en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王荣浩,E-mail:wrh@893.com.cn

中图分类号:TP273

文献标识码:A

文章编号:1672-6553-2022-21(3)-044-009

DOI:10.6052/1672-6553-2022-023

参考文献 1
YAN H C,YANG Q,ZHANG H,et al.Distributed H state estimation for a class of filtering networks with time-varying switching topologies and packet losses [J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(12):2047-2057.
参考文献 2
DONG X W,ZHOU Y,REN Z,et al.Time-varying formation control for unmanned aerial vehicles with switching interaction topologies [J].Control Engineering Practice,2016,46:26-36.
参考文献 3
BU X Y,DONG H L,HAN F,et al.Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol [J].Neurocomputing,2019,346:58-64.
参考文献 4
LI Y N,SUN Y G,MENG F W,et al.Exponential stabilization of switched time-varying systems with delays and disturbances [J].Applied Mathematics and Computation,2018,324:131-140.
参考文献 5
TIAN Y Z,SUN Y G.Exponential stability of switched nonlinear time-varying systems with mixed delays:comparison principle [J].Journal of the Franklin Institute,2020,357(11):6918-6931.
参考文献 6
ZHANG J,SUN Y G,MENG F W.State Bounding for discrete-time switched nonlinear time-varying systems using ADT method [J].Applied Mathematics and Computation,2020,372:1-9.
参考文献 7
CHEN Y G,WANG Z D,QIAN W,et al.Finite-horizon H filtering for switched time-varying stochastic systems with random sensor nonlinearities and packet dropouts [J].Signal Processing,2017,138:138-145.
参考文献 8
CHEN G,YANG Y.New necessary and sufficient conditions for finite-time stability of impulsive switched linear time-varying systems [J].IET Control Theory and Applications,2018,12(1):140-148.
参考文献 9
LU J J,SHE Z K,FENG W J,et al.Stabilisability of time-varying switched systems based on piecewise continuous scalar functions [J].IEEE Transactions on Automatic Control,2019,64(6):2637-2644.
参考文献 10
CHEN G,YANG Y,LI J.Improved stability conditions for switched positive linear time-varying systems [J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2019,66(11):1830-1834.
参考文献 11
MANCILLA-AGUILAR J L,GARCIA R A.Uniform asymptotic stability of switched nonlinear time-varying systems and detectability of reduced limiting control systems [J].IEEE Transactions on Automatic Control,2019,64(7):2782-2797.
参考文献 12
HAIMOVICH H,MANCILLA-AGUILAR J L.ISS implies iISS even for switched and time-varying systems(if you are careful enough)[J].Automatica,2019,104:154-164.
参考文献 13
WU X,TANG Y,CAO J.Input-to-state stability of time-varying switched systems with time delays [J].IEEE Transactions on Automatic Control,2019,64(6):2537-2544.
参考文献 14
WANG X,ZONG G,SUN H.Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances [J].IET Control Theory and Applications,2016,10(10):1142-1150.
参考文献 15
CHEN W Z,SHI S,GUAN C X,et al.Finite-time control of switched systems under asynchronism based on quantized sampled-data [J].Journal of the Franklin Institute,2020,357(11):6635-6652.
参考文献 16
IQBAL M N,XIAO J,XIANG W M.Finite time H state estimation for discrete-time switched control systems under asynchronous switching [J].Asian Journal of Control,2014,16(4):1112-1121.
参考文献 17
REN H L,ZONG G D,KARIMI H R.Asynchronous finite-time filtering of networked switched systems and its application:an event-driven method.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2019,66(1):391-402.
参考文献 18
YANG L,GUAN C X,FEI Z Y.Finite-time asynchronous filtering for switched linear systems with an event-triggered mechanism [J].Journal of the Franklin Institute,2019,356(10):5503-5520.
参考文献 19
宋晓娜,付主木,李泽.分数阶及模糊系统的稳定性分析与控制 [M].北京:科学出版社,2014.SONG X N,FU Z M,LI Z.Stability Analysis and Control of Fractional Order and Fuzzy Systems [M].Beijing:Science Press,2014.(in Chinese)
参考文献 20
司辉,郑永爱.分数阶混沌系统的自适应预测同步 [J].动力学与控制学报,2021,19(5):8-12.SI H,ZHENG Y A.Adaptive predictive synchronization of fractional order chaotic systems [J].Journal of Dynamics and Control,2021,19(5):8-12.(in Chinese)
参考文献 21
林子飞,徐伟,韩群.基于分数阶导数的经济波动模型的稳定性研究 [J].动力学与控制学报,2017,15(3):242-249.LIN Z F,XU W,HAN Q.Stability analysis of an economic fluctuation model with fractional derivative [J].Journal of Dynamics and Control,2017,15(3):242-249.(in Chinese)
参考文献 22
罗绍凯.分数阶动力学的分析力学方法及其应用 [J].动力学与控制学报,2019,17(5):432-438.LUO S K.Analytical mechanics method of fractional dynamics and its applications [J].Journal of Dynamics and Control,2019,17(5):432-438.(in Chinese)
参考文献 23
李伟,张美婷,赵俊锋,等.含有分数阶PID控制器的随机动力系统可靠性分析 [J].动力学与控制学报,2019,17(1):65-72.LI W,ZHANG M T,ZHAO J F,et al.Reliability analysis of stochastic dynamical systems with fractional order PID controller [J].Journal of Dynamics and Control,2019,17(1):65-72.(in Chinese)
参考文献 24
HOSSEINNIA S H,TEJADO I,VINAGRE B M.Stability of fractional order switching systems [J].Computers and Mathematics with Applications,2013,66(5):585-596.
参考文献 25
YANG Y,CHEN G.Finite-time stability of fractional order impulsive switched systems [J].International Journal of Robust and Nonlinear Control,2015,25(13):2207-2222.
参考文献 26
KACZOREK T.Positive linear systems consisting of subsystems with different fractional orders.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2011,58(6):1203-1210.
参考文献 27
张克军,彭国华.分数阶线性时滞切换系统PDα型迭代学习控制 [J].控制工程,2021,28(6):1179-1186.ZHANG K J,PENG G H.PDα-type iterative learning control for a class of fractional-order linear switched systems with time-delay [J].Control Engineering of China,2021,28(6):1179-1186.(in Chinese)
参考文献 28
梁金霞,吴保卫.分数阶切换系统的输入输出有限时间稳定 [J].纺织高校基础科学学报,2018,31(4):490-496.LIANG J X,WU B W.Input-output finite-time stability of fractional-order switched systems [J].Basic Sciences Journal of Textile Universities,2018,31(4):490-496.(in Chinese)
参考文献 29
KILBAS A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations [M].Elsevier,New York,2006.
参考文献 30
LONG L,ZHAO J.Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time [J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(7):1350-1362.
参考文献 31
MA Y J,WU B W,WANG Y E.Finite-time stability and finite-time boundedness of fractional order linear systems [J].Neurocomputing,2016,173:2076-2082.
参考文献 32
ZHANG J,ZHAO X,CHEN Y.Finite-time stability and stabilization of fractional order positive switched systems [J].Circuits Systems and Signal Processing,2016,35(7):2450-2470.
参考文献 33
MA Y J,WU B W,WANG Y E,et al.Input-output finite time stability of fractional order linear systems with 0<α<1 [J].Transactions of the Institute of Measurement and Control,2017,39(5):653-659.
目录contents

