T0,T1,T2+ε2ηk2T0,T1,T2+ε3ηk3T0,T1,T2
    (7)
  • 式中:T0T1T2是3个不同尺度的时间变量,其变化的速度随时间t一次减慢一个数量级.

  • 由链式法则对时间t求导可转变为对Tii=1,2,3,···)求偏导数,可得:

  • ddt=dT0dtT0+dT1dtT1+dT2dtT2+=D0+εD1+εD2+d2dt2=D02+2εD0D1+ε22D0D2+D12+
    (8)
  • 其中:Dn/Tnn=1,23

  • ziε2zii=1,2; μvkε2μvkk=1,2; 将式(7)-式(8)代入常微分方程组(6),然后根据ε的阶次大小顺序排列可得:

  • ε1:D02ηk1+ωk2ηk1=0
    (9)
  • ε2:D02ηk2+ωk2ηk2=α2π2n=1N r=1N QkPnr+2QrPnkηnηr-2D0D1ηk1-R¨v+απ2QkUb(t)-Ua(t)
    (10)
  • ε3:D02ηk3+ωk2ηk3=-2D0D1ηk2-2D0D2ηk1-2μvD0ηk1-D12ηk1+α2π2n=1N r=1N QkPnr+2QrPnkηn1ηr2+ηn2ηr1-α2π2n=1N r=1N j=1N PnkPrjηn1ηr1ηj1-απ2n=1N Pnkηn1Ub(t)-Ua(t)
    (11)
  • 2.1 模态分析

  • 激励频率Ω中引入调谐参数σ,使得:

  • Ω=2ωm+ε2σ
    (12)
  • 根据式(9)可设:

  • ηm1=AmT1,T2eiωmT0+ccηk1=0,km
    (13)
  • 式中:cc代表各项的共轭复数.

  • 把式(13)代入式(10)得:

  • D02ηk2+ωk2ηk2=-2D0D1AmeiωmT0+cc+α2π2QkPmm+2QmPmkAmeiωmT0+cc2+α2π2Qks=14 HseiΩT0+φs+cc+Ω22s=14 VseiΩT0+φs+cc
    (14)
  • 式中:

  • H1=z1, H2=-z2, H3=H4=0, V1=V2=0; V3=z301 xΦndx, V4=z401 (1-x) Φndx

  • 将式(12)代入式(14)得:

  • D02ηk2+ωk2ηk2=-2D0D1AmeiωmT0+cc+α2π2QkPmm+2QmPmkAmeiωmT0+cc2+α2π2Qks=14 Hsei2ωmt+σT2+φs+cc+2ωm+ε2σ22s=14 Vsei2ωmt+σT2+φs+cc
    (15)
  • 对式(15)化简长期项:

  • D1Am=0
    (16)
  • 随后,对式(14)求解得:

  • ηk2=E1kAm2e2iωmT0+cc+E2kAmA-m+s=14 fseiΩTo+φsωk2-Ω2+cc,k
    (17)
  • 式中:

  • E1k=α2π2QkPmm+2QmPmkωk2-4ωm2, ωkωmE2k=απ2QkPmm+2QmPmkωk2fs=α2π2QkHs+Ω22Vs, s=1, 2, 3, 4

  • 这里值得注意的是,当ωk=2ωm,导致E1k分母为0,非线性系统将出现无解.

