en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

赵珧冰,E-mail:ybzhao@hqu.edu.cn

中图分类号:O322

文献标识码:A

文章编号:1672-6553-2023-21(4)-032-009

DOI:10.6052/1672-6553-2023-041

参考文献 1
刘永健,刘江,张宁.桥梁结构日照温度作用研究综述 [J].土木工程学报,2019,52(5):59-78.LIU Y J,LIU J,ZHANG N.Review on solar thermal actions of bridge structures [J].China Civil Engineering Journal,2019,52(5):59-78.(in Chinese)
参考文献 2
LEPIDI M,GATTULLI V.Static and dynamic response of elastic suspended cables with thermal effects [J].International Journal of Solids and Structures,2012,49:1103-1116.
参考文献 3
TREYSSEDE F.Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures [J].Journal of Sound and Vibration,2018,413:191-204.
参考文献 4
MA L,XU H,MUNKHBAATAR T,et al.An accurate frequency-based method for identifying cable tension while considering environmental temperature variation [J].Journal of Sound and Vibration,2021,490:115693.
参考文献 5
ZHAO Y,PENG J,ZHAO Y,et al.Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables [J].Nonlinear Dynamics,2017,89:2815-2827.
参考文献 6
林恒辉,赵珧冰.温度变化对悬索非线性内共振响应特性影响 [J].振动与冲击,2021,40(8):165-172.LIN H H,ZHAO Y B.Influences of temperature on suspended cables' nonlinear vibration characteristics considering internal resonances [J].Journal of Vibration and Shock,2021,40(8):165-172.(in Chinese)
参考文献 7
李凤臣,杨鸥,田石柱,等.考虑前2阶模态组合的拉索非线性参数共振研究 [J].防灾减灾工程学报,2015,35(2):249-255.LI F C,YANG O,TIAN S Z,et al.Nonlinear parametric resonance of cable in consideration of first two modes combination [J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(2):249-255.(in Chinese)
参考文献 8
汪峰,李春清,刘章军,等.考虑附加刚度的黏滞阻尼器-斜拉索参数振动模型及控制分析 [J].振动与冲击,2020,39(22):183-191.WANG F,LI C Q,LIU Z J,et al.Parametric vibration model for a viscous damper-cable system considering the effect of additional stiffness [J].Journal of Vibration and Shock,2020,39(22):183-191.(in Chinese)
参考文献 9
张伟,姚明辉,张君华,等.高维非线性系统的全局分岔和混沌动力学研究 [J].力学进展,2013,43(1):63-90.ZHANG W,YAO M H,ZHANG J H,et al.Study of global bifurcations and chaotic dynamics for high-dimensional nonlinear [J].Advances in Mechanics,2013,43(1):63-90.(in Chinese)
参考文献 10
ZHANG W,TANG Y.Global dynamics of the cable under combined parametrical and external excitations [J].International Journal of Nonlinear Mechanics,2002,37:505-526.
参考文献 11
CHEN H K,XU Q Y.Bifurcations and chaos of an inclined cable [J].Nonlinear Dynamics,2009,57:37-55.
参考文献 12
ZHANG X H,CHEN F Q,JING T Y.Global bifurcations of a taut string with 1∶2 internal resonance [J].Communications in Nonlinear Science and Numerical Simulation,2014,19:776-788.
参考文献 13
AN F X,CHEN F Q.Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads [J].Nonlinear Dynamics,2017,89(3):1753-1778.
参考文献 14
高美娟,张伟,姚明辉,等.压电复合材料层合板的混沌动力学研究 [J].振动与冲击,2009,28(6):82-85.GAO M J,ZHANG W,YAO M H,et al.Chaotic dynamics of the laminated composite piezoelectric rectangular plate [J].Journal of Vibration and Shock,2009,28(6):82-85.(in Chinese)
参考文献 15
孙莹,张伟,吴瑞琴.六维系统环形桁架天线的非线性动力学分析 [J].应用数学和力学,2019,40(3):282-300.SUN Y,ZHANG W,WU R Q.Analysis on nonlinear dynamics of circular truss antennae in 6D systems [J].Applied Mathematics and Mechanics,2019,40(3):282-300.(in Chinese)
参考文献 16
DEMSIC M,UROS M,LAZAREVIC A,et al.Resonance regions due to interaction of forced and parametric vibration of a parabolic cable [J].Journal of Sound and Vibration,2019,447:78-104.
参考文献 17
ZHANG W,ZHANG F X,ZU J W.Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam [J].Journal of Sound and Vibration,2004,278:949-974.
参考文献 18
HALLER G,WIGGINS S.N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems [J].Archive for Rational Mechanics and Analysis,1995,130:25-101.
参考文献 19
SRINIL N,REGA G.The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables [J].International Journal of Non-Linear Mechanics,2007,42(1):180-195.
目录contents