    摘要

    针对一类时变切换系统,当考虑子系统具有分数阶(Fractional Order)特性时,提出了一种基于模型依赖平均驻留时间方法的有限时间稳定性条件及异步切换控制策略.借助Caputo分数阶导数引理和切换Lyapunov函数,利用矩阵不等式技术提出了分数阶时变切换系统有限时间稳定的充分条件.将有限时间稳定的结果进一步推广到有限时间有界的情形,利用平均驻留时间思想提出了分数阶时变切换系统有限时间有界的充分条件,基于该条件设计了系统的异步切换控制器.所给出的设计方法将系统异步切换控制问题转化为矩阵不等式组的求解问题.通过数值仿真验证了所提控制方法的有效性.

    Abstract

    For a class of time-varying switched systems, when considering the fractional order characteristics of subsystems, finite time stability condition and asynchronous switching control strategy are proposed based on model dependent average dwell time method.With the help of Caputo fractional derivative lemma and switched Lyapunov function, a sufficient condition for the finite time stability of fractional time-varying switched systems is proposed by using matrix inequality technology and the result of finite time stability is further extended to the case of finite time boundedness.A sufficient condition for finite time boundedness of fractional order time-varying switched systems is proposed using the idea of average dwell time and the asynchronous switching controller of the system is designed based on this condition.The proposed design method transforms the asynchronous switching control problem into the solution of matrix inequalities.The effectiveness of the proposed control method is verified by numerical simulation.

  • 引言

  • 在实际工程系统中,时变和切换特性往往同时存在,这类系统可用线性时变(LTV)切换系统模型描述.LTV切换系统的子系统参数是时变的,针对该类系统的研究近年来受到普遍关注,主要动机在于具有时变参数的切换模型能够用来建立一类受控对象特性随时间和环境变化的实际物理系统,其具备更加广泛的描述能力.LTV切换系统模型已经在很多领域得到了应用,例如滤波网络[1]、无人飞行器[2]和无线传感器网络[3]等.相较于线性时不变(LTI)切换系统,子系统参数的变化使得LTV切换系统的分析和综合问题更加困难,时变参数和切换控制信号在系统动态特性演化过程中的交织给稳定性分析和控制器设计带来了新的挑战.文献[4]引入模型转换技术,在时延和扰动下利用平均驻留时间方法给出了LTV切换系统指数稳定性判据,文献[5]进一步利用比较原理将该判据推广到时变非线性的情形.此外,文献[6]基于平均驻留时间切换方法分析了离散时变切换非线性系统的稳定性问题,文献[7]基于这种方法解决了离散时变随机切换系统的有限时间H滤波问题.文献[8]利用不定Lyapunov函数方法给出了LTV脉冲切换系统有限时间稳定的充要条件,该方法也被用来解决时变切换系统的镇定问题[9],并进一步用来分析LTV切换正系统的稳定性[10].文献[11]推广了经典Krasovskii-LaSalle定理,获得了时变非线性切换系统一致渐近稳定的充要条件.文献[12]研究了时变切换系统的输入-状态稳定性,文献[13]进一步将其推广到时延情形.纵观目前已有的成果,对于设计相应的控制器确保LTV切换系统有限时间稳定、渐近稳定、指数稳定或输入-状态稳定方面,现有的文献很多都已经进行了充分研究,然而,这些结果均未考虑控制器和子系统切换时间上的异步特性,结论具有一定的保守性.虽然LTV切换系统镇定问题受到广泛关注,基于异步切换的有限时间控制研究鲜有相关报道,目前该类控制方法的研究主要针对时不变的情形[14-18].