  • 把式(12)、式(13),式(16)、式(17)代入式(11),并令k=m,化简长期项得:

  • 2iωmD2Am+μvAm+ΓemAm2A-m-s=14 F-sA-meiσT2+φs=0,
    (18)
  • 式中:

  • Γem=3α2π2Pmm2-α22π4r=1N 3ωr2-8ωm2ωr2-4ωm2ωr2QrPmm+2QmPmr2

  • F-s=απ2r=1N QrPmm+2QmPmr2fsωr2-Ω2-12PmmHs

  • 以极坐标的形式表示复变函数Am:

  • Am=12ameiβm
    (19)
  • 将式(19)代入式(18),并设γ=σT2-2βmam=0和γ′=0,化简并分离虚实部得:

  • 2ωmμvam=ams=14 F-ssinγ+φsωmamσ+Γemam34=ams=14 F-scosγ+φs
    (20)
  • 将式(20)中的虚部和实部求平方和得频率响应方程:

  • 2ωmμv2+14Γemam2-ωmσ2=F2
    (21)
  • 式中:

  • F2=s=14 F-ssinφs2+s=14 F-scosφs2
    (22)
  • 2.2 响应分析

  • (1)响应幅值

  • 可以从亚谐波共振面内频率响应方程式(21)得出频响方程解析解:

  • am2=4ωmσΓem±4ΓemF2-2μvωm2
    (23)
  • 若响应幅值要为稳态解,从式(23)可以得出F2-(2μvωm2>0.当系统偏硬时,即Γem>0且满足F>2μvωm,系统满足上诉的条件时才能产生持续不断的运动.当σF2-2μvωm2/ωm时,系统会有两个稳态解; 当|σ|<F2-2μvωm2/ωm时,系统会有一个稳态解.当系统偏软时,即Γem<0且满足F>2μvωm,当σ<-F2-2μvωm2/ωm时,系统会有两个稳态解; 当|σ|<F2-2μvωm2/ωm时,系统会有一个稳态解.从上可以看出,偏软和偏硬非线性系统的稳态解范围是关于σ=0成对称状态,并且响应幅值am与参数F存在一定的关系,本文希望以后进一步分析.

  • (2)响应相位

  • 根据式(22)可设:

  • Fsinγ-=s=14 F-ssinγ+φsFcosγ-=s=14 F-scosγ+φs
    (24)
  • 根据式(20)和式(22),虚部与实部相除得:

  • tanγ-=2ωmμvωmσ+14Γemam2
    (25)
  • 式(25)与初始相位φs=0的单激励非线性振动的相位频率方程相同,这里称之为名义单激励相位差系统,其中Fγ-是名义单激励系统的幅值和相位.若Fcosγ-≠0,则结合方程组(24)中两式相除得:

  • γ=γ--arctans=14 F-ssinφss=14 F-scosφs=γ--φk
    (26)
  • 式中的γ是悬索在多个不同初始相位的端部激励下的响应相位,本文将关系式(26)称为多激励相位差系统,它反映了所有端部激励对面内亚谐波共振下响应相位的影响.观察发现,响应相位γ因各个激励的初始相位φs和参数F-s的存在而发生不同程度的偏移(相移值),其中参数F-s综合考虑了索的物理性质,激励幅值、频率以及模态形状.

  • 3 数值分析

  • 本节分析了多个端部激励相位差对悬索亚谐波响应幅值和相位的影响,但没有研究分岔问题,故不区分稳态解的稳定性,希望以后能够进一步研究.对式(21)用数值方法求解,为了验证多尺度法解的正确性,对式(6)采用龙格-库塔法验证.采用悬索的物理参数如下[16]:横截面积A=7.069×10-2 m2,单位长度质量m=551.382g/m,弹性模量:E=2.0×1011 Pa,悬索长l = 200m,垂跨比f=0.005,无量纲阻尼比μvk=0.002.对于面内索激励组合下,其相位差对索响应幅值的影响是以π为对称,2π为周期变化[9],则本文将讨论3种以两两激励组合相位差为0~π的第一阶面内对称模态(m=1)的频率响应曲线和相频曲线.

  • 3.1 工况1:两个水平端部激励

  • 固定左端激励相位φau(2)=π/4的初始相位和两个支承的无量纲激发振幅分别为au=0.0001和bu=0.0003,改变右端激励相位φbuφ1),区间为[π/4,π+π/4].