    摘要

    索是一类工程中常用的张力结构,其柔度大、阻尼轻,在各类外部荷载作用或端部位移激励下极易发生大幅振动,影响结构安全运营.已有研究表明悬索的振动特性对于温度变化极为敏感,因此本文同时考虑支座运动引起的参数共振以及模态间1∶2内共振,基于全局分岔理论,系统探究温度变化对悬索全局动力学行为的影响.首先引入张力改变系数,建立考虑整体温度变化影响与受参数激励悬索的面内非线性运动微分方程.采用Galerkin法进行离散,利用多尺度法得到该非线性系统直角坐标形式的平均方程,并基于坐标变换,将平均方程简化为规范形,采用能量相位法研究温度变化时悬索多脉冲混沌动力学行为.通过能量差函数的零点条件以及扰动系统下中心点的吸引域范围,分析激励幅值、阻尼系数和调谐参数的取值范围,并计算该四维系统的Lyapunov指数.研究结果表明:温度变化会影响系统Shilnikov型多脉冲同宿轨道的产生;随着温度变化,多脉冲同宿轨道可能消失,导致系统的混沌运动转变为周期运动;受温度变化影响,动力系统可能展现出截然不同的动力学行为.

    Abstract

    The suspended cable is a type pf commonly used tension structure in engineering structures. It has high flexibility and light damping, and it is prone to large vibrations under various excitations and/or support motions, which endangers the safety of the cable structures. The previous studies have shown that the vibration characteristics of the dynamic system are very sensitive to temperature changes. Therefore, this paper considers both the parametric resonances caused by the support motions and the two-to-one internal resonances, and then it systematically explores the influences of temperature changes on the suspended cable’s dynamic behaviors from the perspective of global bifurcations. Firstly, the tension variation coefficient is introduced, and the nonlinear differential equations of the in-plane motion of the suspended cable subjected to parametric excitation in thermal environments is established. The Galerkin method is used for discretization, and the multiple scales method is adopted to obtain the average equation of the nonlinear system in rectangular coordinates. Based on the coordinate transformation, the average equation is simplified into a normal form. The energy phase method is used to explore the multi-pulse chaotic dynamical behavior of the suspended cable when the temperature is changed. Through the zero-point condition of the energy-difference function and the range of attraction of the center point under the disturbance system, the excitation amplitude, damping coefficient and detuning parameters of the system are explored, and the Lyapunov exponents of the four-dimensional system are calculated. Numerical examples show that: temperature changes affect the generation of system’s Shilnikov-type multi-pulse orbits. The multi-pulse orbits may disappear considering temperature effects, and it causes the system’s chaotic motions transform into periodic motions. The dynamical system may exhibit distinct vibration behaviors in thermal environments.

  • 引言

  • 由于索结构线形美观、柔度大、质量轻以及强度高等特点,被广泛运用于各类工程中.众所周知,各类索结构极易受到外界环境因素影响[1],例如在太阳辐射等影响下,温度场会不断变化,从而引起结构热胀冷缩.国内外学者对索结构在温度场中的静、动力特性开展了大量研究[2-6].此外,受支座位移运动引发的参数共振,将导致拉索展现出复杂的非线性动力学行为[78].倘若进一步考虑温度变化影响,系统的振动特性会产生明显的定性和定量变化,进而影响索结构的安全性和稳定性.

  • 近年来随着全局分岔理论的不断完善,诸如混沌之类的复杂非线性动力现象被人们进一步了解和认知.张伟等[9]全面系统总结了高维非线性系统中多脉冲混沌理论,指出了全局分岔理论在工程应用中的现状和展望.尤其对于悬索这类典型的、同时包含平方和立方非线性的系统,全局分岔理论可以很全面地描述其非线性动力学行为.Zhang和Tang[10]基于全局摄动方法研究了悬索在参数激励和外界环境激励耦合作用下的全局分岔现象和混沌行为.Chen和Xu[11]基于能量相位法研究了斜拉索的Shilnikov同宿轨道以及混沌动力学行为.Zhang等[12]借助高维Melnikov方法证明了张紧弦在1∶2内共振情况下存在Shilnikov同宿轨道.

  • 除悬索、斜拉索和弦等张力结构外,有学者通过广义Melnikov方法和能量相位法研究了板、壳和天线等基本结构的混沌动力学和多脉冲轨道.An和Chen[13]研究了气动热弹性功能梯度材料(FGM)截锥壳在复杂载荷作用下1∶2内共振和主参数共振情况下全局分岔和多脉冲轨道.高美娟等[14]依据三阶剪切变形层合板理论,研究压电复合材料层合板在1∶2∶4内共振情况下的全局动力学.孙莹等[15]通过能量相位法研究热应力下环形桁架天线混沌运动.