  • 此外,在实际中许多对象不能依靠传统的整数阶微分方程精确表示,很多实际系统用分数阶微分方程可以更好地得到表征,所以分数阶系统在许多领域(如地震分析、黏性阻尼、信号处理、分形与混沌等)都有广泛的应用[19],随着对分数阶微积分理论研究的不断深入,其在复杂系统[20]、经济学[21]、力学[22]等方面也有很多应用.特别是在控制领域中[23],分数阶微积分可以更加准确地描述实际系统,能产生比整数阶微积分更好的结果.目前,关于分数阶切换系统已经取得了一些研究结果.文献[24]分析了分数阶切换系统的二次稳定性.文献[25]给出了分数阶切换脉冲系统的有限时间稳定性条件.文献[26]研究了分数阶切换正系统的稳定及镇定.文献[27]针对一类具有任意切换规则的分数阶线时滞切换系统,利用λ范数研究了PDα型分数阶迭代学习控制.文献[28]研究了分数阶切换系统的输入输出有限时间稳定问题.尽管在分数阶切换系统的稳定性分析与综合方面已经取得了一些研究结果,但均未考虑子系统含有时变参数的情形,且都是基于控制器与子系统切换时间同步的假设,关于分数阶时变(FOLTV)切换系统有限时间异步控制问题方面未见报道.本文针对一类分数阶时变切换系统,利用模型依赖平均驻留时间思想提出了分数阶时变切换系统有限时间稳定和有限时间有界的充分条件,基于该条件设计了系统的异步切换控制器,特别地,异步切换使得子系统分数阶动力学模型对应的控制器与系统之间产生了切换时序的不匹配,通过求解具有参数耦合的矩阵不等式组,并设计相应的求解方法,得到了子系统对应的控制器参数.最后通过数值算例进行仿真实验,验证了理论结果.

  • 1 问题描述和预备知识

  • 考虑下面的分数阶时变切换系统:

  • 0CDtαx(t)=Aσ(t)(t)x(t)
    (1)
  • 其中xtRn是系统状态,x(0)=x0是系统初始状态,σt:[0+N_={1,2N}是切换信号,N代表子系统个数. Ait=apqitRn×n是时变系统矩阵,iN_pq{1,2n}ttktk+1t0=0tk为第k次切换时刻.

  • 定义[29] 当0<α<1时,Caputo分数阶导数定义如下:

  • 0CDtαf(t)=1Γ(1-α)0t f'(τ)(t-τ)αdτ
    (2)
  • 其中0CDtαft表示函数ft)在[0,t]上的Caputo分数阶导数,Γ(·)表示Gamma函数,且Γ(z)= 0 e-ttz-1dt.

  • 定义[29]  当α>0时,Caputo分数阶积分定义如下:

  • 0CFtαf(t)=1Γ(α)0t f(τ)(t-τ)1-αdτ
    (3)
  • 其中0CFtαft表示函数ft)在[0,t]上的Caputo分数阶积分.特别地,当0<α<1时,0CFtα0CDtαft=ft)-f(0).

  • 定义3  对于系统(1),给定正标量c1c2Tc1c2,切换信号σt)以及正定矩阵函数Rt),t∈[0,T],如果:

  • x0TR (0) x0c12x (t) TR (t) x (t) <c22, t[0, T]

  • 则系统(1)关于(c1c2TRt),σt))是有限时间稳定的.

  • 若系统(1)中含有外部干扰信号,则状态方程可描述为:

  • 0CDtαx(t)=Aσ(t)(t)x(t)+Gσ(t)(t)w(t)
    (4)
  • 其中Git=gpqitRn×h是时变矩阵,wt)∈Rh是平方可积的外部干扰信号.

  • 定义 4  对于系统(4),给定正标量c1c2Tc1c2,切换信号σt)以及正定矩阵函数Rt),t∈[0,T],如果:

  • x0TR (0) x0c12x (t) TR (t) x (t) <c22, t[0, T]

  • 则对wt)∈WW代表平方可积的向量值函数的集合,系统(4)关于(c1c2WTRt),σt))是有限时间有界的.

  • 在(4)中考虑控制输入,则系统为:

  • 0CDtαx(t)=Aσ(t)(t)x(t)+Bσ(t)(t)u(t)+Gσ(t)(t)w(t)
    (5)
  • 其中Bit=bpqitRn×m是时变控制矩阵,ut)∈Rm是控制输入. 利用状态反馈实现系统的有限时间控制,反馈控制器形式为:

  • u(t)=Kσ(t)x(t)
    (6)
  • 由于检测信号的延迟,控制器切换时刻滞后于系统的切换时刻,称之为异步切换. 用σ′(t)表示控制器的实际切换信号. 设在时刻tk子系统ik被激活,kZ,则系统具有以下的切换序列:

  • S=t0, i0, t1, i1, , tk, ik, , ikN

  • 系统的切换信号为σt=ikttktk+1. 当控制器与系统之间存在异步切换时,异步切换序列可描述为:

  • S'=t0, i0, t1+Δ1, i1, , tk+Δk, ik,

  • 其中Δk<infkZ tk+1-tk为控制器与系统之间的不匹配切换时间段,对应的控制器切换信号为:

  • σ' (t) =ik, ttk+Δk, tk+1

  • 异步切换反馈控制器形式为:

  • u(t)=Kσ'(t)x(t)
    (7)
  • 研究的问题描述为:寻求反馈增益Kσ't,使得(5)是有限时间有界的. 控制流程图如图1所示:

  • 图1 异步切换控制方框图

  • Fig.1 Block diagram of asynchronously switched control

  • 定义5[30]  对于给定的切换信号σt),tt0≥0,Nσt0t)表示在时间段(t0t)内σt)的非连续数值个数,如果:

  • Nσt0,tN0+t-t0τ
    (8)
  • 成立,其中τ>0,N0>0,则称τ为切换信号σt)的平均驻留时间,N0为振颤界. 不失一般性,可选择N0=0.