  • 仅展示左端激励相位φ2=π/4的初始相位,右端激励相位φ1=π/4以及两个支承的无量纲激发振幅分别为au=0.0001和bu=0.0003的龙格库塔法值,如图2所示,龙格库塔法的值与多尺度计算的结果吻合良好,当右端激励相位φ1从π/4增长到5π/4,内侧的幅频曲线向外侧平移.在工况1激励作用下,激励相位差不会改变系统的软硬特性,但它会对响应幅值和共振区宽度产生影响.当激励相位φ1=π/4时,其龙格库塔法最大响应幅值为0.154,共振区的范围为[-0.107,0.107](共振区呈σ=0对称); 当φ1从π/4增长到5π/4时,即相位差Δφbu从0变化到π,系统的响应幅值和共振区逐渐增大,成正比关系.若悬索保持它的物理参数和激励幅值不变,所有的频率响应曲线都会在曲线φ1=π/4(下界)和φ1 = 5π/4(上界)之间.

  • 图2 工况1:幅频响应曲线

  • Fig.2 Condition 1:amplitude-frequency response curves

  • 在工况1的幅频响应曲线基础上绘制相频曲线,如图3所示,名义单激励相频曲线和多激励相频曲线的响应相位γ几乎都不随激励频率的改变而变化,而为一个稳定值.从图3(a)可以看出,无论是较大的稳态解还是较小的稳态解,所对应曲线φ1=π/4和φ1=5π/4的响应相位γ-差值都很小且相同,其差值为Δ=0.039.从图3(b)可以看出,响应相位γ分别被激发,正如式(26),激励相位差加剧了响应相位γ-的平移.系统的响应相位γ分别激励到2.433,1.336,0.513,-0.148和-0.747,响应相位γφ1=π/4(下界)值2.433与φ1=5π/4(上界)值-0.747之差为3.18,其值减去差值Δ=0.039约为π,即相位差的变化区间为π,而响应相位γ也随着移动了π.

  • 图3 工况1:相频曲线

  • Fig.3 Condition 1: phase-frequency curves

  • 3.2 工况2:两个竖向端部激励

  • 固定左端激励相位φavφ4)=π/4的初始相位和两个支承的无量纲激发振幅分别为av=0.0001和bv= 0.0003,改变右端激励相位φφbvφ3),区间为[π/4,π+π/4].

  • 仅展示左端激励相位φ4=π/4的初始相位,右端激励相位φ3=π/4以及两个支承的无量纲激发振幅分别为av=0.0001和bv=0.0003的龙格库塔法值,如图4所示,两者吻合良好,在两竖向激励作用下,龙格库塔法的最大响应幅值激励到0.0029后就迅速跳跃到0值,响应幅值远小于两水平激励下的响应幅值0.154,说明悬索中的水平激励作用远大于竖向激励的作用.但与其他工况相比,工况2的数值验证效果较差,其原因可能是竖向激励下的响应集中于σ=0附近,在数值计算中取离散的σ初始值进行扫频,而工况2下的非线性动力系统对初始值很敏感.同时,响应幅值在两竖向激励作用下能够被激励起的范围很小,共振区很窄,大约在[-0.005,0.005](共振区呈σ=0对称),相对于两水平激励作用下共振区范围的1/20.

  • 图4 工况2:幅频响应曲线

  • Fig.4 Condition 2: amplitude-frequency response curves

  • 图5 工况2:相频曲线

  • Fig.5 Condition 2: phase-frequency curves

  • 从图4看出,当右端激励相位φ3从π/4增长到5π/4,外侧的幅频曲线向内侧平移,当激励相位差增大时,响应幅值和共振区共同减小,成反比关系.但与工况1相比,两者的幅频曲线平移方向刚好相反,当两竖向激励达到最小值时,而两水平激励达到最大值,从中可以看出两者互为反向的振动.工况2与工况1相比,其相位差没有改变频率响应曲线的弯曲方向,但影响了使响应幅值更小,共振宽度更窄.当φ3从π/4增长到5π/4时,即相位差从0变化到π,系统的响应幅值和共振区逐渐减小; 与工况1相反的是,当相位差为0或2π时,响应幅值取得最大值,而当相位差为±π时,响应幅值取得最小值.