  • 针对悬索这类典型的工程柔性结构,Zhao等[56]基于局部分岔分析发现:温度变化会引起动力系统参数的微小改变,进而导致其整体非线性振动特性产生明显定性和定量的改变.倘若进一步采用全局分岔分析,可以从能量轨道的角度更好解释以及探究动力系统复杂的运动行为[9].由此可见:一方面温度变化对支座位移运动引发的参数激励下悬索动力学行为影响有待进一步研究; 另一方面基于全局分岔理论描述温度变化对系统动力学行为的影响更鲜有报道.因此本文将局部分岔分析[6]拓展到全局分岔分析,采用Galerkin法和多尺度法并基于规范型理论和能量相位法,系统探究温度变化对悬索全局动力行为尤其是多脉冲轨道的影响,揭示温度变化下动力系统可能出现的大幅振动机理.

  • 1 运动方程及摄动分析

  • 1.1 数学模型

  • 如图1所示,悬索水平悬挂于OB之间,以O为原点,建立直角坐标系O-xyLb分别代表悬索的跨度和初始垂度.本文考虑支座位移引发的共振响应,图中Δ表示支座位移最大值,水平和垂直方向最大位移分量分别为ΔxΔy,支座运动ΔA表示为:ΔAt)=ΔcosΩt,其中Ω表示支座运动的频率.

  • 图1 悬索参数激励模型

  • Fig.1 Parametric excitation model of suspended cables

  • 当环境温度发生整体改变时,基于增量热场理论,悬索将产生热应力构形[23],此时张力改变,垂跨比随之变化,悬索的轴向和竖直方向位移分别用uxt)和vxt)表示.当不考虑温度变化影响时,利用Hamilton变分原理,可得悬索面内运动微分方程[16]:

  • mv¨t+cvv˙-Hv''+EAy'+v'u'+y'v'+12v'2,=0
    (1)
  • 其中:点表示对t求导,撇表示对x求导,EA表示抗拉刚度,H表示初始水平张力,cv表示阻尼系数,悬索的静态构形用抛物线表示:y=4bxL-x)/L2

  • 在支座运动引发的参数激励作用下,悬索的总加速度v¨t由两部分组成:静态位移产生的加速度v¨0以及动态应变产生的加速度v¨.由于垂度较小,分析时可以假设v¨0是线性分布,此时v¨0可表示为: v¨0xt=-1-xΩ2ΔycosΩt.

  • 为描述简便,引入以下无量纲参数:

  • (x-,u-,v-)=(x,u,v)/L,cv=2mωξvt-=(t/L)H/m,ω-=ωLm/Hα=EA/H,μ=ξvω-
    (2)
  • 其中:ω表示固有频率,α表示静态拉伸系数,ζv示悬索垂向阻尼比.为表示简便,忽略上画线,可得支座运动激励下悬索面内运动方程:

  • v¨+2μv˙-v''-αy''+v''×-ΔxcosΩt+01 y'v'+12v'2dx=(1-x)Ω2ΔycosΩt
    (3)
  • 已有研究表明[5]:温度变化会改变拉索张力以及垂跨比,其影响可通过引入张力改变系数χ2来表示.因此在无量纲方程的基础上,可得考虑温度变化时悬索受参数激励的运动微分方程为[56]:

  • v¨+2μv˙-χ2v''-α-ΔxcosΩt+01 y'v'χ2+12v'2dx×y''χ2+v''=(1-x)Ω2ΔycosΩt
    (4)
  • 采用Galerkin法对方程进行离散:

  • v(x,t)=n=1N qn(t)φn(x)
    (5)
  • 其中:考虑温度影响下的模态函数φnx)参考文献[5].

  • 本文考虑仅发生内共振的两个模态,令N=2,将方程(5)带入方程(4)中,方程两边同时分别乘模态函数φnx),并从0到1积分,可得两自由度的运动微分方程组:

  • q¨1+2μ1q˙1+ω12q1+Λ11q12+Λ13q22+Γ11q13+Γ12q1q22=P1cosΩt+K1cosΩtq1
    (6)
  • q¨2+2μ2q˙2+ω22q2+Λ22q1q2+Γ21q12q2+Γ22q23=P2cosΩt+K2cosΩtq2
    (7)
  • 其中:相关系数如附录所示.

  • 1.2 摄动分析

  • 采用多尺度法对方程(6)、(7)进行求解,引入摄动参数ε以及三个时间尺度: T0=ε1tT1=ε2tT2=ε3t,将参数激励项和阻尼项摄动到二阶: Kn=ε2KnPn=ε2Pnμ1,2=ε2μ1,2.外激励和固有频率间关系通过引入调谐参数σ1σ2来表示:Ω=2ω1+εσ1Ω=ω2+εσ2.