  • 引理 1[31]  若P为正定矩阵,则对α∈(0,1),t≥0,以下不等式成立:

  • 120CDtαxT(t)Px(t)xT(t)P0CDtαx(t)
    (9)
  • 引理 2[32]  设k为非负常数,ft),gt)是t∈[ab]上的连续非负函数,且满足不等式:

  • f (t) k+at f (s) g (s) ds

  • 则有:

  • f (t) kexpat g (s) ds

  • 引理 3[33]  对于x1x2xnR+和0<α<1,以下不等式成立:

  • k=1n xkαn1-αk=1n xkα
    (10)
  • 引理 4[33]  对ab>0和xy>0,以下不等式成立:

  • xaybaa+bxa+b+ba+bya+b

  • 2 主要结果

  • 2.1 有限时间稳定性

  • 定理1给出了系统(1)有限时间稳定的充分条件.

  • 定理1  考虑系统(1),给定正标量c1c2c1c2),Tμ>1和ε.如果存在正定矩阵Pi>0,使得对t∈[0,T]以下矩阵不等式成立:

  • AiT(t)Pi+PiAi(t)-εPi0
    (11)
  • R(t)Pic2c1R(t)
    (12)
  • Pi<μPj,i,jN
    (13)
  • 平均驻留时间满足:

  • τa>TΓ(α+1)lnμ+Tε(1-α)Γ(α+1)lnc2/c1-ε(1-α)-Tεα
    (14)
  • 则系统(1)关于(c1c2TRt),σt))有限时间稳定.

  • 证明 对系统(1)选取以下的Lyapunov函数:

  • V(x)=Vi(x)=xTPix
    (15)
  • 利用引理1可得:

  • 0CDtαVi(x)xT(t)PiAi(t)+AiT(t)Pix(t)
    (16)
  • 由式(11)可得:

  • 0CDtαVi(x)εxT(t)Pix(t)
    (17)
  • 对于σt)=ikt∈[tktk+1),(17)两边取分数阶积分可得:

  • Vik(x(t))Vikxtk+εΓ(α)tkt Vik(x(τ))(t-τ)1-αdτ
    (18)
  • 由引理2可得:

  • Vik(x(t))VikxtkexpεΓ(α)tkt (t-τ)α-1dτ=VikxtkexpεΓ(α+1)t-tkα
    (19)
  • 由式(13)可得:

  • Vik(x(t))μVik-1xtk-expεΓ(α+1)t-tkα
    (20)
  • 联立式(19)和式(20)可得:

  • Vik (x (t) ) μVik-1xtk-1expεΓ (α+1) t-tkα+tk-tk-1αμkVi0 (x (0) ) expεΓ (α+1) t-tkα+tk-tk-1α+t1α

  • 由引理3、引理4和定义4可得:

  • Vik (x (t) ) Vi0 (x (0) ) exp (k+1) 1-αεtαΓ (α+1) +klnμVi0 (x (0) ) exp (1-α) (k+1) +αtΓ (α+1) ε+klnμVi0 (x (0) ) exp (1-α) εΓ (α+1) +lnμtτa+ (1-α) +αtΓ (α+1) εt[0, T]

  • 由式(14)可得:

  • Vik(x(t))c2c1Vi0(x(0))
    (21)
  • 由定义2和k的任意性,联合式(12)和式(21)可得:

  • xT (t) R (t) x (t) xT (t) Pikx (t) c2c1xT (0) Pi0x (0) c22c12xT (0) R (0) x (0) c22

  • 因此系统(1)关于(c1c2TRt),σt))是有限时间稳定的. 定理证毕.

  • 1  当α=1时,定理1的分数阶时变切换系统有限时间稳定性条件可转化为常规的时变切换系统有限时间稳定性条件,该定理统一了分数阶和整数阶的结果,更具一般性.

  • 该稳定性条件要求检验无穷多个矩阵不等式的可行性,在具体系统的检验中很难处理,当考虑时变系统为仿射参数依赖系统或多胞型系统时,可用一组有限多个线性矩阵不等式组的可行性刻画系统(1)的有限时间稳定性条件,并且可以看出,必然存在适当大的正数εμ使得不等式(11)和(13)成立,在具体求解中可通过凑试法寻求合适的正数解.

  • 2.2 有限时间有界性

  • 定理2给出了含外部扰动的系统(4)的有限时间有界的充分条件.

  • 定理2  考虑如下的一类扰动信号:

  • W:=w () w () L2[0, T], 0T w (τ) Tw (τ) dτd

  • 其中d是一个正标量.给定正标量c1c2c1c2),Tμ>1和λ. 如果存在正定矩阵Pi>0,使得对t∈[0,T]以下矩阵不等式成立:

  • AiT(t)Pi+PiAi(t)-λPiPiGi(t)GiT(t)Pi-λI0
    (22)
  • R(t)Pic2c1R(t)
    (23)
  • Pi<μPj,i,jN_
    (24)
  • 平均驻留时间满足:

  • τa>TΓ(α+1)lnμ+Tλ(1-α)Γ(α+1)lnc22+dc1c2+d-λ(1-α)-Tλα
    (25)
  • 则系统(4)关于(c1c2WTRt),σt))有限时间有界.

  • 证明 对系统(4)选取以下的Lyapunov函数:

  • V(x)=Vi(x)=xTPix
    (26)
  • 利用引理1可得:

  • 0CDtαVi(x)xT(t)PiAi(t)+AiT(t)Pix(t)+xT(t)PiGi(t)w(t)+wT(t)GitTPix(t)x(t)w(t)TPiAi(t)+AiT(t)PiPiGi(t)Gi(t)TPi0x(t)w(t)x(t)w(t)TλPi00λIx(t)w(t)=λVi(x)+λwT(t)w(t)λVi(x)+d
    (27)
  • 对于σt)=ikt∈[tktk+1),(27)两边取分数阶积分可得:

  • Vik(x(t))Vikxtk+λΓ(α)tkt Vik(x(τ))+d(t-τ)1-αdτ
    (28)
  • 由引理2可得:

  • Vik(x(t))+dVikxtk+dexpλΓ(α)tkt (t-τ)α-1dτ=Vikxtk+dexpλΓ(α+1)t-tkα
    (29)
  • 由式(24)可得:

  • Vi(x)+d<μVj(x)+d
    (30)
  • 联立式(29)和式(30)可得:

  • Vik(x(t))+dVi0(x(0))+dexp(1-α)λΓ(α+1)+lnμtτa+(1-α)+αtΓ(α+1)λ
    (31)
  • t∈[0,T],由(25)可得:

  • Vik(x(t))c22+dc1c2+dVi0(x(0)+d)-d
    (32)
  • 由定义2和k的任意性,联立式(23)和式(32)可得:

  • xT (t) R (t) x (t) xT (t) Pikx (t) c22+dc1c2+dxT (0) Pi0x (0) +d-dc22+dc1c2+dc2c1xT (0) R (0) x (0) +d-dc22

  • 因此系统(4)关于(c1c2WTRt),σt))有限时间有界.定理证毕.

  • 2  令d=0,式(22)和式(25)分别退化为式(11)和式(14),即表明有限时间有界的稳定性条件是有限时间稳定性条件的进一步推广.

  • 2.3 异步切换控制器设计

  • 将式(7)带入式(5)可得以下闭环系统:

  • 0CDtαx(t)=Aσ(t)(t)+Bσ(t)(t)Kσ'(t)x(t)+Gσ(t)(t)w(t)
    (33)
  • 定理3  给定正标量c1c2c1c2),Tμ>1和λ. 如果存在正定矩阵YiPij和矩阵Wi,使得对t∈[0,T]以下矩阵不等式成立:

  • Ai(t)Yi+Bi(t)Wi+Ai(t)Yi+Bi(t)WiT-λYiGi(t)GiT(t)-λI0
    (34)
  • PijAj(t)+Bj(t)Ki+Aj(t)+Bj(t)KiTPij-λPijPijGj(t)Gj(t)TPij-λI0
    (35)
  • μ-1IPijYiμI
    (36)
  • c1c2R-1(t)YiR-1(t)
    (37)
  • 其中ijN_ijμ≥1,平均驻留时间满足:

  • τa>2TΓ(α+1)lnμ+Tλ(1-α)Γ(α+1)lnc22+dc1c2+d-λ(1-α)-Tλα
    (38)
  • 则控制器增益设计为Ki=WiYi-1能够确保系统(33)关于(c1c2WTRt),σt))有限时间有界.

  • 证明 对系统(33)选取以下的Lyapunov函数:

  • V(x)=xTYi-1x,ttr+Δr,tr+1,r=1,2,,kxTPijx,ttr,tr+Δr,r=1,2,,kxTY0-1x,tt0,t1
    (39)
  • 在匹配时间段(trrtr+1]有:

  • 0CDtαV(x)xT(t)Yi-1Ai(t)+Bi(t)Ki+Ai(t)+Bi(t)KiTYi-1x(t)+xT(t)Yi-1Gi(t)w(t)+wT(t)Gi(t)TYi-1x(t)x(t)w(t)TYi-1Ai(t)+Bi(t)Ki+Ai(t)+Bi(t)KiTYi-1Yi-1Gi(t)GiT(t)Yi-10x(t)w(t)x(t)w(t)TλYi-100λIx(t)w(t)=λV(x)+λwT(t)w(t)λ(V(x)+d)
    (40)
  • 基于定理2的证明思路,可得:

  • V(x(t))+dVxtr+Δr+dexpλΓ(α)tr+Δrt (t-τ)α-1dτ=Vxtr+Δr+dexpλΓ(α+1)t-tr-Δrα
    (41)
  • 在非匹配时间段(trtrr]有:

  • 0CDtαV(x)xT(t)PijAj(t)+Bj(t)Ki+Aj(t)+Bj(t)KiTPijx(t)+xT(t)PijGj(t)w(t)+wT(t)Gj(t)TPijx(t)x(t)w(t)TPijAj(t)+Bj(t)Ki+Aj(t)+Bj(t)KiTPijPijGj(t)GjT(t)Pij0x(t)w(t)x(t)w(t)TλPij00λIx(t)w(t)=λV(x)+λwT(t)w(t)λ(V(x)+d)
    (42)
  • 同理,可得:

  • V(x(t))+dVxtr+d)expλΓ(α)trtr+Δr (t-τ)α-1dτ=Vxtr+dexpλΓ(α+1)Δrα
    (43)
  • 联立式(41)和式(43)可得:

  • V(x(t))+d(V(x(0))+d)exp(1-α)λΓ(α+1)+2lnμtτa+(1-α)+αtΓ(α+1)λ
    (44)
  • t∈[0,T],由式(38)可得:

  • V (x (t) ) c22+dc1c2+d (V (x0) +d) -d

  • 由定义2和k的任意性,联立式(37)和式(45)可得:

  • xT (t) R (t) x (t) xT (t) Yi-1x (t) c22+dc1c2+dxT (0) Y0-1x (0) +d-d

  • c22+dc1c2+dc2c1xT(0)TR(0)x(0)+d-dc22
    (46)
  • 因此系统(33)关于(c1c2WTRt),σt))有限时间有界.定理证毕.

  • 3  对异步切换而言,闭环系统的模态切换次数是不考虑异步切换情形下的2倍,对比式(38)和式(25)可知异步切换下平均驻留时间的下界值大于非异步切换情形,这也说明异步特性对闭环系统稳定性的影响可通过较长的平均驻留时间来抵消.