  • 绘制相频曲线,如图5所示,响应相位γ-影响较大,相对于工况1的相频曲线敏感很多,随激励频率的变化而变化,并且存在上下两条曲线交会于一点,然后响应相位γ-达到一个稳定值π/2,呈90°,其中Δ=0.从图5(b)可以看出,响应相位分别激励到0.785,0.188,-0.463,-1.271和3.927,φ3=5π/4响应相位γ值3.927与φ3=π/4响应相位γ值0.785之差为3.142,其值约为π,即名义单激励响应相位经过两竖向激励相位差平移了π.与两水平激励相位差类似的是,其响应相位γ存在一个向上移动的范围,但与两水平激励相位差不同的是,φ3=5π/4的响应相位γ并没有随着φ3=π的响应相位γ继续往负数响应相位移动,而是发生了一个相位的跳跃,直接从负数响应相位转换成一个正数响应相位,并且从相位差的步长大小可以看出这个转换是迅速的,为非线性变化.

  • 与工况1不同,工况2的相位差下的一阶响应相位会随激励频率改变而改变,相位值对激励频率的改变较敏感.

  • 3.3 工况3:一个水平和一个竖向端部激励

  • 固定左端激励相位φauφ2)=π/4的初始相位和两个支承的无量纲激发振幅分别为au=0.0001和bv=0.0003,改变右端激励相位φbvφ3)∈[π/4,π+π/4].

  • 仅展示左端激励相位φ2=π/4的初始相位,右端激励相位φ3=π/4以及两个支承的无量纲激发振幅分别为au=0.0001和bv=0.0003的龙格库塔法值,如图6所示,两者吻合良好,随激励频率的增长,响应幅值和共振区范围也增大,这个范围为[-0.03,0.03](共振区呈σ=0对称).当右端激励相位φ3从π/4增长到5π/4,外侧的幅频线向内侧平移,与工况1的情况相反.竖向激励的相位与水平激励的相位相比,前者对幅频曲线的平移规律更有一定的影响.并且工况3的共振区范围大小位于工况1和工况2之间,对于工况1的共振区而言,其共振区范围约为其的1/3; 而对于工况2的共振区而言,其共振区范围为其的6倍.可见,与竖向激励之间的相位差相比,水平激励之间的相位差会加大共振区范围.

  • 图6 工况3:幅频响应曲线

  • Fig.6 Condition 3: amplitude-frequency response curves

  • 图7 工况3:相频曲线

  • Fig.7 Condition 3: phase-frequency curves

  • 当相位差Δφbv=φbv-φau=0和σ=0时,工况3最大响应幅值0.0053位于同种情况下的工况1和工况2响应幅值之间.此时工况1的响应幅值0.0067(最小幅值),约为工况3的响应幅值的1.26倍; 而工况2响应幅值0.0027(最大幅值),约为其响应幅值的0.5.当相位差值Δφbv=π和σ = 0时,工况3的响应幅值为0.0046(最小幅值)且位于两水平激励和两竖向激励的响应幅值之间.工况1的响应幅值0.0094(最大幅值),约为其响应幅值的2倍; 工况2的响应幅值0.002(最小幅值),约为其响应幅值的0.5倍.由此可见,当激励间相位差Δφbv=π的响应幅值与无相位差Δφbv=0相比,在激励组合中的水平激励相位差与竖向激励相位差诱导的响应幅值相比,前者占绝对主导位置.从上分析可知,竖向激励相位差会抑制水平激励相位差所引起系统的响应幅值,但是水平激励对响应幅值的影响远大于竖向激励.