  • 方程的解可以假设为qitε=j=13 εjqij,将qitε)带入式(6)、(7)中,并令两边εi的系数相等.令qitε)两边摄动参数系数相等,求解可得qn,1的表达式: qni=AnT1T2eiωnT0+A-nT1T2e-iωnT0n=1,2,其中AA-为一对共轭复数.将qn,1带入qitε)中进行求解,通过消除长期项,可以得到方程(6)、(7)的平均方程:

  • -2D2A1iω1-2μ1iω1A1-3Γ11A12A-1+K1A-1eiτ1T2/2-2Γ12A1A2A-2+10Λ112A1A1A-13ω12+4Λ11Λ13A1A2A-2ω12-2Λ13Λ22A1A2A-2ω12+2ω1ω2-2Λ13Λ22A1A2A-2ω12-2ω1ω2=0
    (8)
  • P2eiσ2T2/2-2μ2iω2A2-2D2A2iω2-2Γ21A1A-1A2-3Γ22A22A-2-Λ13Λ22A2A2A-24ω22-ω12+2Λ11Λ22A1A2A-1ω12+2Λ13Λ22A2A2A-2ω12-Λ222A1A-1A2ω12+2ω1ω2-Λ222A1A-1A2ω12-2ω1ω2=0
    (9)
  • 引入直角坐标: Amt=pmt-iqmteiβm/2,带入方程(8)、(9)中,分离虚部和实部,得直角坐标形式下的平均方程:

  • p˙1=-μ1p1+k-σ1/2q1-γ1q1p12+q12-γ2q1p22+q22
    (10)
  • q˙1=-μ1q1+k+σ1/2p1+γ1p1p12+q12+γ2p1p22+q22
    (11)
  • p˙2=-μ2p2-σ2q2-γ3q2p12+q12-γ4q2p22+q22
    (12)
  • q˙2=-μ2q2+σ2p2+γ3p2p12+q12+γ4p2p22+q22-f
    (13)
  • 其中:f=-P2/2ω2k=K1/4ω1,其余系数如附录所示.

  • 方程(10)~(13)确定了参数激励下悬索面内振动的相位和振幅,因此通过该方程组研究悬索在温度场中多脉冲混沌动力学行为.为了得到归一化方程,需对平均方程(10)~(13)进行化简,使用Maple程序进行计算[17],引入μi=εμii=1,2f=εf以及线性变换: p1=1-k+σ1/2up2=2Icosφq1=μ1u+vq2=2Isinφ.

  • 方程(10)~(13)可表示为可积的Hamilton系统:

  • u˙=v=H0/v+εH1/v
    (14)
  • v˙=u2Iγ2-μ-1+γ1u3-2εμ1v=-H0/u-εH1/u+2μ1v
    (15)
  • I˙=-2εμ2I-εf2Isinφ=H0φ+εH1φ-2μ2I
    (16)
  • φ˙=σ2+γ3u2+γ42I-εfcosφ2I=-H0I-εH1I
    (17)
  • 其中:μ-1=μ12+k+σ1/2k+σ1/2-1.

  • 因此系统(14)~(17)的哈密顿函数表示为:

  • H0=v2/2-Iγ2+γ3u2+u2μ-1/2-γ1u4/4-σ2I-I2γ4
    (18)
  • H1=f2Icosφ
    (19)
  • 2 无扰动系统动力学

  • 假设系统(14)~(17)中的扰动参数ε=0,那么余下系统中(14)、(15)不含φ,将I视作常数,因此可将系统对于(uv)平面和(Iφ)平面进行解耦,得:

  • u˙=vv˙=u2Iγ2-μ-1+γ1u3
    (20)
  • 此时系统(20)的哈密顿函数简化为:

  • H-(u,v)=v2/2+ηu2/2-γ1u14/4
    (21)
  • 其中:η=μ-1-2Iγ2.

  • 图2 三维相空间流形结构图

  • Fig.2 Three-dimensional phase space manifold structure diagrams

  • 基于方程(21),绘制系统(20)在三维相空间中的流形结构图.如图2所示,当η>0,系统(20)将出现异宿分岔.当η<0,系统的唯一解为零解(uv)=(0,0),该零解为鞍点.在曲线μ-1-2Iγ2上,即I=μ-1/2γ2的零解通过叉型分岔由一个变为三个,不妨将三个解分别记为q0I)=(0,0),q±I)=(D,0),由方程(20)的零解条件可以得到D:

  • D=±μ-1-2γ2I/γ11/2
    (22)
  • 观察图2(b)可知q0I)为轨道中心,q±I)为轨道鞍点.由于异宿轨道可能产生混沌运动,故本文主要研究图2(b)这类情况.对于所有的I∈[0,I1],方程(20)有一个鞍点q±I)和它自身的异宿轨道相连.