  • 式(34)~式(37)可通过考虑仿射参数依赖系统或多胞型系统转换为有限个矩阵不等式组,但变换后的矩阵不等式组同时含有待求矩阵变量PijYiPijYiWiWiYi-1,它们是相互耦合的,并且不能通过矩阵变换将其化为无相互约束的线性矩阵不等式组,不便于直接求解.注意到考虑仿射参数依赖系统或多胞型系统后,式(34)为一组关于YiWi的线性矩阵不等式,因此,首先可以获得矩阵YiWi的解,然后将所得到的解代入式(35)和式(36),从而可求得Pij.

  • 3 数值仿真

  • 考虑包含2个子系统的分数阶时变切换系统,系统的动态方程如下:

  • 0CDtαx (t) =Aσ (t) (t) x (t) +Bσ (t) (t) u (t) +Gσ (t) (t) w (t)

  • 其中切换信σt)={1,2},系统时变参数为:

  • A1 (t) =-100-12|cost|, A2 (t) =-12e-t00-1, B1 (t) =2cost0, B2 (t) =02e-tG1 (t) =e-t/20, G2 (t) =0sint

  • 选取μ=1.01,λ=2,T=0.5,c1=0.01,c2=1,α=0.5,Rt=1+|sint|2001+e-t2

  • 系统初始状态为: x0=0.007-0.005

  • 外部扰动信号为:wt=2×10-3sint,由此可计算得d=0.001.

  • 基于定理3通过计算得到式(34)~式(37)的一个可行解为:

  • P12=P21=IY1=Y2=IW1=10, W2=01,

  • 由此可得K1=1 0K2=0 1,且由式(38)计算得到平均驻留时间为:

  • τa>Γ (1.5) ln1.01+0.5Γ (1.5) ln1.0010.011-1.5=π2ln1.01+0.5π2ln1.0010.011-1.50.2037

  • 图2 系统状态响应曲线

  • Fig.2 System state response curve

  • 图3 控制律变化曲线

  • Fig.3 Control law variation curve

  • 图4 异步切换信号图

  • Fig.4 Asynchronous switching signal diagram

  • 图5 xtTRtxt变化曲线

  • Fig.5 x (t) TR (t) x (t) variation curve

  • 选取控制器与子系统的异步切换延迟时间为Δ=0.05.系统状态响应曲线如图2所示,控制律变化曲线如图3所示,异步切换信号如图4所示,系统状态的二次型开方函数xtTRtxt变化曲线如图5所示.从仿真曲线中可以看出,在[0,0.5]内系统状态是有限时间有界的.

  • 4 结论

  • 本文基于Caputo分数阶导数相关定义和切换Lyapunov函数,采用模型依赖平均驻留时间方法设计了分数阶时变切换系统有限时间异步控制器,实现了系统状态的有限时间有界.提出了分数阶时变切换系统的稳定性分析和异步综合设计方法,建立了有限时间稳定和有限时间有界的判据,并以此给出了异步切换控制器依赖平均驻留时间的矩阵不等式设计方法.通过数值仿真验证了分数阶时变切换系统的有限时间稳定控制性能.结果表明,采用所提出的异步切换镇定方法可以实现系统状态的有限时间有界,控制策略是可行的.此外,本文所提出的分数阶时变切换系统有限时间异步控制策略在应用时对时变项需要附加一定的限制条件,将来的研究需要进一步降低结论的保守性.

  • 参考文献

    • [1] YAN H C,YANG Q,ZHANG H,et al.Distributed H state estimation for a class of filtering networks with time-varying switching topologies and packet losses [J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(12):2047-2057.

    • [2] DONG X W,ZHOU Y,REN Z,et al.Time-varying formation control for unmanned aerial vehicles with switching interaction topologies [J].Control Engineering Practice,2016,46:26-36.

    • [3] BU X Y,DONG H L,HAN F,et al.Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol [J].Neurocomputing,2019,346:58-64.

    • [4] LI Y N,SUN Y G,MENG F W,et al.Exponential stabilization of switched time-varying systems with delays and disturbances [J].Applied Mathematics and Computation,2018,324:131-140.

    • [5] TIAN Y Z,SUN Y G.Exponential stability of switched nonlinear time-varying systems with mixed delays:comparison principle [J].Journal of the Franklin Institute,2020,357(11):6918-6931.

    • [6] ZHANG J,SUN Y G,MENG F W.State Bounding for discrete-time switched nonlinear time-varying systems using ADT method [J].Applied Mathematics and Computation,2020,372:1-9.

    • [7] CHEN Y G,WANG Z D,QIAN W,et al.Finite-horizon H filtering for switched time-varying stochastic systems with random sensor nonlinearities and packet dropouts [J].Signal Processing,2017,138:138-145.

    • [8] CHEN G,YANG Y.New necessary and sufficient conditions for finite-time stability of impulsive switched linear time-varying systems [J].IET Control Theory and Applications,2018,12(1):140-148.

    • [9] LU J J,SHE Z K,FENG W J,et al.Stabilisability of time-varying switched systems based on piecewise continuous scalar functions [J].IEEE Transactions on Automatic Control,2019,64(6):2637-2644.

    • [10] CHEN G,YANG Y,LI J.Improved stability conditions for switched positive linear time-varying systems [J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2019,66(11):1830-1834.

    • [11] MANCILLA-AGUILAR J L,GARCIA R A.Uniform asymptotic stability of switched nonlinear time-varying systems and detectability of reduced limiting control systems [J].IEEE Transactions on Automatic Control,2019,64(7):2782-2797.

    • [12] HAIMOVICH H,MANCILLA-AGUILAR J L.ISS implies iISS even for switched and time-varying systems(if you are careful enough)[J].Automatica,2019,104:154-164.

    • [13] WU X,TANG Y,CAO J.Input-to-state stability of time-varying switched systems with time delays [J].IEEE Transactions on Automatic Control,2019,64(6):2537-2544.

    • [14] WANG X,ZONG G,SUN H.Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances [J].IET Control Theory and Applications,2016,10(10):1142-1150.