  • 同理,绘制出相频曲线,如图7所示,可以观察得出此组合下的激励相位差变化对响应相位γ-影响不大,由局部放大图观察得知,与两水平激励作用下类似,所有曲线最终交会于一点,但γ-值变化不明显,即γ-值以水平激励作用为主导.如图7(b)所示,响应相位γ分别激励到-0.645,-0.610,-0.741,-0.714和-0.702,φ3=5π/4响应相位γ值-0.610与φ3=π/4响应相位γ值-0.645之差为0.035,其值减去Δ(0.035)为0,并且响应相位γ都为负值.这与以上2种工况激励相位差不同,它们的响应相位移动约为π,并且它的响应相位γ与以上两种组合工况的初始增长方向相反.

  • 综上,该工况下的相位差与响应幅值图呈反比,与两水平激励相位差的相位差与响应幅值图呈正比相反,故竖向激励会抑制水平激励对响应幅值的影响.因竖向激励对名义单激励相位值更加敏感,若激励组合中存在一竖向激励,其相频曲线会汇聚于一点,但这个点的激励频率大小并不一致,且相位的大小还是以水平激励为主.

  • 4 结论

  • (1)承受多端部激励的悬索,激励间的相位差可以使响应相位在名义单激励系统的响应相位基础上发生移动,相移值与不同激励组合的相位差、激发模态、激励幅值和初始相位有关.

  • (2)当激励相位差从0逐渐变化到π时,相频曲线也发生不同程度的移动,最终相位变化大小为π.激励相位差不改变系统的软硬性质,但会影响响应幅值和共振区宽度,且共振区宽度关于σ=0对称.

  • (3)水平激励对响应幅值大小和共振区宽度的影响远大于竖向激励.系统主要靠参数振动激发,但竖向激励会抑制水平激励作用效果.响应相位对水平激励初始相位的敏感程度远小于对竖向激励初始相位的敏感程度.

  • 参考文献

    • [1] 丛云跃,康厚军,郭铁丁,等.CFRP索斜拉桥面内自由振动的多索梁模型及模态分析 [J].动力学与控制学报,2017,15(6):494-504.CONG Y Y,KANG H J,GUO T D,et al.A multiple cable-beam model and modal analysis on in-plane free vibration of cable-styed bridge with CFRP cables [J].Journal of Dynamics and Control,2017,15(6):494-504.(in Chinese)

    • [2] 康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动 [J].中南大学学报(自然科学版),2011,42(8):2439-2445.KANG H J,ZHAO Y Y,JIANG L Z.In-plane nonlinear vibration of super long stay cables under parametric and forced excitations [J].Journal of Central South University(Science and Technology),2011,42(8):2439-2445.(in Chinese)

    • [3] 陈杰夫,康厚军,苏潇阳,等.谐波激励下斜拉桥面内非线性振动试验研究 [J].固体力学学报,2019,40(3):248-259.CHEN J F,KANG H J,SHU X Y,et al.Nonlinear dynamics of a parametrically and externally excited thin plate [J].Chinese Journal of Solid Mechanics,2019,40(3):248-259.(in Chinese)

    • [4] 吴娟,钱有华.一类弦-梁耦合非线性振动系统的动力学数值模拟研究 [J].动力学与控制学报,2018,16(5):403-410.WU J,QIAN Y H.Numerical simulation research on dynamics of a string-beam coupled nonlinear vibration system [J].Journal of Dynamics and Control,2018,16(5):403-410.(in Chinese)

    • [5] 赵跃宇,李永鼎,王连华,等.悬索的超谐波共振与1∶3内共振分析 [J].动力学与控制学报,2007,5(2):112-117.ZHAO Y Y,LI Y D,WANG L H,et al.On one-to-three internal resonances and superharmonic resonances of suspended cables [J].Journal of Dynamics and Control,2007,5(2):112-117.(in Chinese)