  • 四维空间(uvIφ)由下式定义:

  • M0=(u,v,I,φ) u=q±(I),v=00<I<I1,0φ2π
    (23)
  • 系统(20)异宿轨道的表达式:

  • uT1=±ηγ1tanh(δ)vT1=±η2γ1sech2(δ)
    (24)
  • 其中:δ=2/2T1.

  • 将无扰动系统限制在M0上再进行分析,对于任意I∈[0,I1],满足DIH[q0I),I]=0的值I被称为共振值,记作Ir,当I=Ir时可以得到此时连接异宿轨道的相位漂移角:

  • Δφ=-22ηγ3/γ1
    (25)
  • 3 多脉冲混沌轨道

  • 由于不变流形M0在微小的非零扰动ε影响下是不动的,所以M0在小扰动的持续作用下变为Mε:

  • Mε=(u,v,I,φ) u=q0(I),v=00<I<I1,0φ2π
    (26)
  • 将系统(14)~(17)限制在Mε上后,对ε进行Taylor展开,同时引入变换I=Ir+εhτ=εT1,得:

  • h˙=-2Irμ2-fsinφ2Ir-2μ2+fsinφ/2Irεh+O(ε)
    (27)
  • φ˙=-2γ3γ2/γ1+2γ4h-εfcosφ/2I+Oε2
    (28)
  • 其中: h˙φ˙分别表示对τ求导.当扰动参数ε趋向于零时,令方程(27)、(28)中h˙=0,φ˙=0,得到两个不动点:

  • p=0,φc=0,-arcsinμ22Ir/f
    (29)
  • q=0,φs=0,π+arcsinμ22Ir/f
    (30)
  • 其中:不动点p是中心,q是鞍点.经过鞍点q存在一个同宿轨道与自身相连,同时不动点p周围有许多周期轨道.当扰动参数ε足够小时,中心不动点p会下沉变为pε,连接qε的同宿轨道破裂,qε不稳定流形逐渐趋近于pε.

  • 方程(27)、(28)的哈密顿函数数值保持不变,可得φnφs的关系式:

  • arcsinμ22Ir/f+f2-μ222Ir/μ22Ir=φn-fcosφn/μ22Ir-π
    (31)
  • 基于Haller和Wiggins给出的表达式[18],耗散情况下n阶能量差函数表示为:

  • ΔnH^D=H^D(h,φ+nΔφ)-H^D(h,φ)-nA dgu/du+dgv/dvdudv-nAl gIdφ
    (32)
  • 耗散情况下n阶能量差分函数转化为:

  • ΔnH^D=-2f2Irsin(φ+nΔφ/2)sin(nΔφ/2)-nμ142η32/3γ1
    (33)
  • 方程(27)、(28)存在非退化平衡点p≡(hφc)=(0,φc),通过中心点p的能量差函数横截零点可得:

  • μfN42η32/32Irγ1-2Irsin(NΔφ)2+2Ir[cos(NΔφ)-1]21/2=cos(NΔφ)-1
    (34)
  • 假设μ1=μ2=μ,当Δφ满足条件Δφ≠2mπ/NmZ,同时系统满足下列非退化条件,据此可判断系统是否在N-脉冲轨道上发生跳跃:

  • 2Ircos-arcsinμ2Ir/f+nΔφ-cos-arcsinμ2Ir/f-

  • μn42η32/3fγ10
    (35)
  • 最后,需要确定从慢流形上起跳的任意一个N-脉冲轨道的降落点必须落在焦点的吸引域Aε之内.考虑区间[-π,π]内的一点,它的降落点与φc+NΔφ的相位差约2kπ,降落点可以表示为:

  • φfN=φs+φc+NΔφ-φsmod2π
    (36)
  • 其中:φsφc如公式(29)、(30)中所表示.如果φfNφs,将φfN减去2kπ后重新定义φfN,验证降落点平移2kπ后是否还在鞍点φs附近,如果φfN的能量大于鞍点φs的能量,则:

  • H^D0,φfN>H^D0,φs
    (37)
  • cosφfN-cosφs>μ2IrφfN-φs/f
    (38)
  • 当降落点落在吸引域之内,系统可能存在混沌运动.

  • 4 数值算例和分析

  • 本文的数值算例中,悬索的参数选取[19]: L=850m,ρ=8376kg/m3E=1.794×1011Pa,A=0.1159m2μ1= μ2=0.005,α=1.2×10-5/℃,结合实际工程情况,温度变化ΔT=±40°C.图3给出了温度变化以及Irvine参数(logλ2)对悬索的前六阶固有频率的影响.图中放大处,二阶正对称模态和一阶反对称模态频率之间呈现两倍关系,系统可能发生2:1内共振,温度变化下系统的各参数和系数大小如表1所示.