    • [15] CHEN W Z,SHI S,GUAN C X,et al.Finite-time control of switched systems under asynchronism based on quantized sampled-data [J].Journal of the Franklin Institute,2020,357(11):6635-6652.

    • [16] IQBAL M N,XIAO J,XIANG W M.Finite time H state estimation for discrete-time switched control systems under asynchronous switching [J].Asian Journal of Control,2014,16(4):1112-1121.

    • [17] REN H L,ZONG G D,KARIMI H R.Asynchronous finite-time filtering of networked switched systems and its application:an event-driven method.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2019,66(1):391-402.

    • [18] YANG L,GUAN C X,FEI Z Y.Finite-time asynchronous filtering for switched linear systems with an event-triggered mechanism [J].Journal of the Franklin Institute,2019,356(10):5503-5520.

    • [19] 宋晓娜,付主木,李泽.分数阶及模糊系统的稳定性分析与控制 [M].北京:科学出版社,2014.SONG X N,FU Z M,LI Z.Stability Analysis and Control of Fractional Order and Fuzzy Systems [M].Beijing:Science Press,2014.(in Chinese)

    • [20] 司辉,郑永爱.分数阶混沌系统的自适应预测同步 [J].动力学与控制学报,2021,19(5):8-12.SI H,ZHENG Y A.Adaptive predictive synchronization of fractional order chaotic systems [J].Journal of Dynamics and Control,2021,19(5):8-12.(in Chinese)

    • [21] 林子飞,徐伟,韩群.基于分数阶导数的经济波动模型的稳定性研究 [J].动力学与控制学报,2017,15(3):242-249.LIN Z F,XU W,HAN Q.Stability analysis of an economic fluctuation model with fractional derivative [J].Journal of Dynamics and Control,2017,15(3):242-249.(in Chinese)

    • [22] 罗绍凯.分数阶动力学的分析力学方法及其应用 [J].动力学与控制学报,2019,17(5):432-438.LUO S K.Analytical mechanics method of fractional dynamics and its applications [J].Journal of Dynamics and Control,2019,17(5):432-438.(in Chinese)

    • [23] 李伟,张美婷,赵俊锋,等.含有分数阶PID控制器的随机动力系统可靠性分析 [J].动力学与控制学报,2019,17(1):65-72.LI W,ZHANG M T,ZHAO J F,et al.Reliability analysis of stochastic dynamical systems with fractional order PID controller [J].Journal of Dynamics and Control,2019,17(1):65-72.(in Chinese)

    • [24] HOSSEINNIA S H,TEJADO I,VINAGRE B M.Stability of fractional order switching systems [J].Computers and Mathematics with Applications,2013,66(5):585-596.

    • [25] YANG Y,CHEN G.Finite-time stability of fractional order impulsive switched systems [J].International Journal of Robust and Nonlinear Control,2015,25(13):2207-2222.

    • [26] KACZOREK T.Positive linear systems consisting of subsystems with different fractional orders.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2011,58(6):1203-1210.

    • [27] 张克军,彭国华.分数阶线性时滞切换系统PDα型迭代学习控制 [J].控制工程,2021,28(6):1179-1186.ZHANG K J,PENG G H.PDα-type iterative learning control for a class of fractional-order linear switched systems with time-delay [J].Control Engineering of China,2021,28(6):1179-1186.(in Chinese)

    • [28] 梁金霞,吴保卫.分数阶切换系统的输入输出有限时间稳定 [J].纺织高校基础科学学报,2018,31(4):490-496.LIANG J X,WU B W.Input-output finite-time stability of fractional-order switched systems [J].Basic Sciences Journal of Textile Universities,2018,31(4):490-496.(in Chinese)

    • [29] KILBAS A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations [M].Elsevier,New York,2006.

    • [30] LONG L,ZHAO J.Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time [J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(7):1350-1362.

    • [31] MA Y J,WU B W,WANG Y E.Finite-time stability and finite-time boundedness of fractional order linear systems [J].Neurocomputing,2016,173:2076-2082.

    • [32] ZHANG J,ZHAO X,CHEN Y.Finite-time stability and stabilization of fractional order positive switched systems [J].Circuits Systems and Signal Processing,2016,35(7):2450-2470.

    • [33] MA Y J,WU B W,WANG Y E,et al.Input-output finite time stability of fractional order linear systems with 0<α<1 [J].Transactions of the Institute of Measurement and Control,2017,39(5):653-659.

  • 参考文献

    • [1] YAN H C,YANG Q,ZHANG H,et al.Distributed H state estimation for a class of filtering networks with time-varying switching topologies and packet losses [J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(12):2047-2057.

    • [2] DONG X W,ZHOU Y,REN Z,et al.Time-varying formation control for unmanned aerial vehicles with switching interaction topologies [J].Control Engineering Practice,2016,46:26-36.

    • [3] BU X Y,DONG H L,HAN F,et al.Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol [J].Neurocomputing,2019,346:58-64.

    • [4] LI Y N,SUN Y G,MENG F W,et al.Exponential stabilization of switched time-varying systems with delays and disturbances [J].Applied Mathematics and Computation,2018,324:131-140.

    • [5] TIAN Y Z,SUN Y G.Exponential stability of switched nonlinear time-varying systems with mixed delays:comparison principle [J].Journal of the Franklin Institute,2020,357(11):6918-6931.

    • [6] ZHANG J,SUN Y G,MENG F W.State Bounding for discrete-time switched nonlinear time-varying systems using ADT method [J].Applied Mathematics and Computation,2020,372:1-9.

    • [7] CHEN Y G,WANG Z D,QIAN W,et al.Finite-horizon H filtering for switched time-varying stochastic systems with random sensor nonlinearities and packet dropouts [J].Signal Processing,2017,138:138-145.