    • [6] 赵跃宇,王涛,康厚军.斜拉索主参数共振的稳定性分析 [J].动力学与控制学报,2008,6(2):112-117.ZHAO Y Y,WANG T,KANG H J.Analysis of the stability of principal parametric resonance of stayed cable [J].Journal of Dynamics and Control,2008,6(2):112-117.(in Chinese)

    • [7] 张鹏,卢文胜,吕西林.附加弹簧保护装置的悬索主共振响应分析 [J].振动工程学报,2020,33(3):550-558.ZHANG P,LU W S,LÜ X L.Primary resonance responses study of suspended cables with supplemental spring-protection devices [J].Journal of Vibration Engineering,2020,33(3):550-558.(in Chinese)

    • [8] SUN C S,ZHOU X K,ZHOU S X.Nonlinear responses of suspended cable under phase-differed multiple support excitations [J].Nonlinear Dynamics,2021,104(2):1097-1116.

    • [9] 唐金琪,孙测世.端部激励相位差下斜拉索的非线性振动 [J].力学季刊,2019,40(3):469-477.TANG J Q,SUN C S.Nonlinear vibrations of a stay cable under support excitation with phase differences [J].Chinese Quarterly of Mechanics,2019,40(3):469-477.(in Chinese)

    • [10] EL-ATTAR M,GHOBARAH A,AZIZ T S.Non-linear cable response to multiple support periodic excitation [J].Engineering Structures,2000,22(10):1301-1312.

    • [11] ZAGHARI B,RUSTIGHI E,TEHRANI M G.Dynamic response of a nonlinear parametrically excited system subject to harmonic base excitation [J].Journal of Physics:Conference Series,2016,744(1):012125.

    • [12] ZAGHARI B,RUSTIGHI E,TEHRANI M G.Phase dependent nonlinear parametrically excited systems [J].Journal of Vibration and Control,2019,25(3),497-505.

    • [13] GATTULLI V,ALAGGIO R,POTENZA F.Analytical prediction and experimental validation for longitudinal control of cable oscillations [J].lnternational Journal of Non-Linear Mechanics,2008,43(1),36-52.

    • [14] Peng J,Xiang M,Wang L,et al.Non-linear primary resonance in vibration control of cable-stayed beam with time delay feedback [J].Mechanical Systems and Signal Processing,2020,137:106488.

    • [15] WANG L H,ZHAO Y Y.Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions [J].Journal of Sound and Vibration,2009,327(1-2):121-133.

    • [16] 赵珧冰,林恒辉,黄超辉,等.温度场中悬索受多频激励组合联合共振响应研究 [J].振动与冲击,2019,38(3):207-213.ZHAO Y B,LIN H H,HUANG C H,et al.Combined joint resonance responses of suspended cable subject to multi-frequency excitation in thermal environment [J].Journal of Vibration and Shock,2019,38(3):207-213.(in Chinese)

  • 参考文献

    • [1] 丛云跃,康厚军,郭铁丁,等.CFRP索斜拉桥面内自由振动的多索梁模型及模态分析 [J].动力学与控制学报,2017,15(6):494-504.CONG Y Y,KANG H J,GUO T D,et al.A multiple cable-beam model and modal analysis on in-plane free vibration of cable-styed bridge with CFRP cables [J].Journal of Dynamics and Control,2017,15(6):494-504.(in Chinese)

    • [2] 康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动 [J].中南大学学报(自然科学版),2011,42(8):2439-2445.KANG H J,ZHAO Y Y,JIANG L Z.In-plane nonlinear vibration of super long stay cables under parametric and forced excitations [J].Journal of Central South University(Science and Technology),2011,42(8):2439-2445.(in Chinese)

    • [3] 陈杰夫,康厚军,苏潇阳,等.谐波激励下斜拉桥面内非线性振动试验研究 [J].固体力学学报,2019,40(3):248-259.CHEN J F,KANG H J,SHU X Y,et al.Nonlinear dynamics of a parametrically and externally excited thin plate [J].Chinese Journal of Solid Mechanics,2019,40(3):248-259.(in Chinese)