  • 图3 考虑温度变化影响下悬索的前六阶模态频率

  • Fig.3 First six natural frequencies of suspended cable considering temperature changes

  • 表1 考虑温度变化影响的悬索参数

  • Table1 Parameters of suspended cables considering temperature changes

  • 表2 考虑温度变化影响的Lyapunov指数和吸引子类型

  • Table2 Lyapunov exponents and attractors types considering temperature changes

  • 采用四阶龙格库塔法计算方程组(10)~(13),并计算该四维系统的Lyapunov指数.假设支座横向振动幅值Δx=0.0001,当调谐参数σ2=-0.10时,选取脉冲轨道数N=3.此时三组γ1均大于0,为了使系统在该环境下产生异宿轨道,必须让方程(22)中的D2为正数,即η=μ-1-2Iγ2>0.

  • 图4表示不同温度场中悬索产生异宿轨道的条件.当ΔT=-40℃或0°C时,η>0的解集为闭集,而当ΔT=+40℃时,η>0的解集为开集.选取-40℃这组参数,当σ1在[0.30775,1.25072]范围内,系统(20)产生异宿轨道.当σ1=0.483时,带入方程(34)得到满足能量差函数横截零点的激励f=1.4724×10-4.此时共振值I=Ir=3.4671×10-8,相位漂移值Δφ=2.0862.通过求解方程(36),可得: φfN=6.2409,φs=3.1595,cos(φfN)-cos(φs)=1.9989,μ2IrφfN-φs/f=0.0276.系统参数满足方程(37)、(38),即可能出现混沌响应.

  • 图5分别表示ΔT=0℃,-40℃,40℃时,该动力系统的时程曲线、相位图和庞加莱截面.如图所示,温度变化ΔT为0℃以及40℃,图5(a)和5(c)时程曲线在一段时间运动后将逐渐趋于稳定,最大无量纲振幅减小约为0.0002.二者相位图呈现为闭合圆环,庞加莱截面均表现为杂乱但有限的点集.由表2可知,这两种温度变化条件下,其Lyapunov指数均为(零,负,负,负),即可判定,当0℃及40℃时,系统吸引子类型均为周期型.

  • 图4 考虑温度变化影响的系统异宿轨道产生条件

  • Fig.4 Conditions for the generation of system’s heteroclinic orbits considering temperature changes

  • 图5 考虑温度变化影响的时程曲线,相位图,庞加莱截面:(a)0℃;(b)-40℃;(c)40℃

  • Fig.5 Time history curve, phase diagram, Poincaré section considering temperature changes: (a) 0℃; (b) -40℃; (c) 40℃

  • 然而,当ΔT=-40℃时,系数满足方程(37)-(38)条件,即图5(b)所示的运动存在多脉冲Shilnikov型轨道.对比图5中三组时程曲线,当ΔT=-40℃时,很长一段时间后运动仍没有趋于稳定,最大振幅约为0.001.此时图5(b)中相位图和庞加莱截面图均表现出系统存在无法预知的运动行为.同理计算得到的-40℃的Lyapunov指数为(正,零,负,负),如表2所示,其中最大Lyapunov指数大于零,即判定该运动存在混沌吸引子,并且该混沌为多脉冲Shilnikov型轨道混沌.

  • 由此可见,当ΔT=-40℃时,系统存在混沌吸引子,且伴随无序的大幅振动.此时动力系统的振动幅值难以准确预测,由此导致的大幅振动可能会影响结构的安全.当不考虑温度变化(0℃)或者变化升高(40℃)时,系统参数不再满足能量差函数的零解条件,Shilnikov型多脉冲轨道消失,混沌运动也随之消失,最大振幅明显下降.由此可见温度变化有可能明显改变动力系统的吸引子类型以及系统的振动幅值.

  • 5 结论

  • 温度变化会直接改变悬索静态构形,导致其固有频率及非线性系数发生改变,影响频率间的公倍关系,进而引发系统全局动力学行为产生变化.当悬索存在Shilnikov型多脉冲轨道并产生混沌运动时,温度变化会影响悬索系统中Shilnikov型多脉冲轨道的产生条件.在异宿轨道参数限制下,相同的激励条件,温度变化可能会引起产生混沌响应的多脉冲轨道消失,导致动力系统展现出截然不同的动力学行为,改变系统的共振响应幅值,影响结构安全.