    • [8] CHEN G,YANG Y.New necessary and sufficient conditions for finite-time stability of impulsive switched linear time-varying systems [J].IET Control Theory and Applications,2018,12(1):140-148.

    • [9] LU J J,SHE Z K,FENG W J,et al.Stabilisability of time-varying switched systems based on piecewise continuous scalar functions [J].IEEE Transactions on Automatic Control,2019,64(6):2637-2644.

    • [10] CHEN G,YANG Y,LI J.Improved stability conditions for switched positive linear time-varying systems [J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2019,66(11):1830-1834.

    • [11] MANCILLA-AGUILAR J L,GARCIA R A.Uniform asymptotic stability of switched nonlinear time-varying systems and detectability of reduced limiting control systems [J].IEEE Transactions on Automatic Control,2019,64(7):2782-2797.

    • [12] HAIMOVICH H,MANCILLA-AGUILAR J L.ISS implies iISS even for switched and time-varying systems(if you are careful enough)[J].Automatica,2019,104:154-164.

    • [13] WU X,TANG Y,CAO J.Input-to-state stability of time-varying switched systems with time delays [J].IEEE Transactions on Automatic Control,2019,64(6):2537-2544.

    • [14] WANG X,ZONG G,SUN H.Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances [J].IET Control Theory and Applications,2016,10(10):1142-1150.

    • [15] CHEN W Z,SHI S,GUAN C X,et al.Finite-time control of switched systems under asynchronism based on quantized sampled-data [J].Journal of the Franklin Institute,2020,357(11):6635-6652.

    • [16] IQBAL M N,XIAO J,XIANG W M.Finite time H state estimation for discrete-time switched control systems under asynchronous switching [J].Asian Journal of Control,2014,16(4):1112-1121.

    • [17] REN H L,ZONG G D,KARIMI H R.Asynchronous finite-time filtering of networked switched systems and its application:an event-driven method.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2019,66(1):391-402.

    • [18] YANG L,GUAN C X,FEI Z Y.Finite-time asynchronous filtering for switched linear systems with an event-triggered mechanism [J].Journal of the Franklin Institute,2019,356(10):5503-5520.

    • [19] 宋晓娜,付主木,李泽.分数阶及模糊系统的稳定性分析与控制 [M].北京:科学出版社,2014.SONG X N,FU Z M,LI Z.Stability Analysis and Control of Fractional Order and Fuzzy Systems [M].Beijing:Science Press,2014.(in Chinese)

    • [20] 司辉,郑永爱.分数阶混沌系统的自适应预测同步 [J].动力学与控制学报,2021,19(5):8-12.SI H,ZHENG Y A.Adaptive predictive synchronization of fractional order chaotic systems [J].Journal of Dynamics and Control,2021,19(5):8-12.(in Chinese)

    • [21] 林子飞,徐伟,韩群.基于分数阶导数的经济波动模型的稳定性研究 [J].动力学与控制学报,2017,15(3):242-249.LIN Z F,XU W,HAN Q.Stability analysis of an economic fluctuation model with fractional derivative [J].Journal of Dynamics and Control,2017,15(3):242-249.(in Chinese)

    • [22] 罗绍凯.分数阶动力学的分析力学方法及其应用 [J].动力学与控制学报,2019,17(5):432-438.LUO S K.Analytical mechanics method of fractional dynamics and its applications [J].Journal of Dynamics and Control,2019,17(5):432-438.(in Chinese)

    • [23] 李伟,张美婷,赵俊锋,等.含有分数阶PID控制器的随机动力系统可靠性分析 [J].动力学与控制学报,2019,17(1):65-72.LI W,ZHANG M T,ZHAO J F,et al.Reliability analysis of stochastic dynamical systems with fractional order PID controller [J].Journal of Dynamics and Control,2019,17(1):65-72.(in Chinese)

    • [24] HOSSEINNIA S H,TEJADO I,VINAGRE B M.Stability of fractional order switching systems [J].Computers and Mathematics with Applications,2013,66(5):585-596.

    • [25] YANG Y,CHEN G.Finite-time stability of fractional order impulsive switched systems [J].International Journal of Robust and Nonlinear Control,2015,25(13):2207-2222.

    • [26] KACZOREK T.Positive linear systems consisting of subsystems with different fractional orders.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2011,58(6):1203-1210.

    • [27] 张克军,彭国华.分数阶线性时滞切换系统PDα型迭代学习控制 [J].控制工程,2021,28(6):1179-1186.ZHANG K J,PENG G H.PDα-type iterative learning control for a class of fractional-order linear switched systems with time-delay [J].Control Engineering of China,2021,28(6):1179-1186.(in Chinese)

    • [28] 梁金霞,吴保卫.分数阶切换系统的输入输出有限时间稳定 [J].纺织高校基础科学学报,2018,31(4):490-496.LIANG J X,WU B W.Input-output finite-time stability of fractional-order switched systems [J].Basic Sciences Journal of Textile Universities,2018,31(4):490-496.(in Chinese)

    • [29] KILBAS A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations [M].Elsevier,New York,2006.

    • [30] LONG L,ZHAO J.Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time [J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(7):1350-1362.

    • [31] MA Y J,WU B W,WANG Y E.Finite-time stability and finite-time boundedness of fractional order linear systems [J].Neurocomputing,2016,173:2076-2082.

    • [32] ZHANG J,ZHAO X,CHEN Y.Finite-time stability and stabilization of fractional order positive switched systems [J].Circuits Systems and Signal Processing,2016,35(7):2450-2470.

    • [33] MA Y J,WU B W,WANG Y E,et al.Input-output finite time stability of fractional order linear systems with 0<α<1 [J].Transactions of the Institute of Measurement and Control,2017,39(5):653-659.

  • 微信公众号二维码

    手机版网站二维码