    • [4] 吴娟,钱有华.一类弦-梁耦合非线性振动系统的动力学数值模拟研究 [J].动力学与控制学报,2018,16(5):403-410.WU J,QIAN Y H.Numerical simulation research on dynamics of a string-beam coupled nonlinear vibration system [J].Journal of Dynamics and Control,2018,16(5):403-410.(in Chinese)

    • [5] 赵跃宇,李永鼎,王连华,等.悬索的超谐波共振与1∶3内共振分析 [J].动力学与控制学报,2007,5(2):112-117.ZHAO Y Y,LI Y D,WANG L H,et al.On one-to-three internal resonances and superharmonic resonances of suspended cables [J].Journal of Dynamics and Control,2007,5(2):112-117.(in Chinese)

    • [6] 赵跃宇,王涛,康厚军.斜拉索主参数共振的稳定性分析 [J].动力学与控制学报,2008,6(2):112-117.ZHAO Y Y,WANG T,KANG H J.Analysis of the stability of principal parametric resonance of stayed cable [J].Journal of Dynamics and Control,2008,6(2):112-117.(in Chinese)

    • [7] 张鹏,卢文胜,吕西林.附加弹簧保护装置的悬索主共振响应分析 [J].振动工程学报,2020,33(3):550-558.ZHANG P,LU W S,LÜ X L.Primary resonance responses study of suspended cables with supplemental spring-protection devices [J].Journal of Vibration Engineering,2020,33(3):550-558.(in Chinese)

    • [8] SUN C S,ZHOU X K,ZHOU S X.Nonlinear responses of suspended cable under phase-differed multiple support excitations [J].Nonlinear Dynamics,2021,104(2):1097-1116.

    • [9] 唐金琪,孙测世.端部激励相位差下斜拉索的非线性振动 [J].力学季刊,2019,40(3):469-477.TANG J Q,SUN C S.Nonlinear vibrations of a stay cable under support excitation with phase differences [J].Chinese Quarterly of Mechanics,2019,40(3):469-477.(in Chinese)

    • [10] EL-ATTAR M,GHOBARAH A,AZIZ T S.Non-linear cable response to multiple support periodic excitation [J].Engineering Structures,2000,22(10):1301-1312.

    • [11] ZAGHARI B,RUSTIGHI E,TEHRANI M G.Dynamic response of a nonlinear parametrically excited system subject to harmonic base excitation [J].Journal of Physics:Conference Series,2016,744(1):012125.

    • [12] ZAGHARI B,RUSTIGHI E,TEHRANI M G.Phase dependent nonlinear parametrically excited systems [J].Journal of Vibration and Control,2019,25(3),497-505.

    • [13] GATTULLI V,ALAGGIO R,POTENZA F.Analytical prediction and experimental validation for longitudinal control of cable oscillations [J].lnternational Journal of Non-Linear Mechanics,2008,43(1),36-52.

    • [14] Peng J,Xiang M,Wang L,et al.Non-linear primary resonance in vibration control of cable-stayed beam with time delay feedback [J].Mechanical Systems and Signal Processing,2020,137:106488.

    • [15] WANG L H,ZHAO Y Y.Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions [J].Journal of Sound and Vibration,2009,327(1-2):121-133.

    • [16] 赵珧冰,林恒辉,黄超辉,等.温度场中悬索受多频激励组合联合共振响应研究 [J].振动与冲击,2019,38(3):207-213.ZHAO Y B,LIN H H,HUANG C H,et al.Combined joint resonance responses of suspended cable subject to multi-frequency excitation in thermal environment [J].Journal of Vibration and Shock,2019,38(3):207-213.(in Chinese)

  • 微信公众号二维码

    手机版网站二维码