  • 附录

  • Ki=-α01 Δxφ1''φidx, (i=1, 2) ωi2=-χ201 φi''φidx-α/χ401 y''01 y'φi'dxφidx, (i=1, 2) Pi=-α/χ2y''Δx01 φidx+Ω2Δz01 (1-x) φidx, (i=1, 2) Λ11=-α/2χ201 y''01 φ1'2dxφ1dx-201 φ1''01 y'φ'1dxφ1dxΛ13=-α/2χ201 y''01 φ2'2dxφ1dxΛ22=-α/χ201 φ2''01 y'φ1'dxφ2dxΓij=- (α/2) 01 φi''01 φj'2dxφidx, (i, j=1, 2) γ1=-3Γ11/8ω1+5Λ112/12ω13γ2=Λ11Λ13/2ω13-Γ12/4ω1-Λ13Λ22/2ω13-8ω1ω22γ3=-Γ21/4ω2+Λ11Λ22/4ω2ω12-Λ222/4ω12ω2-16ω23γ4=-3Γ24/8ω2-Λ13Λ228ω22-3ω12/8ω12ω2ω12-4ω22

  • 参考文献

    • [1] 刘永健,刘江,张宁.桥梁结构日照温度作用研究综述 [J].土木工程学报,2019,52(5):59-78.LIU Y J,LIU J,ZHANG N.Review on solar thermal actions of bridge structures [J].China Civil Engineering Journal,2019,52(5):59-78.(in Chinese)

    • [2] LEPIDI M,GATTULLI V.Static and dynamic response of elastic suspended cables with thermal effects [J].International Journal of Solids and Structures,2012,49:1103-1116.

    • [3] TREYSSEDE F.Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures [J].Journal of Sound and Vibration,2018,413:191-204.

    • [4] MA L,XU H,MUNKHBAATAR T,et al.An accurate frequency-based method for identifying cable tension while considering environmental temperature variation [J].Journal of Sound and Vibration,2021,490:115693.

    • [5] ZHAO Y,PENG J,ZHAO Y,et al.Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables [J].Nonlinear Dynamics,2017,89:2815-2827.

    • [6] 林恒辉,赵珧冰.温度变化对悬索非线性内共振响应特性影响 [J].振动与冲击,2021,40(8):165-172.LIN H H,ZHAO Y B.Influences of temperature on suspended cables' nonlinear vibration characteristics considering internal resonances [J].Journal of Vibration and Shock,2021,40(8):165-172.(in Chinese)

    • [7] 李凤臣,杨鸥,田石柱,等.考虑前2阶模态组合的拉索非线性参数共振研究 [J].防灾减灾工程学报,2015,35(2):249-255.LI F C,YANG O,TIAN S Z,et al.Nonlinear parametric resonance of cable in consideration of first two modes combination [J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(2):249-255.(in Chinese)

    • [8] 汪峰,李春清,刘章军,等.考虑附加刚度的黏滞阻尼器-斜拉索参数振动模型及控制分析 [J].振动与冲击,2020,39(22):183-191.WANG F,LI C Q,LIU Z J,et al.Parametric vibration model for a viscous damper-cable system considering the effect of additional stiffness [J].Journal of Vibration and Shock,2020,39(22):183-191.(in Chinese)

    • [9] 张伟,姚明辉,张君华,等.高维非线性系统的全局分岔和混沌动力学研究 [J].力学进展,2013,43(1):63-90.ZHANG W,YAO M H,ZHANG J H,et al.Study of global bifurcations and chaotic dynamics for high-dimensional nonlinear [J].Advances in Mechanics,2013,43(1):63-90.(in Chinese)

    • [10] ZHANG W,TANG Y.Global dynamics of the cable under combined parametrical and external excitations [J].International Journal of Nonlinear Mechanics,2002,37:505-526.

    • [11] CHEN H K,XU Q Y.Bifurcations and chaos of an inclined cable [J].Nonlinear Dynamics,2009,57:37-55.

    • [12] ZHANG X H,CHEN F Q,JING T Y.Global bifurcations of a taut string with 1∶2 internal resonance [J].Communications in Nonlinear Science and Numerical Simulation,2014,19:776-788.

    • [13] AN F X,CHEN F Q.Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads [J].Nonlinear Dynamics,2017,89(3):1753-1778.

    • [14] 高美娟,张伟,姚明辉,等.压电复合材料层合板的混沌动力学研究 [J].振动与冲击,2009,28(6):82-85.GAO M J,ZHANG W,YAO M H,et al.Chaotic dynamics of the laminated composite piezoelectric rectangular plate [J].Journal of Vibration and Shock,2009,28(6):82-85.(in Chinese)

    • [15] 孙莹,张伟,吴瑞琴.六维系统环形桁架天线的非线性动力学分析 [J].应用数学和力学,2019,40(3):282-300.SUN Y,ZHANG W,WU R Q.Analysis on nonlinear dynamics of circular truss antennae in 6D systems [J].Applied Mathematics and Mechanics,2019,40(3):282-300.(in Chinese)

    • [16] DEMSIC M,UROS M,LAZAREVIC A,et al.Resonance regions due to interaction of forced and parametric vibration of a parabolic cable [J].Journal of Sound and Vibration,2019,447:78-104.

    • [17] ZHANG W,ZHANG F X,ZU J W.Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam [J].Journal of Sound and Vibration,2004,278:949-974.

    • [18] HALLER G,WIGGINS S.N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems [J].Archive for Rational Mechanics and Analysis,1995,130:25-101.

    • [19] SRINIL N,REGA G.The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables [J].International Journal of Non-Linear Mechanics,2007,42(1):180-195.

  • 参考文献

    • [1] 刘永健,刘江,张宁.桥梁结构日照温度作用研究综述 [J].土木工程学报,2019,52(5):59-78.LIU Y J,LIU J,ZHANG N.Review on solar thermal actions of bridge structures [J].China Civil Engineering Journal,2019,52(5):59-78.(in Chinese)

    • [2] LEPIDI M,GATTULLI V.Static and dynamic response of elastic suspended cables with thermal effects [J].International Journal of Solids and Structures,2012,49:1103-1116.

    • [3] TREYSSEDE F.Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures [J].Journal of Sound and Vibration,2018,413:191-204.

    • [4] MA L,XU H,MUNKHBAATAR T,et al.An accurate frequency-based method for identifying cable tension while considering environmental temperature variation [J].Journal of Sound and Vibration,2021,490:115693.

    • [5] ZHAO Y,PENG J,ZHAO Y,et al.Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables [J].Nonlinear Dynamics,2017,89:2815-2827.

    • [6] 林恒辉,赵珧冰.温度变化对悬索非线性内共振响应特性影响 [J].振动与冲击,2021,40(8):165-172.LIN H H,ZHAO Y B.Influences of temperature on suspended cables' nonlinear vibration characteristics considering internal resonances [J].Journal of Vibration and Shock,2021,40(8):165-172.(in Chinese)

    • [7] 李凤臣,杨鸥,田石柱,等.考虑前2阶模态组合的拉索非线性参数共振研究 [J].防灾减灾工程学报,2015,35(2):249-255.LI F C,YANG O,TIAN S Z,et al.Nonlinear parametric resonance of cable in consideration of first two modes combination [J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(2):249-255.(in Chinese)

    • [8] 汪峰,李春清,刘章军,等.考虑附加刚度的黏滞阻尼器-斜拉索参数振动模型及控制分析 [J].振动与冲击,2020,39(22):183-191.WANG F,LI C Q,LIU Z J,et al.Parametric vibration model for a viscous damper-cable system considering the effect of additional stiffness [J].Journal of Vibration and Shock,2020,39(22):183-191.(in Chinese)

    • [9] 张伟,姚明辉,张君华,等.高维非线性系统的全局分岔和混沌动力学研究 [J].力学进展,2013,43(1):63-90.ZHANG W,YAO M H,ZHANG J H,et al.Study of global bifurcations and chaotic dynamics for high-dimensional nonlinear [J].Advances in Mechanics,2013,43(1):63-90.(in Chinese)

    • [10] ZHANG W,TANG Y.Global dynamics of the cable under combined parametrical and external excitations [J].International Journal of Nonlinear Mechanics,2002,37:505-526.

    • [11] CHEN H K,XU Q Y.Bifurcations and chaos of an inclined cable [J].Nonlinear Dynamics,2009,57:37-55.

    • [12] ZHANG X H,CHEN F Q,JING T Y.Global bifurcations of a taut string with 1∶2 internal resonance [J].Communications in Nonlinear Science and Numerical Simulation,2014,19:776-788.

    • [13] AN F X,CHEN F Q.Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads [J].Nonlinear Dynamics,2017,89(3):1753-1778.

    • [14] 高美娟,张伟,姚明辉,等.压电复合材料层合板的混沌动力学研究 [J].振动与冲击,2009,28(6):82-85.GAO M J,ZHANG W,YAO M H,et al.Chaotic dynamics of the laminated composite piezoelectric rectangular plate [J].Journal of Vibration and Shock,2009,28(6):82-85.(in Chinese)

    • [15] 孙莹,张伟,吴瑞琴.六维系统环形桁架天线的非线性动力学分析 [J].应用数学和力学,2019,40(3):282-300.SUN Y,ZHANG W,WU R Q.Analysis on nonlinear dynamics of circular truss antennae in 6D systems [J].Applied Mathematics and Mechanics,2019,40(3):282-300.(in Chinese)

    • [16] DEMSIC M,UROS M,LAZAREVIC A,et al.Resonance regions due to interaction of forced and parametric vibration of a parabolic cable [J].Journal of Sound and Vibration,2019,447:78-104.

    • [17] ZHANG W,ZHANG F X,ZU J W.Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam [J].Journal of Sound and Vibration,2004,278:949-974.

    • [18] HALLER G,WIGGINS S.N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems [J].Archive for Rational Mechanics and Analysis,1995,130:25-101.

    • [19] SRINIL N,REGA G.The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables [J].International Journal of Non-Linear Mechanics,2007,42(1):180-195.

  • 微信公众号二维码

    手机版网站二维码